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Abstract

Towards Querying and Mining of Large-Scale Networks

Arijit Khan

With the advent of the internet, sources of data have increased dramatically, including

the World Wide Web, social networks, knowledge graphs, medical and government records.

Oftentimes, relations exist among the entities in these data. Therefore, we observe structures

in the data, but these structures are implicit, and not as rigid or regular as found in standard

database systems. These semi-structured data are usually represented as large networks with

labeled nodes and edges. Querying and mining of these linkeddatasets are essential for a wide

range of emerging applications, such as viral marketing, web search, malware detection, image

retrieval, and social networks analysis. However, the complex combinations of structure and

content, coupled with the massive volume of these data, raise several challenges that require

new efforts for smarter and faster graph analysis.

My research interests span the emerging problems in large-scale, heterogeneous,

semi-structured data, with a focus on querying and pattern mining in social and information

networks using scalable algorithms and machine learning techniques. My research on large-

scale graphs could be categorized into two broad directions: (1) querying of large-scale net-

works, including heterogeneous networks, uncertain and stream graphs, and (2) pattern mining

over large graphs. In the domain of querying heterogeneous networks, due to noise and lack

of schema, structured methods such as SPARQL — which requirean underlying schema to

xiii



formulate a query — are often too restrictive. Without knowing the exact structure of the data

and the semantics of the entity labels and their relationships, can we still query them and obtain

the relevant results? In addition, how do we query uncertaingraphs and streams? In the area of

graph pattern mining, what graph features one should extract in order to build an accurate and

efficient classifier over large networks? From the perspective of advertising and viral marketing,

what are the top-k most interesting itemsets and the top-k most influential persons in a social

network? In my dissertation, I shall discuss our effective and efficient techniques to solve these

emerging problems associated with querying and mining of complex Big-Graphs.

Professor Xifeng Yan

Dissertation Committee Chair
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Chapter 1

Introduction

“If you can write, you can code. If you can sketch, you can use agraph database.”

Neo4j

Recent advances in social and information science have shown that linked data pervade our so-

ciety and the natural world around us [153]. Therefore, graphs have become ubiquitous models

to represent complex structures and schema-less data such as Wikipedia, Freebase [64], and

various social and information networks. Many of these dataare often represented asheteroge-

neousgraphs, where the nodes are labeled entities, and the edges represent the relation between

two entities. In many novel applications, uncertainty is also inherent in the data due to a variety

of reasons, such as noisy measurements [9], inference and prediction models [5,103], or explicit

manipulation, e.g., for privacy purposes [26]. In these cases, data can further be represented as

an uncertaingraph, also calledprobabilistic graph, i.e., a graph whose arcs are labeled with

a probability of existence. In addition, many graphs such asthose defined by the activity on

social networks, communication networks, or telephone networks are defined dynamically by
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Large Networks

Querying Pattern Mining

Heterogeneous Network 

Search 

(SIGMOD 11, VLDB 13)

Reliability Query in 

Uncertain Graphs 

Influence Maximization 

in Social Networks 

(SDM 11)

Querying Graph Streams

Proximity Pattern 

Mining

(SIGMOD 10)

Figure 1.1: My Contributions
Source codes and datasets of our accepted papers are publicly available (Section 1.2)

fast edgestreamson a massive domain of nodes. Querying and mining such graph data are

essential for a wide range of emerging applications including intelligence, predictive analytic,

social network analysis, decision and process management.

Most of the existing graph algorithms do not perform well forcomplex and large

networks. My thesis describes the efforts in developing effective and efficient techniques to

solve the emerging problems associated with querying and mining of such complex graphs.

1.1 Contributions

My research in the area of large-scale networks can be broadly categorized into two

directions — graph querying and pattern mining. Figure 1.1 provides an outline of my works.

2



Chapter 1. Introduction

1.1.1 Graph Querying

In the broad area of graph querying, I have worked on heterogeneous networks search

[86, 95, 96], reliability queries in uncertain graphs [94],influence maximization problem in

social networks [7], and querying graph streams [6].

Heterogeneous Networks Search.It is increasingly common to find real-life data represented

as networks of labeled, heterogeneous entities. To query these networks, one often needs to

identify the matches of a given query graph in a (typically large) network modeled as a target

graph. The subgraph isomorphism problem isNP-hard [43]. In addition, due to noise and

the lack of fixed schema in the target graph, the query graph can substantially differ from its

matches in the target graph in both structure and node labels, thus bringing challenges to the

graph querying tasks. We proposeNeMa (Network Match) [96] — neighborhood structure and

label similarity-based fast approximate subgraph matching techniques for querying real-life

networks.

Reliability Queries in Uncertain Graphs. Due to noisy measurements, inference errors, and

other causes, in many emerging application domains data arerepresented in the form of uncer-

tain graphs, that is graphs whose arcs are associated with a probability of existence. A funda-

mental problem on such graphs is to compute the reliable setRS(S, η) — the set of all nodes

that are reachable from a query set of nodesS with probability no less than a given thresholdη.

Reliable set computation is a generalization of the source-to-target reliability problem, which is

known to be#P-complete [148].

3
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In this work [94], we proposeRQ-tree, a novel index for efficiently estimating the

reliable set, which is based on a hierarchical clustering ofthe nodes in the graph, and fur-

ther optimized using balanced minimum cut techniques. Based onRQ-tree, we define a fast

filtering-and-verification online query evaluation strategy that relies on a maximum-flow-based

candidate-generation phase, followed by a verification phase consisting of either a lower-bounding

method or a sampling technique. The first verification methoddoes not return any incorrect

node, thus guaranteeing perfect precision, completely avoids sampling, and is more efficient.

The second verification method ensures instead better recall.

Influence Maximization in Social Networks.A central characteristic of social networks is that

it facilitates rapid dissemination of information betweenlarge groups of individuals. This work

examines the problem of determination of informationflow representatives— a small group of

authoritative representatives to whom the dissemination of a piece of information leads to the

maximum spread. The problem of finding the top-k flow representatives in a social network

is NP-hard [92]. Therefore, we first design a heuristicRankedReplace algorithm, and then

propose aBayesTraceback model in order to approximately find the top-k flow representatives

with the use of a fast algorithm [7].

Querying Graph Streams. In many practical settings, the graphs may be drawn on a massive

set of nodes, and the edges may arrive rapidly in the form of a graph stream — such as those

defined by the activity on social networks, communication networks or telephone networks. It

requires a huge space to store all the graph steams over time,and query answering over graph

stream are also inefficient since each query might require toprocess massive streams from the
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past. In this work [6], we examine the problem of synopsis construction of massive graph

streams. We define theGMatrix structure, which is a3-dimensional synopsis structure that can

summarize massive graphs. A key property of theGMatrix structure is that it retains information

about the structural behavior of the underlying graph stream. This ensures that it is possible to

use this synopsis structure to answer important structuralqueries such as finding all connected

components of the underlying graphs.

1.1.2 Graph Pattern Mining

We have defined a novel graph pattern, called theproximity pattern [97], and pro-

posed efficient techniques to mine such patterns from large-scale networks.

Proximity Pattern Mining. Mining graph patterns in large networks is critical to a variety of

applications such as malware detection and biological module discovery. However, frequent

subgraphs are often ineffective to capture association existing in these applications, due to the

complexity of isomorphism testing and the inelastic pattern definition. In this work [97], we

introduceproximity pattern which is a significant departure from the traditional concept of fre-

quent subgraphs. Defined as a set of labels that co-occur in neighborhoods, proximity pattern

blurs the boundary between itemset and structure. It relaxes the rigid structure constraint of fre-

quent subgraphs, while introducing connectivity to frequent itemsets. Therefore, it can benefit

from both: efficient mining in itemsets and structure proximity from graphs.

5
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1.2 Source Codes and Datasets

We make the source codes and datasets of our accepted papers publicly available for

research purposes only. All our codes are sequential codes with in-memory graph representation

using the free edition of LEDA library [107]. Specifically, one may download them as follows.

• proximity pattern [97]: http://habitus.cs.ucsb.edu/SIGMOD10_Proximity_

Pattern.zip ,

• NESS [95]: http://habitus.cs.ucsb.edu/SIGMOD11_Ness.tar.gz ,

• NeMa [96]: http://habitus.cs.ucsb.edu/VLDB13_NeMa.tar.gz , and

• Influence Maximization [7]: http://habitus.cs.ucsb.edu/Gflow.zip

The workability and repeatability of ourproximity pattern andNESS source codes

were verified by the SIGMOD RWE committee [2].

1.3 Outlines

This dissertation is structured as follows. Chapter 2 describesNeMa for the heteroge-

neous network search problem. Chapter 3 presents theRQ-tree indexing method for efficiently

answering reliability queries over uncertain graphs. Chapter 4 considers the influence maxi-

mization problem, and our algorithms to find the top-k flow authorities. Chapter 5 describes

proximity pattern mining over large-scale networks. Finally, Chapter 6 concludes this thesis.

6



Chapter 2

Heterogeneous Networks Search

“Web search is designed to take any open-ended query and giveyou links that
might have answers. Linking things together based on thingsthat youre interested
in is a very hard technical problem. Graph Search is designedto take a precise
query and give you an answer, rather than links that might provide the answer.”

Mark Zuckerberg

It is increasingly common to find real-life data representedas networks of labeled, heteroge-

neous entities. To query these networks, one often needs to identify the matches of a given

query graphin a (typically large) network modeled as atarget graph. Due to noise and the lack

of fixed schema in the target graph, the query graph can substantially differ from its matches in

the target graph in both structure and node labels, thus bringing challenges to the graph query-

ing tasks. In this chapter, we proposeNeMa (Network Match), a neighborhood-based subgraph

matching technique for querying real-life networks. (1) Tomeasure the quality of the match, we

propose a novel subgraph matching cost metric that aggregates the costs of matching individual

nodes, and unifies both structure and node label similarities. (2) Based on the metric, we formu-
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late the minimum cost subgraph matching problem. Given a query graph and a target graph, the

problem is to identify the (top-k) matches of the query graph with minimum costs in the target

graph. We show that the problem isNP-hard, and also hard to approximate. (3) We propose

a heuristic algorithm for solving the problem based on an inference model. In addition, we

propose optimization techniques to improve the efficiency of our method. (4) We empirically

verify thatNeMa is both effective and efficient compared to the keyword search and various

state-of-the-art graph querying techniques.

2.1 Introduction

With the advent of the Internet, sources of data have increased dramatically, including

the World-Wide Web, social networks, genome databases, knowledge graphs, medical and gov-

ernment records. Such data are often represented asgraphs, where nodes are labeled entities

and edges represent relations among these entities [72,171]. Querying and mining of graph data

are essential for a wide range of emerging applications [3,74,133].

To query these graphs, one often needs to identify the matches of a givenquery graph

in a (typically large)target graph. Traditional graph querying models are usually defined in

terms ofsubgraph isomorphismand its extensions (e.g., edit distance), which identify subgraphs

that are exactly or approximately isomorphic to query graphs [138,142,171]. In addition, a wide

range of query models and languages are proposed — such as SPARQL and XDD for the RDF

and XML data — which require a standard schema of queries and target graphs. Nevertheless,

the real-life graphs arecomplexandnoisy, and often lack standardized schemas [3]. Indeed,
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(a) the nodes may be heterogeneous, referring to different entities (e.g., persons, companies,

documents) [72]. (b) Node labels in a graph often carry rich semantics, e.g., id, urls, personal

information, logs, opinions [74]. (c) Worse still, the semantics of entities and their interconnec-

tions in various datasets may be different and unknown to users [3]. In this context, a match

may not necessarily be (even approximately) isomorphic to the query graph in terms of label

and topological equality. Thus, traditional graph querying techniques are not able to capture

good quality matches. Consider the following example over the IMDB movie dataset.

S. Lang 

(Actor)

K. Winslet 

(Actor)

?

(Movie)

? 

(Director)

S. Lang 

(Actor)

K. Winslet 

(Actor)

? 

(Movie)

? 

(Director)

? 

(Movie)

Lang, S. 

(I) 

(Actor)

Winslet, K. 

(actor)

Titanic 

(Movie)

Cameron, J.  

(Director)    

(a) Query Graph 1 (b) Query Graph 2 (c) Top-1 Match

Figure 2.1: NeMa: A Query and Its Match (Example 2.1)

Example 2.1. A user wants to find a movie of actress ‘Kate Winslet’ that is directed by the

same director who also worked with actor ‘Stephen Lang’. Even if the schema and exact entity

labels of the target network are not available, the user can still come up with some reasonable

graph representation of the query [74, 85], as illustrated in Figure 2.1(a) and 2.1(b). Observe

that such graphical representation may not be unique, and there might not be an exact match

of the query graph in the dataset. Indeed, the result in Figure 2.1(c) (a star-shaped graph) is

by no means similar to the query graphs in Figure 2.1 (a) and (b) (both chain-shaped graphs)

under traditional graph similarity definitions. Graph editdistance of the result graph with query
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graphs1 and2 are 4 and 6, respectively. The size of the maximum common subgraph is3 in

both cases. Nevertheless, ‘Titanic’ is the correct answer of the query; and hence, the result

graph shouldbe considered a good match for both the query graphs using some novel graph

similarity metric.

This motivates us to investigate fast subgraph matching techniques suitable for query

answering, which canrelax rigid structural and label matching constraints of subgraph isomor-

phism and other traditional graph similarity measures. Ourproposed graph similarity metric is

based on following observations: (a) if two nodes are close in a query graph, the corresponding

nodes in the result graph must also be close. However, (b) there may be some differences in

labels of the matched nodes.

While the need for such a graph similarity metric is evident (e.g.,SAGA [142], IsoRank

[138]), there is little work on subgraph matching in large networks considering both the criteria.

Our previous work,NESS [95] was proposed for subgraph matching that considers the proxim-

ity among nodes, but it resorts to strict node label matching. TheNESS algorithm is based on

a filtering-and-verificationapproach. In the filtering phase, the less promising candidate nodes

are pruned iteratively, until no more candidates can be pruned. The output of the filtering phase

is a limited number of final candidates for each query node. Then, it verifies all possible graph

matches formed by these final candidates, in order to find the top-k graph matches. One can

modify NESS to leverage for node label differences. However, this modification reduces the

effectiveness of its filtering phase, and results in a large number of final candidates for each

query node (See Appendix for an example). Indeed, in our experiments, we find a very low
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NeMa BLINKS 1 IsoRank SAGA NESS 1 gStore

Precision 0.91 0.52 0.63 0.75 Filter: 0.17 0.59
(Node) Filter+Verify: 0.80
Recall 0.91 0.52 0.63 0.75 Filter: 0.83 0.59
(Node) Filter+Verify: 0.80

Precision 0.88 0.50 0.40 0.69 Filter: 0.39 0.55
(Graph) Filter+Verify: 0.74
Recall 0.88 0.50 0.40 0.69 Filter: 0.75 0.55

(Graph) Filter+Verify: 0.74

Top-1 Match 0.97 1.92 4882.0 15.95 Filter: 0.59 0.92
Finding Time (sec) Filter+Verify: 56.16

Table 2.1: NeMa vs. Keyword Search and Graph Querying Methods.

The query graphs were extracted from theIMDB graph, and later modified by adding30%

structural noise and50% label noise. We determined the top-1 match for each query graph

using various methods, and measured effectiveness at the level of (a) query nodes, and (b)

query graphs. At the node level, precision is defined as the ratio of correctly discovered node

matches over all discovered node matches, while recall is measured as the ratio of correctly

discovered node matches over all correct node matches. Similarly, at the graph level, precision

is defined as the ratio of correctly discovered graph matchesover all discovered graph matches,

and recall is measured as the ratio of correctly discovered graph matches over all correct graph

matches. A graph match is considered correct if at least70% of its nodes are matched correctly.

Since we consider only the top-1 match, precision and recall have the same value. In addition,

we also report precision and recall ofNESS filtering phase. For details about the query graphs,

noise, and evaluation metrics, see Section 2.7.

precision score forNESS, at the end of its filtering phase (Table 2.1). Hence, it becomes quite

expensive to determine the top-k graph matches from these large number of final candidates. In
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contrast, our proposedNeMa framework employs an inference algorithm that iterativelyboosts

the score of more promising candidate nodes, considering both label and structural similarity;

and thereby directly finds the top-k graph matches.

Contributions. In this work, we proposeNeMa, a novel subgraph matching framework for

querying heterogeneous networks.

(1) We define the query result as the match of a given query graph in a target graph, in terms of a

notion of homomorphism-based subgraph matching. To measure the quality of the matches, we

further define a novel subgraph matching cost metric betweenthe query graph and its matches

(Section 2.3). In contrast to strict subgraph isomorphism,our proposed metric aggregates the

costs of matching individual query nodes, which in turn depends on the cost of matching node

labels and their neighborhoods within a certain hops.

(2) Based on the cost metric, we propose the minimum cost subgraph matching problem (Sec-

tion 2.4), which is to identify the matches of the query graphwith minimum costs in the target

graph. We show that the problem isNP-hard and also hard to approximate.

(3) We propose a heuristic method for the minimum cost subgraph matching problem (Sec-

tion 2.5). In a nutshell,NeMa converts the underlying graph homomorphism problem into

an equivalent inference problem in graphical models [130],and thereby allows us to apply an

inference algorithm to heuristically identify the optimalmatches. Our method avoids costly

subgraph isomorphism and edit distance computations. We further propose indexing and opti-

mization techniques for our method in Section 2.6.

1In this chapter, all experimental results withNESS andBLINKS correspond to their modified versions, where
we allow two nodes to be matched if their label difference is within a predefined threshold.
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(4) We empirically verify the effectiveness and efficiency of NeMa. Our experimental results

on real-world networks in Section 2.7 show thatNeMa finds better quality results quickly

as compared to keyword search (e.g.BLINKS [76]) and various graph querying techniques

(e.g.,IsoRank [138], SAGA [142],NESS [95], gStore [171]).

2.2 Related Work

Subgraph Matching. Ullmann’s backtracking method [147],VF2 [44], SwiftIndex [137] are

used for subgraph isomorphism checking.

The subgraph matching problem identifies all the occurrences of a query graph in

the target network. In bioinformatics, exact and approximate subgraph matchinghave been

extensively studied, e.g.,PathBlast [91], SAGA [142],NetAlign [110], IsoRank [138]. Among

them, SAGA is close to ours in terms of problem formulation. However, these algorithms target

smaller biological networks. It is difficult to apply them inlarge heterogeneous networks.

There have been significant studies on inexact subgraph matching in large graphs.

Tong et al. [144] proposed the best-effort pattern matching, which aims to maintain the shape

of the query. In contrast, we identify the optimal matches interms of proximity among entities

rather than the shape of the query graph. Tian et al. [143] proposed an approximate subgraph

matching tool, calledTALE, with efficient indexing. Mongiovi et. al. introduced a set-cover-

based inexact subgraph matching technique, calledSIGMA [119]. Both these techniques use

edge misses to measure the quality of a match; and therefore,cannot incorporate the notion

of proximity among entities. There are other works on inexact subgraph matching. An in-
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complete list (see [66] for surveys) includes homomorphismbased subgraph matching [55],

belief propagation based net alignment [22], edge-edit-distance based subgraph indexing tech-

nique [166], subgraph matching in billion node graphs [140], regular expression based graph

pattern matching [21], schema [117] and unbalanced ontology matching [169]. Among them,

homomorphism based subgraph matching [55] is close to ours.However, instead of identifying

the top-k matches, our work reports all the subgraphs where the query edges can be mapped to

paths of a given maximum length and the label differences arewithin a certain threshold.

There are several works on simulation and bisimulation-based graph pattern match-

ing, e.g., [54,114], which define subgraph matching as arelationamong query and target nodes.

Compared to them,NeMa, is more strict, since we define subgraph matching as afunctionfrom

query nodes to target nodes.

Label and Concept Propagation.Label propagation has been widely used in semi-supervised

learning, e.g., labeling of unlabeled graph nodes [135]. Concept Propagation /Concept Vec-

tor, on the other hand, was originally formulated to measurethe semantic similarities between

terms/concepts in a taxonomy [98]. We note that the spreading activation theory of memory [16]

used a similar idea of activation propagation.CP/CV and spreading activation have been ef-

fectively used in [41, 95] for approximate structural matching in trees, graphs and also for in-

formation retrieval from associated networks [23]. These works consider only strict node label

matching. However, subgraph matching without node labels is a harder problem than subgraph

matching with node labels [165]. Therefore, instead of strict node label equality, when one al-
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lows approximate node label matching (e.g., in our current work), it significantly increases the

complexity of the search problem.

Querying Semi-structured Data.Lorel andUnQl are among the preliminary query languages

designed for semi-structured data. Both of them model inputdata as labeled graphs, while per-

mitting users to write queries without detailed knowledge about the schema. Later, an under-

lying query processing system converts those queries into standard SQL or structural recursion

queries, respectively, for retrieving the correct answers. This idea of query rewriting has been

explored in the context of both relational and semi-structured data, e.g., [45, 74, 127, 162]. Ob-

serve that such query rewriting techniques alleviate usersfrom the complexity of understanding

the schema; nevertheless, the underlying query processingsystem still requires a fixed schema.

In the realm of RDF,SPARQL is widely used as the query processing language. How-

ever, writing of aSPARQL query is often too challenging, because it requires the exact knowl-

edge of structure, node labels and types.gStore [171], which is the first study that considers a

subgraph matching-based query answering technique in RDF data, allows approximate node la-

bel matching, but adheres to strict structural matches. In contrast, ourNeMa framework permits

both structural and node label mismatches.

Our work is different from the keyword search in graphs [76,89], as our queries have

bothstructureand keywords (node labels).

2.3 Preliminaries

We start with a few definitions.
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2.3.1 Target Graphs, Queries and Matching

Target graph. A target graph that represents a heterogeneous network dataset can be defined as

a labeled, undirected graphG = (V,E,L), with the node setV , edge setE, and a label function

L, where (1) eachtarget nodeu ∈ V represents an entity in the network, (2) each edgee ∈ E

denotes the relationship between two entities, and (3)L is a function that assigns to each node

u a labelL(u) from a finite alphabet. In practice, the node labels may represent the attributes

of the entities, e.g., name, value, etc.

Query graph. A query graphQ = (VQ, EQ, LQ) is an undirected, labeled graph, with a set of

query nodesVQ, a set of query edgesEQ, and a label functionLQ, which assigns to each query

nodev ∈ VQ a labelLQ(v) from a finite alphabet.

We next define thesubgraph matchingof a (connected) query graph in a large target

network.

Given a target graphG = (V,E,L) and a query graphQ = (VQ, EQ, LQ), (1) a

nodeu ∈ V is acandidatefor a query nodev ∈ VQ if the difference in their labels (i.e.,L(u)

andLQ(v), respectively), determined by a given (polynomial-time computable)label difference

function∆L, is less than or equal to a predefined thresholdǫ. We denote asM(v) the candidate

set of the query nodev. (2) asubgraph matchingis a many-to-one functionφ : VQ → V , such

that, for each query nodev ∈ VQ, φ(v) ∈M(v).

Remarks. (1) The label difference function∆L between two node labels can be defined by

a variety of criteria, such as the Jaccard similarity, string edit distance, or more sophisticated
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semantic metrics, e.g., ontology similarity [45]. In this work, we use Jaccard similarity measure

to determine∆L (Section 2.7).(2) In contrast to strict one-to-one mapping as in traditional sub-

graph isomorphism tests, we consider a more general many-to-one subgraph matching function.

Indeed, two query nodes may have the same match [55, 133].(3) In practice, the nodes in the

target and query graphs may be annotated with types (e.g., Figure 2.1 and [74]), where a query

node can only be matched with target nodes having the same type. In such cases, our subgraph

matching model can be easily adapted to capture the type constraints by refining candidate sets.

Q(VQ, EQ, LQ) query graph
G(V,E,L) target graph
φ : VQ → V subgraph matching function

∆L label difference function
M(v) candidate set of nodev
RG(u) neighborhood vector of nodeu
Nφ(v, u) neighborhood matching cost betweenv andu
Fφ(v, u) individual node matching cost betweenv andu
C(φ) subgraph matching cost function

Table 2.2: NeMa Notations: Target Graphs, Queries and Subgraph Matching

2.3.2 Subgraph Matching Cost Function

There can be many valid matching functions for a given query graph and a target

graph [66]. As stated earlier, our novel graph similarity metric must preserve the proximity

among node pairs in the query graph, while the labels of the matched nodes should also be

similar. Taking this as our guideline, we introduce thesubgraph matching cost functionin

NeMa as a metric to measure the goodness of a matching. The function adds up the costs of

matching a query node with its candidate, thereby capturingthe difference between labels and
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neighborhood structures of the two nodes. We first introducethe notion of a neighborhood

vector.

Neighborhood vectorization. Given a nodeu in the target graphG, we represent the neighbor-

hood ofu with a neighborhood vectorRG(u) = {〈u′, PG(u, u
′)〉}, whereu′ is a node within

h-hops ofu, andPG(u, u
′) denotes theproximityof u′ from u in G.

PG(u, u
′) =





αd(u,u′) if d(u, u′) ≤ h;

0 otherwise.

(2.1)

Here,d(u, u′) is the distance betweenu andu′. Thepropagation factorα is a param-

eter between0 and1; andh > 0 is the hop number (effectively, the radius) of the neighborhood

for vectorization. The neighborhood vector of nodeu encodes the proximity information from

u to itsh-hop neighbors. It often suffices to consider small values ofh (e.g.,h = 2), since the

relationship between two entities becomes irrelevant as their social distance increases [30].

Based on neighborhood vectors, we now proceed to model the matching cost of the

neighborhoods of a query node and a target node. Let us denotethe set of neighboring nodes

within h-hops ofv asN(v). Given a matching functionφ, the neighborhood matching cost

betweenv andu = φ(v), denoted byNφ(v, u), is defined as:

Nφ(v, u) =

∑
v′∈N(v) ∆+ (PQ(v, v

′), PG (u, φ(v′)))
∑

v′∈N(v) PQ(v, v′)
(2.2)

where∆+(x, y) is a function defined as

∆+(x, y) =





x− y, if x > y;

0 otherwise.

(2.3)

18



Chapter 2. Heterogeneous Networks Search

Intuitively, Nφ(v, u) measures the matching cost of the neighborhood vectors ofv

andu. Note that (i) the user issues a query based on hervaguenotion of how the entities are

connected in the target graph. Hence,∆+ avoids penalizing the cases when two nodes are

closer in the target graph, as compared to their corresponding nodes in the query graph. (ii) We

normalizeNφ(v, u) over the neighborhood ofv that incurs more cost when same number of

node misses occurs in a smaller neighborhood.

Recall that we assume the existence of the label difference function0 ≤ ∆L ≤ 1.

Now, the individual node matching cost for matching function φ is defined as a linear combina-

tion of the label difference function and the neighborhood matching cost function.

Fφ(v, u) = λ ·∆L (LQ(v), L(u)) + (1− λ) ·Nφ(v, u), (2.4)

whereu = φ(v).

This node matching cost combinesbothlabel matching cost and neighborhood match-

ing cost via a parameter0 < λ < 1, whose optimal value lies between0.3 ∼ 0.5 empirically

(Section 2.7).

We are now ready to define our subgraph matching cost function. Given a matching

φ from the query nodesv ∈ VQ to target nodesφ(v) ∈ V , the subgraph matching cost function

is defined as:

C(φ) =
∑

v∈VQ

Fφ(v, φ(v)) (2.5)

Intuitively, C(φ) is the matching cost ofφ between the query graphQ and the target

graphG, and the problem is to find a matching functionφ that minimizesC(φ). Note that,
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assuming∆L is non-negative,Fφ(v, φ(v)) and therefore,C(φ) are both non-negative, so the

minimum value thatC(φ) can take is0.

2.3.3 Cost Function Properties

The following properties of our subgraph matching cost function illustrates its con-

nection with subgraph isomorphism.

Property 2.1. If the query graphQ is subgraph isomorphic (in terms of structure and node

labels equality) to the target graphG, then there exists a minimum cost matching functionφ

withC(φ) = 0.

Property 2.1 ensures that all the matching functionsφ, which identifies exact (isomor-

phic) matches forQ, must have cost0. However, a matchφ of Q, whereC(φ) = 0, may not

necessarily be isomorphic toQ. We refer to such matches asfalse exact matches.

Example 2.1.Consider a query graphQ, a target graphG (Figure 2.2), and a subgraph matching

function φ, whereφ(v1)=u1, φ(v2)= φ(v4)=u2, andφ(v3)=u3. Assumingh = 1 andα =

0.5, the neighborhood vectors inQ are: RQ(v1)={〈v2, 0.5〉, 〈v3, 0.5〉}, RQ(v2)={〈v1, 0.5〉},

RQ(v3)={〈v1, 0.5〉, 〈v4, 0.5〉}, andRQ(v4)= {〈v3, 0.5〉}. Similarly, we have the following

neighborhood vectors inG: RG(u1) = {〈u2, 0.5〉, 〈u3, 0.5〉}, RG(u2) ={〈u1, 0.5〉, 〈u3, 0.5〉},

andRG(u3) = {〈u1, 0.5〉, 〈u2, 0.5〉}. Therefore, the individual node matching costsFφ is 0 for

all v ∈ VQ, and the subgraph matching costC(φ) is 0. Observe that the match identified byφ

is not isomorphic toQ.
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However, if the matching functionφ is one-to-one, the following property shows that

the false exact matches can be avoided,.

Property 2.2. If the match identified byφ is not isomorphic to the query graphQ, andφ is a

one-to-one function, thenC(φ) > 0.

b a
u3u1

u2

v1

v2

v3

v4

MatchQuery Graph Q

b a

c c c

Figure 2.2: Example of False Exact Match inNeMa

Proof SinceQ is connected andφ is a one-to-one function, if the match identified byφ is

not isomorphic toQ, one of the following must hold.(1) There exists some nodev ∈ VQ,

s.t.,∆L

(
LQ(v), L(φ(v))

)
> 0. Then,C(φ) > 0, assumingλ 6= 0 in Eq. 2.4. (2) There

exists an edge(v, v′) in EQ; but the corresponding edge(u, u′) is not in graphG. φ(v) = u

andφ(v′) = u′. This impliesPQ(v, v
′) = α, but PG(u, u

′) < α, which in turn implies

Nφ(v, u) > 0. Assumingλ 6= 1 in Eq. 2.4, we getC(φ) > 0.

2.4 Problem Formulation

The subgraph matching cost function favors matches with lowmatching costs. Based

on the matching cost function, we introduce the minimum costsubgraph matching problem as

follows.
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Problem 2.1. Minimum Cost Subgraph Matching. Given a target graphG, a query graph

Q, and the label noise thresholdǫ, find the minimum cost matchingφ,

argmin
φ

C(φ), (2.6)

s.t. ∆L (LQ(v), L(u)) ≤ ǫ,∀v ∈ VQ, u = φ(v) (2.7)

Intuitively, instead of checking subgraph isomorphism, our problem formulation iden-

tifies the optimal match by minimizing node label differences as well as node pair distances. The

identified matches serve as answers to the query graph.

The problem is, however, nontrivial. The following theoremshows that the decision

version of the problem is intractable, even when the subgraph matching functionφ is not injec-

tive.

Theorem 2.1. Given a target networkG, a query graphQ, it is NP-complete to determine

whether there exists a matchφ with NeMa subgraph matching costC(φ) = 0.

Proof The problem isNP, since there is a nondeterministic algorithm which guessesa match-

ing functionφ, and verifies whether its costC(φ) = 0, in polynomial time. We prove theNP-

hardness by reduction from the graph homomorphism problem,which isNP-complete [43]. A

homomorphism from a graphQ′ to a graphG′ (both unlabeled) is a function that preserves node

adjacency (i.e., each edge inQ′ is mapped to an edge inG′). Given an instance of the graph

homomorphism problem, we construct an instance of the minimum cost subgraph matching

problem, where all nodes in the target graphG and query graphQ have identical labels. We
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also assume,w.l.o.g., that the depth of vectorizationh = 1. One may verify that if there exists

a homomorphismφ′ from Q′ to G′, then there exists a corresponding matchingφ from Q to

G, s.t. C(φ) = 0. Conversely, ifφ′ is not a homomorphic matching, then there exists an edge

(v, v′) in EQ, but the corresponding edge(φ(v), φ(v′)) is not inG. Hence,C(φ) > 0 (λ 6= 1

in Eq. 2.4). Therefore, there exists a matching functionφ from Q toG, whereC(φ) = 0, if and

only if there is a homomorphic matchingφ′ from Q′ toG′. This completes the proof.

One may want to find a polynomial time approximation algorithm. However, the

problem is also hard to approximate.

Theorem 2.2. The minimum cost subgraph matching is APX-hard.

Proof We show that this optimization problem is APX-hard by performing a reduction(f, g)

from the Maximum Graph Homomorphism (MGH) problem without self loops, which is APX-

hard [126]. AnMGH problem identifies a matching which maximizes the number of edges of

the query graphQ that can be mapped to edges of the target graphG (both unlabeled). Given

an instanceI of MGH, we construct an instanceI ′ of the minimum cost subgraph matching

problem, where all nodes in the target networkG and query graphQ have identical labels.

Let nq andeq be the total number of nodes and edges, respectively, inQ. w.l.o.g., assume the

depth of vectorizationh = 1, and the proportionality constantλ = 1 − 1
nq

. We denote by

OPT(I) the value of the optimal solution of problem instanceI, and VAL(I, x) the value of a

feasible solutionx of the problem instanceI. Assume OPT(I) = eo and VAL(I, x) = e for

some feasible solutionx of instanceI. Clearly, eo ≥ 1. Hence,(1) OPT(I ′) < 1 ≤ eo =

OPT(I). Also, given some feasible solutiony of instanceI ′, one may verify that|OPT(I) −
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VAL (I, g(y)) | = eo − e, and |OPT(I ′) − VAL (I ′, y)| ≥ eo−e
2nqeq

. Therefore,(2) |OPT(I) −

VAL (I, g(y)) | ≤ 2nqeq|OPT(I ′) − VAL (I ′, y)|. Thus, there exists a reduction(f, g) from

MGH to the minimum cost subgraph matching problem, and the theorem follows.

2.5 Query Processing Algorithm

In this section, we propose a heuristic solution to identifythe minimum cost match-

ings. We start by introducing the max-sum inference problemin graphical models [130], and

show how our graph homomorphism problem underlying theNeMa framework is equivalent to

an inference problem in graphical models.

Max-Sum Inference. In graphical models, the joint probability distribution function p(X) of

a set of variablesX = {x1, x2, . . . , xM} can be expressed as a product of the formp(X) =

∏
i fi(Xi), where eachXi ⊆ X. Alternatively, log p(X) =

∑
i log fi(Xi). The Max-Sum

inference problem is to find the values of the variablesx1, x2, . . . , xM that result in maximum

p(X). In other words, we would like to maximizelog p(X) that can be decomposed as the

sum of several functions of the formlog fi(Xi), each of which depends only on a subset of the

original variables.

The objective of the max-sum inference problem is similar tothat of the minimum

cost subgraph matching problem, which is tominimizethe overall subgraph matching costC(φ).

Recall that (1)C(φ) is an aggregation of the individual node matching costsFφ(v, φ(v)) of all

query nodesv, and (2) the individual node matching cost of a query nodev depends only on the

matches ofv and its neighbors inN(v). In light of this, we propose aniterative inferencealgo-
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rithm similar to the loopy belief propagation algorithm [130], used for inferencing in graphical

models.

2.5.1 Iterative Inference Algorithm

In this section, we introduce our inference algorithm, denoted asNemaInfer and il-

lustrated in Figure 2.3.

Overview. Given a query graphQ and a target graphG,NemaInfer first computes the candidate

set for each query node using the node label similarity function ∆L (line 1). Next, it initializes

an inference costU0(v, u) by assigning it to the minimum possible value of individual node

matching costsFφ(v, u), over all possible matching functionsφ, s.t.,φ(v) = u (line 2-3). It

theniterativelycomputes aninference costfor each query nodev and its candidates, and selects

theoptimal matchof v as its candidateu with the minimum inference cost.NemaInfer keeps

track of the optimal matches for each query node. The procedure repeats until it reaches a

fixpoint, where the optimal matches for more than a thresholdnumber of query nodes remain

identical in two successive iterations (lines 4-12). Finally, NemaInfer refines the matches of

each query node and its neighborhood that it “memorizes” viaa memoization technique, and

obtains the best match (line 13). The constructed subgraph matchΦ is then returned (line 14).

We next introduce several procedures ofNemaInfer in detail.

Inference cost and optimal match(lines 3-12). The algorithmNemaInfer improves the quality

of the matching in each iteration, based on the notion of aninference costand theoptimal match.
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Algorithm NemaInfer

Input: Target graphG(V,E, L), Query GraphQ(VQ, EQ, LQ).

Output: Minimum cost matching ofQ in G.

1. for eachnodev ∈ VQ do computeM(v);

2. i := 0; flag := true;

3. Initiate iterative inferencing with Eq. 2.8;

4. while flag do

5. i := i+ 1;

6. for eachv ∈ VQ do

7. for eachu ∈ M(v) do

8. computeUi(v, u) with Theorem 2.3;

9. keep track of the current matches of neighborsv′ ∈ N(v);

10. compute optimal matchOi(v) using Eq. 2.10;

11. if more than a threshold number of

query nodesv satisfyOi(v) = Oi−1(v) then

12. flag := false;

13. constructΦ for all v ∈ VQ (with Eq. 2.11, 2.12).

14. return Φ;

Figure 2.3: Iterative Inference AlgorithmNemaInfer

Inference cost. At each iterationi of NemaInfer, the inference costUi(v, u) for eachv ∈ VQ

andu ∈M(v) is defined as follows.
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U0(v, u) = min
{φ:φ(v)=u}

Fφ(v, u) (2.8)

Ui(v, u) = min
{φ:φ(v)=u}

[
Fφ(v, u) +

∑

v′∈N(v)

Ui−1

(
v′, u′

)]
(2.9)

We assumei > 0, andu′ = φ(v′) in Equation 2.9. Intuitively, the inference cost is

the minimum sum of the individual node matching costFφ(v, u) and the previous iteration’s

inference costsUi−1

(
v′, φ(v′)

)
for all neighborsv′ of v, over all possible matching functions

φ, with the constraintφ(v) = u.

Note that although we consider the minimization over all possible matching functions

φ, s.t.,φ(v) = u, in Equation 2.9, it only depends on the matches of the neighboring nodes in

N(v). As discussed later, inference costs can be computed in polynomial time.

Optimal match. In every iteration, we also define theoptimal matchof each query node. The

optimal match of a query nodev at iterationi, denoted byOi(v), is defined as follows.

Oi(v) = argmin
u∈M(v)

Ui(v, u); i ≥ 0 (2.10)

Example 4.1. We illustrate the idea of one iteration ofNemaInfer using Figure 2.4. Assume

we have already determined the candidate matchesM(v) for every query nodev using the

label similarity function∆L. For example,M(v2) = {u2, u5, u9} andM(v4) = {u7, u10} in

Figure 2.4. Also, considerh = 1. At i = 0, U0(v2, u5) = U0(v2, u9) = 0. Therefore, we can

not distinguish betweenu5 andu9 in the initialization round, as which one is a better match

27



Chapter 2. Heterogeneous Networks Search

of v2. However, observe thatU0(v4, u10) < U0(v4, u7). u10 is a neighbor ofu9, while u7 a

neighbor ofu5. Thus, it not only influences the optimal matchO0(v4) of v4 at iterationi = 0,

but it also makesU1(v2, u9) < U1(v2, u5) at iterationi = 1, via Eq. 2.9. Hence, we improve the

matches in each iteration and proceed towards the minimum cost (heuristic) subgraph match.

Invariant . The algorithmNemaInfer posses the following invariant in each of its iteration,

which illustrates the connection between the inference cost and the subgraph matching cost

(Section 2.3).

Invariant 2.1. If there exists a matching functionφ from the nodes ofQ to the nodes ofG, such

that,C(φ) = 0, thenUi(v, φ(v)) = 0 for all v ∈ VQ andi ≥ 0.

However, the converse is not always true. In fact, based on the properties of the loopy

belief propagation algorithm, there is no guarantee that our algorithm will converge forall

query nodes after a certain number of iterations. Therefore, we terminate the procedure when

more than a threshold number of query nodesv satisfy the conditionOi(v) = Oi−1(v). We

empirically verified in Section 2.7 that our method usually requires about2 to 3 iterations to

terminate — around95% of query nodes converge usingIMDB dataset, and also performs well

in real-life networks.

Matching refinement (line 13). The optimal match of each query node at the final iteration

might not correspond to the subgraph matching function withthe minimum (heuristic) aggregate

cost [130]. This can happen if there are multiple graph matching functions that result in the

minimum cost graph matches. Therefore, we need to refine the optimal node matches from the
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final round ofNemaInfer to identify one such minimum cost subgraph matching function, say

Φ. We refer to the matches of the query nodes corresponding toΦ as themost probable matches.

To find these most probable matches, the standardmemoizationtechnique can be used after the

termination of our iterative inference algorithm. First, aquery node, sayv, is selected randomly,

and its most probable match, denoted byΦ(v) ∈M(v), is determined as follows:

Φ(v) = argmin
u∈M(v)

Ui′(v, u) (2.11)

In Eq. 2.11,i = i′ denotes the final iteration. For the remaining nodes, the most probable

matches are determined by memoizing recursively, i.e., we keep track of the matches of the

neighboring nodes that give rise to the most probable match of the current node. For example,

the most probable matchesΦ(v′) of all v′ ∈ N(v) are obtained using the most probable match

of v as follows.

φp = argmin
{φ:φ(v)=Φ(v)}

[
Fφ(v,Φ(v)) +

∑

v′∈N(v)

Ui′−1

(
v′, φ(v′)

)]

Φ(v′) = φp(v
′) (2.12)

The aforementioned memoization technique is performed until the most probable

matches of all query nodes are computed.

Computation of Inference Costs. A straightforward approach to determine the inference cost

Ui(v, u) for a query nodev and its candidateu (Eq. 2.9) considers all possible combination of

matches for all nodesv′ ∈ N(v), which has exponential time complexity and might be very
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expensive. In this section, we propose a technique to compute the inference cost inpolynomial

time.

Partial inference cost. To evaluate the inference costUi(v, u) for a query nodev and its candi-

dateu at iterationi of the algorithmNemaInfer, we compute apartial inference costfor each

nodev′ ∈ N(v), which is denoted byWi(v, u, v
′), and defined below.

Wi(v, u, v
′) = min

{φ:φ(v)=u}

[
β(v) ·∆+

(
PQ(v, v

′), PG

(
u, φ(v′)

))

+ Ui−1

(
v′, φ(v′)

)]
(2.13)

Here,β(v) = [
∑

v′∈N(v) PQ(v, v
′)]−1. To computeWi(v, u, v

′), we only need to find

the minimum value in Eq. 2.13 over the candidates inM(v′). Hence, the partial inference cost

Wi(v, u, v
′) can be computed in polynomial time, for each tripletv, u, v′, whereu ∈M(v) and

v′ ∈ N(v). Next, we show the relation between the partial inference cost and the inference cost.

Theorem 2.3. The inference costUi(v, u) is computable in polynomial time via the following

formula:

Ui(v, u) = ∆L

(
LQ(v), L(u)

)
+

∑

v′∈N(v)

Wi(v, u, v
′) (2.14)
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Proof

Ui(v, u)

= min
{φ:φ(v)=u}

[
∆L(LQ(v),L(u))+β(v)·

∑

v′∈N(v)

∆+(PQ(v,v′),PG(u,φ(v′)))

︸ ︷︷ ︸
Fφ(v,u)

+
∑

v′∈N(v)

Ui−1(v
′,φ(v′))

]

= min
{φ:φ(v)=u}

∑

v′∈N(v)

[
β(v)·∆+(PQ(v,v′),PG(u,φ(v′)))+Ui−1(v′,φ(v′))

]

+ ∆L(LQ(v),L(u))

=
∑

v′∈N(v)

min
{φ:φ(v)=u}

[
β(v)·∆+(PQ(v,v′),PG(u,φ(v′)))+Ui−1(v

′,φ(v′))
]

︸ ︷︷ ︸
Wi(v,u,v

′)

+ ∆L(LQ(v),L(u))

= ∆L (LQ(v), L(u)) +
∑

v′∈N(v)

Wi(v, u, v
′)

Hence, the theorem.

It follows from Theorem 2.3 that the inference costUi(v, u) of nodesv andu can be

efficiently computed in polynomial time, by (1) determiningthe partial inference costWi(v, u, v
′)

for eachv′ ∈ N(v), and (2) aggregating these partial inference costs with∆L

(
LQ(v), L(u)

)
.

The aforementioned technique also keeps track of which matches of the neighboring query

nodes give rise to the most probable match of the current query node. This information is

required during matching refinement.

Time complexity. We analyze the time complexity of the algorithmNemaInfer. Let us denote

the number of nodes in the target graphG and the query graphQ as|V | and|VQ|, respectively.
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Figure 2.4: NeMa: Optimal Subgraph Match Finding Algorithm

(1) It requiresO(|VQ| · |V |) time to identifyM(v) for each query nodev ∈ VQ (line 1). (2) We

denote the maximum number of candidates per query node asmQ, and the maximum number

of h-hop neighbors of each query node asdQ. The computation of the optimal matchOt(v) per

query nodev has time complexityO(m2
Q · dQ) following Theorem 2.3 (line 10). Therefore, the

time required for each iteration ofNemaInfer isO(|VQ| ·m
2
Q ·dQ). If there are totalI iterations,

the overall time complexity is given byO(|VQ| · |V | + I · |VQ| ·m
2
Q · dQ). Observe that|VQ|,

I, |dQ| andmQ are typically small. Indeed, as verified in our experiments (Section 2.7),I is

typically less than4 andmQ is 35, for query graphs with5 nodes and real life graphs containing

12M nodes.

2.5.2 Generalized Queries

In this section, we extendNemaInfer for three generalized cases, namely,Top-k

matches, unlabeled queries, andlabeled edges.

Top-k Matches. In many applications, the query graph is not subgraph isomorphic to the target

network; and hence, we are interested in identifying the top-k matches rather than only the

best match. Given the target networkG and the query graphQ, the top-k subgraph matching

problem is to identify the top-k matches for aselected query nodev ∈ VQ.
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The algorithmNemaInfer can be readily adapted for this problem. (1) The algorithm

computes the inference costs and terminates at line 12. (2) We identify the top-k most probable

matches ofv (Eq. 2.11). (3) For each of these top-k most probable matches ofv, we apply

the recursive memoizing technique (Eq. 2.12) to determine the corresponding most probable

matches for other query nodes.

Matching Query with Unlabeled Nodes. A query graph may have nodes with unknown la-

bels, e.g., query graphs constructed from RDF queries.NeMa can be adapted to evaluate such

queries. First, we identify all the nodes from the target network that can be matched with some

labeled query node based on label similarity. Next, we find the subgraph induced by all those

matched nodes from the target network along with their neighbors withinh-hops. All nodes

in this subgraph are considered as the candidates for the unlabeled query nodes. The algo-

rithm NemaInfer is then invoked to identify the matches. In addition, if the unlabeled query

nodes contain type information, the candidate sets can further be refined.

NeMa with Edge Labels. TheNeMa cost function can be adapted to consider the edge labels.

Specifically, we concatenate the edge labels along the shortest path between a pair of nodes,

and then update the neighborhood matching cost (Equation 2.2) as follows.

Nφ(v, u)

=

∑
v′∈N(v)

[∆+ (PQ(v, v
′), PG (u, u′))) + ∆L(s(v, v

′), s(u, u′)))]

∑
v′∈N(v)

[PQ(v, v′) + 1]
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Here,u = φ(v), u′ = φ(v′), ands(v, v′) concatenates the edge labels along the shortest path

betweenv andv′. Since, we consider the edge labels along the shortest path between a pair of

nodes, the asymptotical time complexity ofNeMaInfer remains the same.

2.6 Indexing and Optimization

In this section, we discuss indexing and optimization techniques to improve the effi-

ciency of our network matching algorithm.

2.6.1 Candidate Selection

The candidate set of a query node is defined in terms of the label similarity func-

tion (see Section 2.3), which may include candidate nodes that do not match the query node

due to neighborhood mismatch. We introduce optimization techniques to efficiently filter such

candidate nodes as much as possible, and thereby improving the performance of our inference

algorithmNemaInfer. We first introduce the notion ofisolated candidates.

Isolated Candidates. Given a query nodev and its candidate setM(v), a nodeu ∈M(v) is an

isolated candidateof v, if

{u′ : u′ ∈M(v′), v′ ∈ N(v)} ∩ {u′′ : u′′ ∈ N(u)} = ∅ (2.15)

Intuitively, the nodeu is an isolated candidate of a query nodev if none of the can-

didates withinh-hop neighbors ofv are in theh-hop neighborhood ofu; otherwise, it is a

non-isolated candidate ofv. Thus, an isolated candidateu of v can not be matched withv.
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To efficiently find the non-isolated candidates, we propose an optimization problem,

based onverification costandcandidate cover.

Verification Cost. The verification cost associated with a query nodev is defined as the time

complexity to verify all nodes in its candidate setM(v), whether they are non-isolated candi-

dates. Note that the complexity of verifying whether some nodeu ∈ M(v) is a non-isolated

candidate isO
(
|N(u)|+

∑
v′∈N(v) |M (v′)|

)
.

Candidate Cover. There exists dependencies between two non-isolated candidates: ifu is a

non-isolated candidate ofv, then there must exist a nodeu′ ∈ N(u), such that,u′ ∈ M(v′)

for somev′ ∈ N(v). Clearly,u′ is a non-isolated candidate ofv′. If we verified all candidates

{u′ : u′ ∈ M(v′), v′ ∈ N(v)}, there is no need to verify the candidates inM(v) again. Thus,

one may reduce redundant verifications using a notion of candidate cover.

We definecandidate coverC(Q) as a set of query nodesv, such that, for allv′ ∈ VQ,

eitherv′ ∈ C(Q), or v′ ∈ N(v).

C(Q) = {v : ∀v′(v′ ∈ C(Q) ∨ v′ ∈ N(v))} (2.16)

All non-isolated candidate nodes can be identified by verifying only the query nodes

in C(Q). We define the verification cost of a candidate cover as the sumof the verification costs

of its constituent query nodes. Next, we introduce the candidate cover problem.

Problem 2.2. Candidate Cover. Given a query graphQ, find the candidate cover with the

minimum verification cost.
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The following result shows that the candidate cover problemis intractable, but ap-

proximable within a factor2 in polynomial time.

Theorem 2.4. The candidate cover problem is (1)NP-hard, and (2)2-approximable.

Proof We show that this problem isNP-hard by reduction fromNP-complete weighted min-

imum vertex cover problem [43]. Given a decision version of the weighted minimum vertex

cover problem, we construct an instance of the candidate cover problem, where the vertex

weights are considered as the corresponding verification costs. Assumingh = 1, the mini-

mum weighted vertex cover will be our candidate cover. One can apply linear programming to

solve this problem with2-approximation [43].

2.6.2 Indexing

We introduce indexing technique to improve the efficiency ofthe inference algorithm.

(1) During the off-line indexing phase, it computes the neighborhood vectorsR(u) for all nodes

u in the target networkG, and stores the vectors in the index. (2) During the on-line network

matching technique, ifu is selected as a candidate ofv, it applies Eq. 2.15 to verify whetheru

is an isolated candidate ofv. If so,u is eliminated from the candidate set ofv.

Our index structure has space and time complexityO(ndhG), where|V | = n, dG =

average node degree inG, andh =depth of vectorization. ForNeMa with edge labels (Sec-

tion 2.5.2), the asymptotical time and space complexity of indexing remains the same, since we

consider edge labels along the shortest paths.
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Dynamic maintenance of the index.Our indexing methods can efficiently accommodate dy-

namic updates in the target network. If a nodeu (and the edges attached to it) is added or

deleted, only the indexes ofu’s h-hop neighbors need to be updated. If a single edge(u, u′) is

added or deleted, only theh− 1 hop neighbors of bothu andu′ are updated, thus reducing the

redundant computation.

2.6.3 Optimization for Top-k Matching

The inference algorithmNemaInfer can be adapted to identify the top-k matches. For

small values ofk, it is possible to prune candidate nodes by setting a cost threshold. The cost

thresholdǫc is initially set to a small valueǫ0. If Ui(v, u) > ǫc for someu ∈M(v) at iterationi

of the inference algorithm, thenu is eliminated from the candidate setM(v) for the subsequent

iterations. After termination, if the top-k matches cannot be identified, we increaseǫc by a small

value, and repeat the steps above. The correctness of this method is ensured by Theorem 2.5.

Theorem 2.5. If Ui(v, u) > ǫc at the i-th round of inference algorithm, then for allj > i,

Uj(v, u) > ǫc at thej-th round of inference algorithm.

Proof It follows directly from Eq. 2.9 and the fact thatUi(v, u) ≥ 0 for all i ≥ 0, over all pairs

v, u, whereu ∈M(v).

Hence, we can eliminateu from M(v), wheneverUi(v, u) > ǫc occurs for the first

time at some iterationi of NemaInfer.
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2.7 Experimental Results

We present three sets of empirical results over three real-life datasets to evaluate (1)

the effectiveness and efficiency (Section 2.7.2), (2) scalability (Section 2.7.3), and (3) optimiza-

tion techniques (Section 2.7.4) underlying theNeMa framework.

2.7.1 Experimental Setup

Graph Data Sets. We used the following three real life datasets, each represents a target graph.

(1) IMDB Network. [83] The Internet Movie Database (IMDB)consists of the entities of

movies, TV series, actors, directors, producers, among others, as well as their relationships.

(2) YAGOEntity Relationship Graph. [157] YAGOis a knowledge base with information har-

vested from the Wikipedia, WordNet and GeoNames. It contains about20 million RDF triples.

(3) DBpediaKnowledge Base.[48] DBpediaextracts information from the Wikipedia. We con-

sidered22 million RDF triples fromDBpediaarticle categories, infobox properties, and person

data.
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Figure 2.5: NeMa: Query Performance
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Figure 2.6: NeMa: Performance against Label Noise

Dataset # Nodes # Edges

IMDB 2,932,657 11,040,263
YAGO 12,811,149 18,282,215

DBpedia 5,177,018 20,835,327

Table 2.3: NeMa: Dataset Sizes

The nodes inYAGOandDBpediaare annotated with labels, while the nodes inIMDB

are annotated with both types and labels. Hence, we used the type information associated with

the nodes, in addition to their labels, while querying theIMDB network.

Query graphs. We generated the query graphs by extracting subgraphs fromthe target graphs,

and then introducednoiseto each query graph. Specifically, the query generation was controlled

by:

• node number and diameter, denoted by|VQ| andDQ, respectively, where thequery di-

ameteris the maximum distance between any two nodes in the query graphQ.

• structural noise, the ratio of the number of edge updates (random insertion and deletion

of edges) inQ to the number of edges in the extracted subgraph; and
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• label noise, measured by the Jaccard similarity between the labels of nodes in the ex-

tracted subgraph and their updated counterparts inQ, where the updated labels were

obtained by inserting randomly generated words to the querynode labels.

We used Jaccard similarity as the label similarity measure.Specifically, given a query

nodev and a target nodeu, the label difference∆L (LQ(v), L(u)) is defined as1 − |wv∩wu|
|wv∪wu|

,

wherewv andwu are the set of words in their labelLQ(v) andL(u), respectively. Recall that

we allowed some noise in the node labels by varying the label matching cost thresholdǫ in our

matching algorithm (Problem Statement 2.1). A nodeu in the target network is considered a

candidate to match with a query nodev if their label difference∆L (LQ(v), L(u)) is less than

the predefined cost thresholdǫ, referred to as thelabel noise threshold.

Evaluation metrics. Since the query graphs were extracted from target graphs, one already has

the correct node matches. Now, the effectiveness ofNeMa is measured as follows.Precision

(P) is the ratio of the correctly discovered node matches over all discovered node matches.

Recall(R) is the ratio of the correctly discovered node matches over all correct node matches.

F1-Measurecombines the results of precision and recall, i.e.,

F1 =
2

(1/R + 1/P )
(2.17)

We considered the top-1 match to evaluate precision, recall, and F1-measure. Thus,

we obtained the same values for them. However, precision andrecall will be useful while

analyzingNESS.
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Figure 2.9: NeMa: # Candidates vs. Label Noise

 1.7

 2

 2.4

 2.8

 3.2

0 25 35 50 80

# 
IT

E
R

A
T

IO
N

S

LABEL NOISE THRESHOLD (%)

  nQ=3, DQ=1
  nQ=5, DQ=2
  nQ=7, DQ=3

(a) IMDB

 1.7

 2

 2.2

 2.4

0 25 35 50 80

# 
IT

E
R

A
T

IO
N

S

LABEL NOISE THRESHOLD (%)

  nQ=3, DQ=1
  nQ=5, DQ=2
  nQ=7, DQ=3

(b) YAGO

Figure 2.10: NeMa: # Iterations vs. Label Noise

Comparing Methods. We comparedNeMa with keyword search (BLINKS [76]) and various

graph querying methods:SAGA [142], IsoRank [138],NESS [95], andNeMags - a variation of

NeMa following gStore [171]. All these methods were implemented in C++.

In our experiments, (1) propagation factorα and depth of vectorizationh (Section 2.3)

were set as0.5 and2, respectively [95], (2) the optimal values of the proportionality constantλ

(Eq. 2.4) for different datasets were obtained empirically(Figure 2.5(a)), (3) the indexes were

stored in the hard disk. All the experiments were run using a single core in a100GB, 2.5GHz

Xeon server.
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2.7.2 Effectiveness and Efficiency

Performance over Real-life Data Sets

In these experiments, we evaluated the performance of ofNeMa over three real-life

graphs, averaged over100 queries (Figure 2.5). For each target graph, we randomly generated

100 query graphs with|VQ| = 7 andDQ = 3. We fixed the structural noise as30%, label noise

as50%, and label noise threshold as50%.
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Figure 2.11: NeMa: Effectiveness with Unlabeled Query Nodes
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Figure 2.12: NeMa: Performance with Edge Labels (IMDB)

Figure 2.5(a) shows the effectiveness ofNeMa over various datasets, and with dif-

ferent values of the proportionality constantλ. For all the three datasets, our algorithmalways

correctly identifies more than76% of the query nodes. Specifically, the F1-measure is0.94

for IMDB, with λ = 0.3, even when we introduced30% structural noise and50% label noise.

43



Chapter 2. Heterogeneous Networks Search

The effectiveness is higher overIMDB due to the type constraint posed with the query nodes.

Besides, the optimal value ofλ lies between0.3 ∼ 0.5 in these datasets.

Figure 2.5(b) reports the efficiency ofNeMa using the same setting as in Figure 2.5(a),

including the running time of off-line index construction (INDEX) and online query evaluation

(MATCH). We observed the following. (a)NeMa identifies the best match in less than0.2

seconds, over all three datasets6. (b) The top-k match finding time does not vary significantly,

over differentk, since our inferencing method is always executed once. (c) The time required

for indexing is modest (e.g.,9862 sec for theYAGOdataset with13M nodes and18M edges).

(d) The indexing and querying times are longer overIMDB, due to its higher density.

Performance against Noise

In this set of experiments, we investigated the impact of varying noises on the perfor-

mance ofNeMa. Three sets of query graphs were generated by setting (i)|VQ| = 3, DQ = 1,

(ii) |VQ| = 5, DQ = 2, and (iii) |VQ| = 7, DQ = 3. Under each query set,100 query graphs

were generated.

Varying label noise. Fixing the structural noise as30%, we varied the label noise from0%

to 50%, and investigated the effectiveness ofNeMa, when the label noise threshold was set

as35% and50%, respectively. As shown in Figure 2.6(a) overDBpedia, (1) the F1-measure

decreases as the label noise increases, since the candidateset of each query node may contain

more candidates that are not true matches, which in turn reduces the effectiveness, (2) the F1-

6our indexing and matching algorithm can be parallelized forevery node. Hence, one may implementNeMa in
a PREGEL [115] platform, for larger graphs.
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Figure 2.13: Comparison Results (IMDB):NESS, BLINKS Modified for Approximate Label
Match.NESS Results Correspond to itsFiltering Phase.

measure is higher when the label noise threshold is higher, since the candidate sets are more

likely to include the correct matches. Observe that the F1-measure is always above0.60.

Figure 2.6(b) shows thatNeMa efficiency is insensitive to label noise, but more sen-

sitive to label noise threshold. This is because it takesNeMa more time to process the larger

candidate sets for the query graph as the label noise threshold increases.

Varying structural noise. Fixing the label noise threshold as35% and label noise as35%, we

varied the structural noise from0% to 40% in Figure 2.7(a) and 2.7(b). It can be observed that

(a) both effectiveness and efficiency decrease as we increase the structural noise, and (b) with

the increase of the query size, both effectiveness and efficiency increase. The reason is that

(1) larger queries have more constraints in the neighborhood of a query node, which benefit the

identification of correct matches, and (2) it takes longer time forNeMa to compare the matching
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cost for larger queries. Moreover, the F1-measure is alwaysabove0.93, and the running time is

always less than0.1 seconds, even with40% structural noise.

Varying label noise threshold. Fixing the structural noise as30% and the label noise as35%,

we investigated the effect of varying the label noise threshold on the query performance.

The effectiveness and efficiency ofNeMa over IMDB are illustrated in Figures 2.7(c)

and 2.7(d), respectively. We observed the following. (1) The F1-measure initially increases

while we increase the label noise threshold. This is becausethe query node labels are updated

by adding random words. Hence, the higher is the label noise threshold, there is more chance

that the correct match of a query node will be selected in its candidate set. (2) When the label

noise threshold is more than35%, the F1-measure does not improve significantly. Therefore,

the optimal value of the label noise threshold can be determined empirically based on the query

and target graphs. On the other hand, the running time ofNeMa increases with the increase of

the label noise threshold. This is because (a) the candidatematches per query node increases

(see Figure 2.9), and (b) the number of iterations required for the convergence of our network

matching algorithm also increases (see Figure 2.10). Hence, it takes more time forNeMa to

find the matches.

Effectiveness with Unlabeled Query Node

We next verified the effectiveness ofNeMa in the presence ofunlabeled nodesin

query graphs. These experiments simulate RDF query answering (see Section 2.5.2). For these

experiments, we randomly selected two sets of100 query graphs each, where (i)|VQ| = 7,
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DQ = 3, and (ii) |VQ| = 5, DQ = 2, respectively. Fixing the structural noise as30%, label

noise as35%, and label noise threshold as35%, we varied the number of unlabeled query

nodes from0 to 2. As shown in Figure 2.11, (1) the F1-measure decreases over both datasets

while the number of the unlabeled nodes increases, because the unlabeled nodes introduce more

candidates, which in turn reduces the effectiveness, (2) the effectiveness is higher overIMDB

due to the type constraints, and (3) over all the cases, the F1-measure is always above0.50.

Performance with Propagation Depth

In these experiments, we analyzed the effect of propagationdepthh in our query per-

formance. We randomly selected100 query graphs fromYAGO, with |VQ| = 7, DQ = 3,

structural noise30%, label noise50% and label noise threshold50%. Table 2.4 shows that the

efficiency ofNeMa decreases with increasingh, especially the index time increases exponen-

tially with h. However, forh = 2, we obtained an acceptable F1-measure of0.86.

h = 1 h = 2 h = 3

Index Time (sec) 265 9862 236553
Match Time (sec) 0.58 0.92 2.76

F1-Measure 0.61 0.86 0.87

Table 2.4: NeMa: Query Performance with Varyingh (YAGO)

Performance with Edge Labels

We verified the query performance in the presence of edge labels (Section 2.5.2). We

randomly selected100 query graphs fromIMDB, with with |VQ| = 7, DQ = 3, label noise

50% and label noise threshold50%. We varied the structural noise from0% to 40%. The labels
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of the newly inserted edges in the query graphs were assignedby generating random strings.

Figure 2.12 shows that, (1) when no structural noise is added, the F1-measure remains same

for both the cases of labeled and unlabeled edges. (2) However, with the addition of structural

noise, the F1-measure decreases slightly for the case of labeled edges, since there are more

noises in the query graphs due to the labels of newly insertededges. (3) The running time is

higher for the case of labeled edges because additional timeis required to measure edge label

similarities.

Comparison with Existing Algorithms

We compared the performance ofNeMa with IsoRank [138], SAGA [142], NESS

[95], gStore [171], andBLINKS [76]. (1) IsoRank andSAGA find optimal graph matches in

smaller biological networks considering structure and node label similarities. (2)NESS finds

the top-k graph matches from a large network, but with strict node label equality. Hence, we

modifiedNESS by allowing two nodes to be matched if their label differenceis within the

label noise threshold. (3) We considered a variation ofNeMa, namely,NeMags, which allows

label difference but resorts to strict isomorphic matching. Thus,NeMags essentially follows the

same principle asgStore, which is a subgraph isomorphism-based SPARQL query evaluation

method with node label differences. (4)BLINKS [76], a keyword search method, supports only

structural mismatches. Hence, we also modifiedBLINKS by allowing node label differences

within the label noise threshold.
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All these methods, exceptNESS, find the top-1 graph match directly. Hence, we

considered the top-1 match corresponding to each query node to evaluate precision, recall,

and F1-measure; and thereby obtained the same score for them. In contrast,NESS employs

afiltering-and-verificationapproach, where its filtering phase reports a set of high-quality final

candidate nodes for each query node. Then, it verifies all possible graph matches formed by

these final candidate nodes, in order to find the top-1 graph match. Therefore, we report pre-

cision, recall and F1-measure of its filtering phase, which is the most important step inNESS.

For fairness, we reported only the running time of its filtering phase in Figure 2.13(c).

For these experiments, we randomly selected100 query graphs, where|VQ| = 7 and

DQ = 3, using theIMDB dataset. In each query graph, one node wasunlabeledand the labels of

the remaining nodes were updated by randomly inserting new words. We varied structural noise

in Figure 2.13(a), and fixed both label noise and label noise threshold as50%. Observe that,

with no structural noise,NeMa andNeMags have F1-measure about0.94; but with the increase

in structural noise,NeMa (F1-measure0.9) outperforms the other methods (F1-measure0.1 ∼

0.7)

We varied label noise and label noise threshold in Figures 2.13(b) and 2.13(c), and

fixed structural noise as30%. The label noise threshold had the same value as label noise

in these figures. With no label noise,NeMa has F1-measure0.93, whereasNESS, IsoRank,

SAGA, andBLINKS have F1-measures about0.8. However, as we increase label noise,NeMa

(F1-measure0.9) outperforms the other methods (F1-measure0.1 ∼ 0.7) by a large margin.
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NeMa finds the best match in less than1 sec, whileIsoRank takes5000 sec.SAGA

requires15 sec and546 sec, with label noise50% and80%, respectively.

2.7.3 Scalability
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Figure 2.14: NeMa: Scalability

In this section, we analyzed the scalability ofNeMa by varying the number of nodes

in theYAGOandIMDB networks. We used100 randomly selected query graphs, where|VQ| =

7, dQ = 3, and fixed the structural noise as30%, label noise as35%, and label noise threshold as

35%. Figure 2.14 shows thatNeMa scales well with the size of the target graphs. Specifically,

the off-line indexing time increases polynomially, and theonline query evaluation time linearly

with the increase of the size of the target networks.

2.7.4 Optimization Techniques

In these experiments, we investigated the performance of the optimization techniques

of NeMa. We randomly selected100 query graphs, where|VQ| = 7 andDQ = 3, and fixed the

structural noise as30% and both label noise and label noise threshold as35%. In each query

graph, the number ofunlabeledquery nodes is varied from0 to 2. Figure 2.15(a) shows that the
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indexing and optimization techniques significantly improve the efficiency ofNeMa, specifically

by a factor of15 in the presence of2 unlabeled query nodes.

We also compared the index construction time withdynamic updateagainst the cost

of rebuilding the whole index. In these experiments, we considered only deletion of nodes

(and thereby, deletion of the incident edges) from the original network as a method of dynamic

updates. Figure 2.15(b) shows that, for a wide range of updates in the target graph, it is more

efficient to update the index structure rather than re-indexing the graph.
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Figure 2.15: NeMa: Index Performance

2.8 Summary

In this chapter, we have introducedNeMa, a novel graph querying framework via

subgraph matching that allows for ambiguity in both structure and node labels. We convert

the neighborhood of each node into a multi-dimensional vector, and then apply an inference

algorithm to identify the optimal graph matches. We furtherinvestigate howNeMa can be ex-

tended to various graph query-processing applications, such as RDF query answering, graph

matching with edge labels, and finding top-k approximate matches. Our experimental results

over real-life datasets show thatNeMa efficiently finds high-quality matches, as compared to
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state-of-the-art graph querying methods. In future work, one may consider approximate sub-

graph matching over graph streams, and also more sophisticated label similarity metrics, e.g.,

ontology and semantic similarity.
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Chapter 3

Reliability in Uncertain Graphs

“ ... as far as the propositions of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.”

Albert Einstein

Due to noisy measurements, inference errors, and other causes, in many emerging application

domains data are represented in the form of uncertain graphs, that is graphs whose arcs are

associated with a probability of existence. A fundamental problem on such graphs is to com-

pute thereliable setRS(S,η)—the set of all nodes that are reachable from a query set of nodes

S with probability no less than a given thresholdη. Reliable set computation is a generaliza-

tion of the source-to-target reliability problem, which isknown to be#P-complete. Traditional

techniques for computing source-to-target reliability apply sampling methods, which are not

efficient enough for the generalized version of the problem.

In this chapter, we proposeRQ-tree, a novel index for efficiently estimating the

reliable set, which is based on a hierarchical clustering ofthe nodes in the graph, and fur-
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ther optimized using balanced minimum cut techniques. Based on RQ-tree, we define a

fast filtering-and-verification online query evaluation strategy that relies on a maximum-flow-

based candidate-generation phase, followed by a verification phase consisting of either a lower-

bounding method or a sampling technique. The first verification method does not return any

incorrect node, thus guaranteeing perfect precision, completely avoids sampling, and is more

efficient. The second verification method ensures instead better recall.

Extensive experiments on real-world uncertain graphs and under several settings show

that our approach is very efficient—speed-up over sampling methods up to six orders of mag-

nitude, as well as accurate—recall typically in the[0.75, 0.98] range.

3.1 Introduction

Recent advances in social and information science have shown that linked data is

pervasive in our society and the natural world around us. Therefore, graphs have become ubiq-

uitous models to represent such complex structured data. However, in many novel applications,

uncertainty is inherent in the data due to a variety of reasons, such as noisy measurements [9], in-

ference and prediction models [5,103], or explicit manipulation, e.g., for privacy purposes [26].

In these cases, data can be represented as anuncertain graph, also called probabilistic graph,

i.e., a graph whose arcs are labeled with a probability of existence.

A fundamental primitive on uncertain graphs is given byreliability queries, whose

main goal, generally speaking, is computing the probability that any two (sets of) nodes are

reachable. Most attention has been so far devoted to the simplest version of such queries,
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Figure 3.1: Run-Through Example: An Uncertain Graph.

that issource-to-target reliability, where one is asked to compute the probability that asingle

target node is reachable from asinglesource node. Source-to-target reliability is a prototypical

#P-complete problem [20, 148], thus the focus in this regard has been on developing effective

approximation methods. Most of the work has concerned Monte-Carlo sampling methods [61,

92,131], which have a major efficiency shortcoming due to thelarge number of samples that is

typically needed to obtain satisfactory accuracy. To alleviate this issue, some smarter sampling

methods have been proposed recently [87,170].

In this chapter, we study a more general reliability problem, which we callreliable set

computation. Instead of focusing on the reliability between any two single nodes, we shift the

attention onsets of nodes: given a probability thresholdη ∈ (0, 1) and asetof source nodesS,

computeall nodes that are reachable fromS with probability no less thanη. The generalization

with respect to source-to-target reliability is twofold: we allow multiple sourcenodes, while

also asking forall target nodes that satisfy the query. To the best of our knowledge, this is the

first work focusing on such a generalized reliability problem.

Example 3.1 (Reliable Set Computation). Consider the uncertain graph in Figure 3.1, and

suppose one wants to compute all nodes that are reachable from {s} with probability greater
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than0.5. We denote this query asRS({s},0.5). It is easy to verify thatw is part of the solution

due to a direct arc froms with probability greater than the query threshold. Additionally, u

can be reached froms directly, or via w. Thus, the probability thatu is reachable from{s}

is equal to the probability that at least one among the directpath and the path throughw

exists. Assuming independence among the existence of the arcs in the graph, this probability is

1− (1− 0.5) × (1− 0.6× 0.5) = 0.65. Hence,u also belongs to the solution set.

Nodev is reachable if at least one of the following events holds: (1) the arcs(s,u),

(u,v) exist; (2) the arcs(s,w), (w,v) exist; (3) the arcs(s,w), (w,u), (u,v) exist. However, the

three events are not independent. Hence, to properly do the computation, one has to consider

all possible instances of this subgraph consisting of5 arcs, which are25 = 32. Note that even

for such a small graph, it is non-trivial to determine the probability thatv is reachable froms.

For t, the computation becomes even more convoluted. Considering all possible instances of

the uncertain graph, one may verify that the answer to our query is: RS({s},0.5) = {s,u,w}.

Applications. The reliable set computation problem naturally arises in a variety of scenarios. In

the problem known asinfluence maximization, whose main application isviral marketing[92],

the probability of an arc(u, v) represents the influence thatu exerts onv, i.e., the likelihood

that some action ofu will be adopted byv, or the likelihood that information propagates fromu

to v. An important, as well as the most computationally expensive step common to the state-of-

the-art techniques is to determineall nodes that can be influenced by a givensetof seed nodes:

in Section 3.7.6, we show how this can be approximated efficiently by means of reliable-set-

computation queries.
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In protein-protein interaction networks [100], nodes represent proteins and arcs rep-

resentinteractionsamong them. Interactions are established for a limited number proteins,

through noisy and error-prone experiments. Therefore, each arc is associated with a probability

accounting for supporting evidence on the existence of the interaction. In this context, predict-

ing co-complex memberships [17, 100], and new interactions[131, 136] require to compute all

proteins that are evidently (i.e., with high probability) reachable from a core (source) set of

proteins.

In mobile ad-hoc networks, the connectivity between nodes is estimated using noisy

measurements, and the notion of “delivery probability” canbe used to quantify the probability

that a given node can deliver a packet to another node [68]. Similarly, road networks can be

modeled as uncertain graphs due to unexpected traffic jams [80]. In such types of networks,

reachability from a set of alternative source locations to aset of affordable target locations

should be interpreted in a probabilistic way, by means, i.e., of reliable-set-computation queries.

In all applications such as those listed above, the rate of reliable set computations to

be performed is usually very high. Thus, a fundamental requirement is to perform any single

reliable set computation very quickly. This makes Monte-Carlo sampling not suitable: such

methods need in fact to (entirely) visit multiple graph instances sampled from the input uncer-

tain graph, and the number of such samples is typically largein order to guarantee reasonable

accuracy. Moreover, the generalizations of our problem make the smarter sampling methods by

Jin et al. [87] and by Zhu et al. [170] not well-suited either.Indeed, one needs to apply those

methods once for every other node in the input graph to find thewhole reliable set, which is
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Table 3.1: Time Complexity of Reliable Set Computation

RQ-tree vs. existing source-to-target reliability methods when applied as baselines for reliable

set computation.n andm are the number of nodes and arcs of the input uncertain graphG,

d is the diameter ofG, K is the number of deterministic graphs sampled fromG, S is the set

of query source nodes.̃n andm̃ (ñ ≪ n, m̃ ≪ m) are the number of nodes and arcs of the

subgraph ofG thatRQ-tree needs to visit.

MC-Sampling RHT-Sampling RQ-tree-LB RQ-tree-MC

[61] [87] (this work) (this work)
single-source O(K(m+ n)) O(n2d) Õ(ñm̃) Õ(ñm̃+K(m̃+ ñ))

queries
multiple-source O(K(m+ n)) O(n2d) Õ(|S|ñm̃) Õ(|S|ñm̃+K(m̃+ ñ))

queries

very inefficient in large graphs (Table 3.1). It is apparent,therefore, that the generalizations we

introduce in this work are non-trivial and make the reliability problem much harder.

Within this view, we address the problem of fast online estimation of reliable set

queries by pre-computing offline information that can be profitably exploited to speed-up on-

line query processing. We introduce a novel index, calledRQ-tree, which allows to process

our queries very efficiently—up to six orders of magnitude faster than sampling methods. Our

offline indexing technique is based on ahierarchical clusteringof the nodes in the input graph,

and further optimized with balanced-minimum-cut techniques. Query evaluation consists of a

maximum-flow-based candidate generation (filtering) step and a verification step that relies on

either (a) an efficient lower bound based on the notion of most-likely path, or (b) a sampling

technique applied to the candidate set only. The former verification method guarantees perfect
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precision, as it returns no incorrect (false positive) nodes (while false negatives can arise); it

also avoids sampling at all, resulting in very high efficiency. In the sampling-based verifica-

tion method, ourRQ-tree forms the basis to speed-up any sampling method for reliableset

computation, as it allows for significantly reducing the size of the subgraph to be sampled.

Sampling-based verification guarantees in general better accuracy in terms of recall.

Summary of contributions and roadmap. We achieve the following contributions:

• We define the fundamental problem of computing the reliable set in uncertain graphs (Sec-

tion 3.3).

• For retrieving the reliable set, we develop an efficient index, calledRQ-tree, which is

based on a hierarchical clustering of the nodes in the graph (Section 3.4).

• Based onRQ-tree, we develop a fast filtering-and-verification strategy. We derive an

upper bound for the probability of a set of nodes contained ina cluster to reach nodes

outside the cluster (Section 3.5.1), and a lower bound for the probability of reaching any

other node (Section 3.5.2). The first bound is used in the candidate generation (filtering)

phase, while the second bound is used for verification.

• We propose a balanced-minimum-cut-based partitioning method to build theRQ-tree in-

dex (Section 3.6).

• We conduct a thorough experimental evaluation by involvingseveral real-world uncer-

tain graphs and comparingRQ-tree with a couple of baselines: a Monte-Carlo-sampling

technique [61] and the sampling method by Jin et al. [87] designed for source-to-target re-
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liability (Section 3.7). Results attest the high efficiencyand accuracy ofRQ-tree, as well

as its superiority with respect to the baselines.

• We show application ofRQ-tree in the influence-maximization problem [92], which re-

quires to find a set of influential users that maximize the spread of an information in social

networks (Section 3.7.6).

3.2 Related Work

Probabilistic Reachability Queries. In many application domains, such as social, biologi-

cal, and mobile networks, uncertain graphs have received a great deal of attention in the last

years. Traditional approaches to probabilistic reachability queries over uncertain graphs rely

on Monte-Carlo sampling methods [61]. Zhu et al. [170] focuson threshold-based probabilistic

reachability and derive an upper bound for reachability that can be used as a pruning rule. When

such a rule cannot be applied, a dynamic Monte-Carlo sampling technique is employed. Jin et

al. [87] deal with distance-constrained reachability queries: given two nodess andt, what is

the probability that the distance froms to t is less than or equal to a user-defined threshold?

We remark that both these works [87, 170] consider reachability from a single sourcenode to

a single targetnode, while we generalize the problem allowing multiple source and target. As

shown in our experiments, source-to-target approaches arenot well-suited for reliability queries

over large graphs, as they need to be executed from scratch for every node as a target node in

the input graph to build the whole reliable set desired.
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Influence Maximization. Influence maximization aims at finding a set of seed nodes that

generate the largest expected information cascade: the uncertainty in the graph represents

the influence. Domingos and Richardson [52] have formulatedinfluence maximization as

an optimization problem, while [92] defines approximation algorithms with provable perfor-

mance guarantees. Several heuristics have been also proposed to improve the efficiency of that

method [37,38,71,108]: some of these can easily be coupled with anRQ-tree index to further

improve their speed-up.

Indexing for Reachability Queries. Reachability queries between a source and a target node

in deterministic graphs have been widely studied. Several indexing methods are also proposed,

e.g., interval labeling [10, 145, 163], transitive closure[14, 88], 2-hop indexing [42, 134], and

other compression based methods [56, 57, 149]. To the best ofour knowledge, ours is the

first work that proposes an indexing method for the generalized reliability queries over large

uncertain graphs.

3.3 Problem Statement

An uncertain graphG is a triple(N,A, p), whereN is a set ofn nodes,A ⊆ N ×N

is a set ofm directed arcs, andp : A→ (0, 1] is a probability function that assigns a probability

of existence to each arc inA.

Almost all works on uncertain graphs assume the probabilities of existence of the

arcs in the graph independent from one another [87, 131, 172]. Particularly, the well-known

possible-world semanticsis usually adopted: an uncertain graphG with m arcs yields2m pos-
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sible deterministic graphs, which are derived by sampling independently each arca ∈ A with

probability p(a). More precisely, a possible graphG ⊑ G is a pair(N,AG), whereAG ⊆ A,

and its sampling probability is:

Pr(G) =
∏

a∈AG

p(a)
∏

a∈A\AG

(1− p(a)). (3.1)

For any possible deterministic graph (world)G, we define an indicator functionPG(S, t)

to be 1 if there exists a path inG from a set of source nodesS ⊆ A to a target nodet ∈ A, and

0 otherwise. Here, we say that a path from the set of nodesS to a target nodet exists if there

exists a path fromat leastone nodes ∈ S to t. The probability thatt is reachable fromS in the

uncertain graphG, denoted byR(S, t), can be computed as:

R(S, t) =
∑

G⊑G

PG(S, t) Pr(G). (3.2)

The number of possible worldsG ⊑ G is exponential in the number of arcs, which makes the

exact computation ofR(S, t) infeasible even for moderately-sized graphs.

The problem we address in this work is the following.

Problem 3.1 (Reliable Set Computation). Given an uncertain graphG = (N,A, p), a prob-

ability thresholdη ∈ (0, 1), and a set of source nodesS ⊆ N , find all nodes inN that are

reachable fromS with probability greater than or equal toη, that is,RS(S, η) = {t | t ∈

N,R(S, t) ≥ η}.

Our problem generalizes the source-to-target reliabilityproblem, which asks to com-

pute the probability that a path from a source nodes to a target nodet exists. The source-to-

target reliability problem is a prototypical#P-complete problem [20, 148]. It is easy to verify
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that one can obtain a reduction from the source-to-target reliability problem to Problem 3.1.

The idea of the reduction is to perform a binary search on the threshold probabilityη in order to

estimate the answer to a given instance of the source-to-target reliability problem. As a result,

Problem 3.1 is hard as well.

3.4 The RQ-Tree index: Overview

The reliable set computation problem generalizes source-to-target reliability by shift-

ing the focus from single nodes to sets of nodes. For this purpose, it is natural for any index

structure dealing with such a generalized version of the problem to pre-compute and store in-

formation in terms of sets of nodes. This way, during query evaluation, one can retrieve and

further process the appropriate node set only, instead of the whole graph. To achieve this goal,

our intuition is to define the proposedRQ-tree index based on ahierarchical clusteringof the

nodes in the input uncertain graph. TheRQ-tree, hereinafter denoted byT , is a tree, where

the root contains the complete set of nodesN , and the leaves correspond to individual nodes

of N . All clusters at any leveli form a partition ofN . A cluster at leveli is partitioned into

a number of children clusters at leveli + 1. As a result, there exists a unique path inT that

connects each nodes ∈ N to the root. Such a path is composed of clusters that are all nested

into each other. An example ofRQ-tree index for the uncertain graph of Figure 3.1 is shown

in Figure 3.2, together with some bounds that will be clarified in the next section.

Our query-processing strategy is based on two phases:
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Figure 3.2: An RQ-tree Index for the Uncertain Graph in Figure 3.1

1. Candidate generation, where acandidateset of nodes is built based on the information

stored into the pre-computedRQ-tree index. All nodes not belonging to the candidate

set are discarded. A nice feature of this step is to guaranteethatno true positivenode is

discarded from the candidate set.

2. Verification, where a screening is applied to the candidate set in order tofilter out nodes

that should not be part of the answer.

The specific way of defining theRQ-tree hierarchical clustering mainly depends on

the proposedRQ-tree-based query processing, as a major desideratum of this workis to achieve

high query processing performance in terms of both efficiency and accuracy. For the sake of

clarity, hence, in the following we first discuss the detailsof our query-processing strategy

assuming anRQ-tree given (Section 3.5). Then, in Section 3.6, we describe how tobuild the

RQ-tree index in order to obtain fast and effective query processing.

64



Chapter 3. Reliability in Uncertain Graphs

3.5 Query Processing

3.5.1 Candidate Generation

Here we describe the candidate-generation step of our online reliable-set computation

strategy. We start by presenting the main theoretical results that form the basis of the proposed

method (Section 3.5.1). Then, we describe the method in details: for the sake of clarity, we

first discuss the case in which the source set is a singleton (Section 3.5.1), then we discuss the

general case where the source set has cardinality larger than one (Section 3.5.1).

Upper bound on outreach probability

A key concept in our candidate-generation algorithm is the notion ofoutreach proba-

bility, which is the probability that a subset of nodesS within a clusterC in theRQ-tree index

is connected to nodes outsideC, i.e., withinC = N \ C.

Definition 3.1 (outreach probability). Given a set of nodes (cluster)C ⊆ N and a subset

S ⊆ C, theoutreach probabilityRout(S,C) from S to outsideC is defined as the probability

thatS reaches the nodes not belonging toC, i.e.,

Rout(S,C) =
∑

G⊑G

PG(S,C) Pr(G) (3.3)

wherePG(S,C) = 1 if there exists at least a nodet ∈ C such thatPG(S, t) = 1, PG(S,C) = 0

otherwise.
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A straightforward feature of outreach probability is the following: if the outreach

probability ofS in C is smaller than a certain valueη, then the probability of reachingevery

nodet outsideC is also smaller thanη.

Theorem 3.1. For a clusterC ⊆ N and its subsetS ⊆ C the following holds:Rout(S,C) <

η ⇒ R(S, t) < η, for all t ∈ C.

Proof By definition,Rout(S,C) is the probability that at least one nodes ∈ S can reachat

least onenodet ∈ C. Clearly, this probability is greater than or equal to the probability that at

least one nodes ∈ S can reachany specific singlenodet ∈ C. In other words,Rout(S,C) ≥

R(S, t), for all t ∈ C, which implies the theorem.

Our query processing relies on Theorem 3.1, as well as on the next theorem, which

relates the outreach probabilities of any two clusters thatare nested into each other.

Theorem 3.2. Given any two clustersCi, Cj such thatCi ⊆ Cj , and a set of source nodes

S ⊆ Ci, it holds thatRout(S,Ci) ≥ Rout(S,Cj).

Proof If Ci ⊆ Cj, thenCi ⊇ Cj. Therefore, in all possible worldsG ⊑ G in which a path

from S to Cj exists, there also exists a path fromS to Ci. The theorem follows trivially from

the definition ofRout(S,C).

Theorems 3.1 and 3.2 create the basis for retrieving a valid candidate set from anRQ-

tree T . Specifically, given a queryRS(S, η), consider all clustersC in T , such that,S ⊆ C

andRout(S,C) < η. Theorem 3.1 guarantees that all nodes outside each of thoseclusters

violate the reliability condition, therefore they can be safely discarded. Clearly, one wants to
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consider only the smallest among those clusters in order to maximize the number of pruned

nodes. Theorem 3.2 ensures that one only needs to focus on theclusterC having the largest

valueRout(S,C) that is smaller thanη.

A candidate-generation strategy based on the above reasoning would require to com-

pute outreach probabilities exactly, which is infeasible as it would need to enumerate all possible

worlds. A possible solution is to approximateRout values by means of sampling. Unfortunately,

besides the well-known efficiency issues, this sampling-based solution would not guarantee that

the results stated in Theorems 3.1–3.2 carry over. For this purpose, we derive an upper bound

for Rout, which can be efficiently computed without sampling for any subset of nodesS ⊆ C.

The proposed upper bound, denoted byUout, is based on the min-cut/max-flow principle. We

start by defining the notion ofmost-likely cutbetween two disjoint sets of nodes.

Definition 3.2 (most-likely cut). Consider a deterministic graphG = (N,A) and two disjoint

sets of nodesX,Y ⊆ N . We define a cutC(X,Y ) between the setsX andY to be a set of arcs in

A whose removal disconnectsX andY . Consider now an uncertain graphG = (N,A, p) and

two disjoint sets of nodesX,Y ⊆ N . We define the most-likely cutC∗(X,Y ) to be a set of arcs

such that: (1) it is a cut betweenX andY , as defined on the deterministic graph that contains all

the arcs ofG; (2) among all cuts betweenX andY , it is the one that maximizes the probability

of having all its arcs non-present, i.e.,C∗(X,Y ) = argmaxC(X,Y )

∏
a∈C(X,Y )(1− p(a)).

As stated in the following theorem, the most-likely cut provides us a way to express

the desired upper boundUout.
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Theorem 3.3. Given a clusterC ⊆ N and a subsetS ⊆ C, it holds that:

Rout(S,C) ≤ Uout(S,C) = 1− max
C(S,C)

∏

a∈C(S,C)

(1− p(a)).

Proof Consider any cutC(S,C). From the independence assumption, the probability that none

of the arcs inC(S,C) exists is equal to
∏

a∈C(S,C)(1−p(a)). Now, consider the event that none

of the nodes inS can reach any node outsideC. The probability of such an event is equal to

1 − Rout(S,C), and is clearly lower-bounded by the probability that no arcin C(S,C) exists.

Based on this reasoning, it holds that:

1−Rout(S,C) ≥
∏

a∈C(S,C)

(1− p(a)), for all C(S,C),

or equivalently,

Rout(S,C) ≤ 1− max
C(S,C)

∏

a∈C(S,C)

(1− p(a)).

The theorem follows.

The upper boundUout defined in Theorem 3.3 can be computed by executing a max-

flow algorithm on a capacitated graph appropriately derivedfrom G. Specifically, our algorithm

works as follows (see pseudocode in Algorithm 1). First, we construct a capacitated grapĥG,

which has the same sets of nodes and arcs asG. Each arca in Ĝ has a capacityc(a) equal

to − log(1 − p(a)). Then, we compute the max-flowf∗ from S to C on Ĝ. Note that the

algorithm exploits the following observation: the max flow from S to C is equivalent to the

max flow fromS to the setC
′
⊆ C of all nodes inC having an incident arc outgoing fromS,

i.e., the setC
′
= {v ∈ C | ∃ u ∈ S : (u, v) ∈ A}. Thanks to this observation, the max-flow

computation can be significantly speeded-up, as typically|C
′
| ≪ |C|.
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Algorithm 1 Compute outreach probability bound
Input: an uncertain graphG = (N,A, p); a clusterC ⊆ N ; a set of source nodesS ⊆ C

Output: Uout(S,C)

1: C
′
← {v ∈ C | ∃ u ∈ S : (u, v) ∈ A}

2: for all a ∈ A, setc(a) = − log(1− p(a))

3: build Ĝ = (N,A, c)

4: f∗ ←MaxFlow(Ĝ, S,C
′
)

5: Uout(S,C)← 1− exp(−f∗)

Moreover, recall that the max-flow problem is defined betweena single source and a

single sink node. In our case, we ask for the max-flow between aset of source nodesS and a

set of sink nodesC
′
. This generalized variant can be easily mapped to the base case of single-

source single-sink: the idea is to create a dummy sources0 and a dummy sinkt0, and then

connect the dummy sources0 with all nodes inS and all nodes inC
′
with the dummy sinkt0.

The capacities of all arcs outgoing froms0 and all arcs incident tot0 are set to infinity.

As the following theorem states, the desired upper boundUout(S,C) can eventually

be computed as1− exp(−f∗).

Theorem 3.4. Given an uncertain graphG = (N,A, p), let Ĝ = (N,A, c) be a capacitated

graph derived fromG by assigning a capacityc(a) = − log(1− p(a)) to each arca ∈ A. Also,

given a clusterC ⊆ N and a set of source nodesS ⊆ C, let f∗ denote the maximum flow from

S toC on the graphĜ. It holds thatUout(S,C) = 1− exp(−f∗).
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Proof From the max-flow/min-cut equivalence, it follows that the valuef∗ of the max-flow is

equal to the valuec∗ of the min-cut. We have

f∗ = c∗

= min
C(S,C)

∑

a∈C(S,C)

c(a)

= min
C(S,C)

∑

a∈C(S,C)

− log(1− p(a))

= min
C(S,C)

− log
∏

a∈C(S,C)

(1− p(a))

= − log


max

C(S,C)

∏

a∈C(S,C)

(1− p(a))




= − log(1− Uout(S,C)), (from Theorem 3.3)

which proves the theorem.

Example 3.2. Consider the running example in Figures 3.1 and 3.2. The upper bound for the

outreach probability from{s} to outside cluster{s,w} is0.80, due to arcs(s,w), (s,u). It means

that the probability that{s} reaches any node not belonging to{s,w} is lower than or equal

to 0.80. Similarly, the upper bound for the outreach probability from {s} to outside cluster

{s,w,u} is 0.496, due arcs(u,t), (u,v), (w,v). As the probability thresholdη = 0.5, all nodes

outside cluster{s,w,u} can be pruned.

Finally, it is easy to verify that the properties derived in Theorems 3.1 and 3.2 for out-

reach probability hold also for the upper boundUout. This result is formulated in Theorem 3.5.

Theorem 3.5. Given a clusterC ⊆ N and a subsetS ⊆ C, the following results hold:

Uout(S,C) < η ⇒ R(S, t) < η, for all t ∈ C, (3.4)
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Uout(S,Ci) ≥ Uout(S,Cj), for all S ⊆ Ci ⊆ Cj. (3.5)

Proof Equation (3.4) follows directly from Theorem 3.1, sinceUout(S,C) < η ⇒ Rout(S,C) <

η ⇒ R(S, t) < η, for all t ∈ C. Regarding Equation (3.5), we first note that,Ci ⊆ Cj ⇒

Ci ⊇ Cj , and, therefore, all cuts fromS toCi are also cuts fromS to Cj. This implies that

max
C(S,Ci)

∏

a∈C(S,Ci)

(1− p(a)) ≤ max
C(S,Cj)

∏

a∈C(S,Cj)

(1− p(a)),

or equivalently,

1− max
C(S,Ci)

∏

a∈C(S,Ci)

(1− p(a))

︸ ︷︷ ︸
Uout(S,Ci)

≥ 1− max
C(S,Cj)

∏

a∈C(S,Cj)

(1− p(a))

︸ ︷︷ ︸
Uout(S,Cj)

The theorem follows.

Single-Source Queries

We next describe how to perform candidate generation when the query set of source

nodes is a singleton, i.e., queries are formulated asRS({s}, η).

Given a query nodes, there exists a single path in theRQ-tree indexT from the leaf

cluster{s} to the root ofT . Our candidate-generation strategy traverses all clusters along this

path in a bottom-up fashion i.e., starting from the leaf cluster and going towards the root. The

traversal of the path stops as soon as it encounters acandidate clusterC∗, whose upper bound

Uout({s}, C
∗) on outreach probability is smaller thanη. More formally:

C∗({s}, η) = argmax
C⊇{s},

Uout({s},C)<η

Uout({s}, C).
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Theorem 3.5 ensures that (i) C∗ is the smallest “valid” candidate cluster, i.e., it is the cluster

that guarantees that the discarded setC∗ is as large as possible; and (ii) all nodest /∈ C∗ have

R({s}, t) < η, i.e., no true positive is discarded.

Note that, during our bottom-up traversal ofT , the upper-bound valuesUout({s}, ·)

are computed in a lazy fashion according to the strategy outlined in Algorithm 1. In order to

further speed-up query processing, one may consider pre-computing the upper-bound values

Uout({s}, C), for all clustersC ∈ T and all nodess ∈ C. However, such a pre-computation

would lead to increasing the index storage space and, more importantly, the index building time,

which could even become unaffordable for large graphs.

Running time. Our candidate generation consists of two steps: the bottom-up traversal of the

treeT , and the computation of the upper-bound valuesUout during that traversal. The first

step is linear in the heighth of the treeT . The second step requires performing a max-flow

computation for each cluster visited during the traversal.As a result, the overall running time

of computing the upper-bound valuesUout is expressed ash max-flow computations. Accord-

ing to Algorithm 1, the max-flow computation depends only on the number of source nodes

and the number of arcs outgoing from the source nodes to outside the cluster. Thus, one can

upper bound the running time of each max-flow instance by using the size of the subgraph in

the last cluster encountered during the traversal. Letñ andm̃ denote the number of nodes and

arcs in that subgraph. One of the fastest existing max-flow algorithms is the algorithm of Gold-

berg and Tarjan [69], whose running time is̃O(ñm̃), where theÕ notation hides logarithmic
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factors. Assuming that the treeT is balanced (see Section 3.6), and therefore,h = O(log n),

the overall time complexity of the candidate-generation phase is stillÕ(ñm̃).

Multiple-Source Queries

In case of queries containing multiple source nodes, one could follow exactly the

same candidate-generation strategy as in the single-source case: retrieve the smallest cluster

in the index tree that contains all nodes of the query source set S. However, such a strategy

may not be very effective in the multiple-source case. The reason is that the cluster enclosing

all nodes inS might be a large cluster placed very close to the root of theRQ-tree T . This

would affect the efficiency of query processing, as a larger portion ofT would be visited before

encountering the desired candidate set, and thus a large number of candidate nodes would need

to be verified. Therefore, we discuss next how to select asetof clusters (rather than a single

cluster common to all source nodes) which may achieve betterpruning.

Multiple-source candidate clusters.Our goal is to derive a set of clusters{Ci}
k
i=1 of T whose

union setC∪ =
⋃

i Ci meets the following requirements: (i) all source nodes belong toC∪; (ii )

the property of having no false negatives discarded still holds, that is no false negatives are

present among the nodes outsideC∪; and (iii ) the size ofC∪ is minimum, so to guarantee

maximum pruning.

Let us translate the above requirements into an optimization problem. To this end,

requirements (i) and (iii ) are straightforward to formulate, while for requirement (ii ) we first
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need to derive some theoretical results, which are formallystated in Lemma 3.1 and Theorem

3.6.

Lemma 3.1. Let {C1, · · · , Ck} be a set of clusters inT and{S1, · · · , Sk} be a set of source

node sets, whereSi ⊆ Ci, for all i, andSi ∩ Sj = ∅, for all i 6= j. Let alsoC∪ =
⋃

iCi and

S∪ =
⋃

i Si. It holds thatUout(S∪, C∪) ≤ 1−
∏

i(1− Uout(Si, Ci)).

Proof Given any two (disjoint) sets of nodesX,Y ⊆ N , let C∗(X,Y ) denote the most-likely

cut fromX to Y (as defined in Definition 3.2). Let alsoPr(¬C∗(X,Y )) =
∏

a∈C∗(X,Y )(1 −

p(a)) be the probability thatC∗(X,Y ) does not exist. First, we note that, by definition, the

probability Pr(¬C∗(X,Y )) cannot be smaller than the probability that any single validcut

from X to Y does not exist. Given any supersetY ′ ⊇ Y (such thatX ∩ Y ′ = ∅) it easy to see

thatC∗(X,Y ′) is a valid cut fromX to Y too. Thus the following holds:

Pr(¬C∗(X,Y )) ≥ Pr(¬C∗(X,Y ′)),

for all Y ′ ⊇ Y,X ∩ Y ′ = ∅, which implies that

Pr(¬C∗(Si, C∪)) ≥ Pr(¬C∗(Si, Ci)),

as, clearly,Ci ⊇ C∪ (andSi ∩ C∪ = ∅). Furthermore, notice that
⋃

i C
∗(Si, C∪) is a valid cut

from S∪ to C∪. Hence, based on the same argumentation as above, the following holds:

Pr(¬C∗(S∪, C∪)) ≥ Pr(¬
⋃

i C
∗(Si, C∪)).

Finally, it is easy to see that the probability that none of the arcs in the union of multiple cuts

exists is lower-bounded by the product of the probability that any single arc in the union cut
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does not exist, that is:

Pr(¬
⋃

i C
∗(Si, C∪)) ≥

∏

i

Pr(¬C∗(Si, C∪)).

In summary, based on the above results, we have:

Pr(¬C∗(S∪, C∪))︸ ︷︷ ︸
1−Uout(S∪,C∪)

≥ Pr(¬
⋃

i C
∗(Si, C∪))

≥
∏

i

Pr(¬C∗(Si, C∪))

≥
∏

i

Pr(¬C∗(Si, Ci))︸ ︷︷ ︸
1−Uout(Si,Ci)

,

which implies that

Uout(S∪, C∪) ≤ 1−
∏

i

(1− Uout(Si, Ci)).

The lemma follows.

Based on the above lemma, we can now provide the ultimate condition to be ensured

for having no false negatives outsideC∪. As formally stated in Theorem 3.6, such a condition

is expressed as1−
∏

i∈[1..k](1− Uout(Ci ∩ S,Ci)) < η.

Theorem 3.6. LetS be a set of source nodes and{C1, · · · , Ck} be a set of clusters inT such

thatCi∩S 6= ∅, for all i, and{Ci∩S}
k
i=1 forms a partition ofS. Let alsoC∪ denote the union

set
⋃

i Ci. It holds that:

1−
∏

i

(1− Uout(Ci ∩ S,Ci)) < η ⇒ R(S, t) < η,

for all t ∈ C∪.

Proof For each nodet ∈ C∪, we have
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R(S, t) ≤ Rout(S,C∪) ≤ Uout(S,C∪) ≤

1−
∏

i

(1− Uout(Ci ∩ S,Ci)) < η. (from Lemma 3.1)

The optimization problem we are interested in can now be precisely characterized.

Problem 3.2 (Multiple-source Candidate Generation). Given anRQ-tree indexT and a set

of source nodesS, select a set of clusters{C1, . . . , Ck} of T so that, for the union setC∪ =

⋃k
i=1Ci, the following holds:

(i) S ⊆ C∪;

(ii) 1−
∏

i(1− Uout(Ci ∩ S,Ci)) < η;

(iii) |C∪| is minimum.

To solve the above problem, we first discuss a polynomial-time algorithm that pro-

vides exact solutions but is not scalable. Then, we derive a more efficient heuristic.

Exact multiple-source candidate generation.The exact solution for Problem 3.2 relies on the

dynamic-programming paradigm. Let{C1, . . . , Ct} be a set of clusters in theRQ-tree T so

that no two clusters in that set are in ancestor–descendant relation. Let also define

f({C1, . . . , Ct}) = |
⋃t

i=1 Ci|, and

U(S,{C1, . . . , Ct})=1−
t∏

i=1

(1 − Uout(Ci ∩ S,Ci)).

For simplicity, assume thatT is binary, and every non-leaf clusterC has two children,

right r(C) and leftℓ(C). The reasoning can easily be extended to more general trees.

For any clusterC of T and any integerk, we defineT (C,S, k) to be theminimum

scoreU(S, {C1, . . . , Ct}) for a set of clusters{C1, . . . , Ct} such that
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(i) C1, . . . , Ct are all descendant of C;

(ii) no two clusters in{C1, . . . , Ct} are in ancestor–descendant relation;

(iii) for everys ∈ S ∩C, there is (exactly) one cluster in{C1, . . . , Ct} betweens andC; and

(iv) f({C1, . . . , Ct}) ≤ k.

The minimum in the definition ofT (C,S, k) is taken over all sets{C1, . . . , Ct} that satisfy

conditions (i)–(iv).

Now, given a query source setS, for every cluster inT and everyk = 0, . . . , n, we

compute the scoresT (C,S, k) in a bottom-up fashion using the following dynamic-programming

equation

T(C,S, k)= min
kr+kℓ≤k

1− (1− T(r(C), S, kr))(1 − T(ℓ(C), S, kℓ)).

The solution to Problem 3.2 is then given by the smallest value ofk for whichT (root, S, k) < η.

This way, only the score of the optimal solution is provided.One can also obtain the solution

itself by keeping pointers to the optimal splitskr + kℓ ≤ k for eachC and eachk.

It is easy to verify that computing the above exact solution requiresO(|S|n log n)

max-flow computations. Therefore, the exact dynamic-programming algorithm for multiple-

source candidate generation may be slow in practice. For this purpose, we introduce next a

more efficient greedy heuristic.

Heuristic multiple-source candidate generation. The idea of our heuristic is to perform a

number of bottom-up traversals ofT in parallel, one for eachs ∈ S. Similar to the single-source

case, each traversal proceeds along the path that connects the nodes to the root ofT . Traversals

are performed in a round-robin way and they terminate when the following stopping condition
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is met. LetCi denote the current cluster inT that encloses nodesi at a certain point of the

traversals, for allsi ∈ S (note that any two nodessi, sj ∈ S can be enclosed by the same cluster

Ci = Cj). Our procedure stops when it reaches theminimum-sizedunion setC∪ =
⋃

iCi for

which condition (ii) of Problem 3.2 is satisfied, i.e.,1 −
∏

i(1 − Uout(Ci ∩ S,Ci)) < η. The

final candidate set corresponds to the union setC∪ of the last clusters reached by the traversal.

Running time. The running time analysis of the (heuristic) multiple-source candidate genera-

tion roughly follows the analysis of the single-source case. We need to performO(|S| log n)

max-flow computations—contrast to theO(|S|n log n) max-flow computations required by the

exact method, andO(|S| log n) computations ofUout. The overall time complexity is therefore

Õ(|S|ñm̃).

3.5.2 Verification

Though guaranteed not to discard any true positive, the candidate setC∗ generated ac-

cording to our candidate-generation strategies may still contain false positive nodes, i.e., nodes

t for which R(S, t) < η. To filter as many of such false positives as possible out ofC∗, we

propose two alternative verification methods, which are described next. Both verifications take

in input the candidate set eventually generated by candidate generation. As a result, there is no

difference between single-source verification and multiple-source verification.
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Verificationbasedonalowerboundonreliability

The first verification method we propose is based on a lower bound for R(S, t), for

any source node setS and a nodet /∈ S. We denote this lower bound byLR(S, t). The idea

is that if we find thatLR(S, t) ≥ η, for some query setS and some nodet, then we can safely

conclude thatt belongs to the solution set.

The lower bound we derive is based on the concept ofmost-likely pathfrom S to t.

Definition 3.3 (most-likely path). Given a set of nodesS and a nodet /∈ S, the most-likely

pathP∗(S, t) fromS to t is defined as

P∗(S, t) = argmax
P∈P(s,t),

s∈S

∏

a∈P

p(a), (3.6)

whereP(s, t) denotes the set of all paths froms to t.

The following theorem states that the desired lower boundLR simply corresponds to

the probability of the most-likely path. This probability can be computed by a shortest-path

computation on a weighted graph derived fromG by assigning to each arca ∈ A a weight

− log(p(a)).

Theorem 3.7. Given a set of source nodesS and a nodet /∈ S, it holds thatR(S, t) ≥

LR(S, t) =
∏

a∈P∗(S,t) p(a).

Proof By definition,R(S, t) is the probability thatat least one pathfrom a nodes ∈ S to t

exists. Hence,R(S, t) is larger than or equal to the probability thatany single pathfrom some
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s ∈ S to t exists, that is,

R(S, t) ≥
∏

a∈P

p(a), for all s ∈ S and allP ∈ P(s, t).

Therefore, we have

R(S, t) ≥ max
P∈P(s,t)

s∈S

∏

a∈P

p(a) =
∏

a∈P∗(S,t)

p(a),

which proves the theorem.

Based on the lower boundLR, the verification step simply consists in keeping only

those nodest ∈ C∗ such thatLR(S, t) ≥ η. This way, the output solution set is guaranteed not

to contain any false positive.

An interesting point in this regard would be analyzing the error achieved by the above

lower bound. However, such a problem is non-trivial and we leave it for future work. Indeed,

one can notice that some extreme cases may arise, that can easily make the error bound analysis

hard. One case is given by complete graphs with high probabilities on the arcs, on which large

candidate sets tend to be produced, and where our lower-bounding-based verification may be

therefore less effective. On the other hand, however, for graphs with small dense substructures

that are very commonly encountered in real-world scenarios, the candidate set obtained is typi-

cally much smaller. In these cases, as empirically validated in Section 3.7 on several real-world

datasets, the lower-bounding-based verification is instead very accurate.

Sampling-based Verification

The above lower-bounding verification guarantees thatno false positivebelongs to

the final solution. On the other hand, some false negatives may be introduced. Even though
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experimental evidence (Section 3.7) has shown that the recall of our lower-bounding-based

verification is always high (within[0.75, 0.85]), the accuracy can be further improved.

The idea is to perform sampling (e.g., Monte Carlo) to estimate the reliability of the

candidate nodes more accurately than the lower-bounding-based verification. Note that, unlike

existing sampling methods discussed in the Introduction [61, 87], sampling here is performed

on a small subgraph of the input uncertain graph, that is the subgraph induced by the candidate

nodes only. As a result, even though less efficient than the lower-bounding-based verification,

this sampling-based verification is still very fast and outperforms the baselines in efficiency, as

empirically observed in Section 3.7. One may note that when we sample over the subgraph

induced only by the candidate set, we ignore the contribution of the paths passing through

nodes not in the candidate set. Since all non-candidate nodes have reliability from the source

set less thanη, a path from source set to a candidate node that goes though non-candidate nodes

also have very small reliability as compared toη, and thereby does not significantly affect the

reliability values of candidate nodes. Indeed, the recall of our sampling-based verification is

always in the[0.95, 1.00] range. In addition, the number of samples can be used as a knobto

tradeoff between efficiency and accuracy.

Running time

For the lower-bound-based verification strategy, one only needs to focus on the sub-

graphG̃ of G induced by the candidate setC∗. This is because our candidate-generation step

ensures that all nodes outside the candidate set have reliability from the query source setS less
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thanη. Therefore, all paths passing through nodes not in the candidate set are guaranteed to

have reliability less thanη too: this way all nodes (and corresponding arcs) not inC∗ can safely

be discarded.

According to the reasoning reported in Section 3.5.1, the number of nodes and arcs of

G̃ are upper-bounded bỹn andm̃, respectively. The lower-bounding-based verification strategy

requires to compute the probability of the most-likely pathfrom the source node setS to each

node in the candidate set. This can be accomplished with a shortest-path distance computation

in G̃ from the source setS, which leads to a time complexity of̃O(m̃+ ñ).

The sampling-based verification, on the other hand, requires to compute all nodes

that are reachable from the source setS in every deterministic graph sampled from̃G. This

can be accomplished with a visit of each sampled graph. The total running time is therefore

O(K(m̃+ ñ)), whereK denotes the number of samples.

It can be noted that, overall, our query processing ranges from Õ(ñm̃) time (single-

source, lower-bounding-based verification), toÕ(|S|ñm̃+K(m̃ + ñ)) time (multiple-source,

sampling-based verification). In all cases, however, asñ andm̃ are very small in practice (see

Section 3.7), the efficiency of our query processing is very high.

3.6 Building the RQ-tree Index

In this section, we provide the guidelines for building the hierarchical structure of the

proposedRQ-tree indexT . In this regard, we note that:
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1. The smaller the height ofT , the smaller the size (and therefore the storage space) ofT .

A small height ofT is achieved when its clusters are partitioned intobalancedchildren,

i.e., children having roughly the same size.

2. On the other hand, a very small height ofT is also not desirable, as the smaller the height

of T , the narrow the range ofη values that can be profitably assisted by anRQ-tree

index. As an example, think about the extreme case where the height ofT is 1 (which

arises when the branching factor ofT is n): such anRQ-tree would be completely

useless for our query processing strategy. Within this view, we keep the height ofT of

reasonable size by fixing the branching factor ofT to a small number, i.e.,2.

3. Finally, for each clusterC in T , and for each nodes ∈ C, we require forRout({s}, C)

to be as small as possible, since this would reduce the size ofthe set produced during

candidate generation. As already explained in Section 3.5.1, this improves both efficiency

and accuracy of our query processing strategies.

Based on the above requirements, we develop the following method for building an

RQ-tree indexT . First, according to requirements 1) and 2), we perform a (recursive)balanced

bi-partition of each non-leaf cluster inT . Requirement 3), instead, provides the basis for the

specific criterion to employ for defining each bi-partition.Particularly, for any clusterC in T ,

the ideal desideratum would be to minimize the single outreach probabilities of each subset

S ⊆ C, which is clearly unaffordable. Within this view, we first derive an upper bound that is

general for the outreach probabilities of all subsets of nodes in a specific cluster, and then we

search for the balanced bi-partition that minimizes this upper bound. Note that the upper bound
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provided here differs from theUout upper bound derived in Theorem 3.3, because the latter is

instead specific for a given set of source nodes. The expression of this general upper bound,

denoted byUout, is formalized in the next theorem.

Theorem 3.8.Given a clusterC, for all sets of source nodesS ⊆ C, it holds thatRout(S,C) ≤

Uout(C) = 1−
∏

(u,v):u∈C,v/∈C(1− p((u, v))).

Proof By definition,1 − Rout(S,C) corresponds to the probability that no nodess ∈ S can

reach any nodet outsideC. In this respect, consider all outgoing arcs ofC, i.e., those arcs

that connect a node inC with a node outsideC. Clearly, the condition that none of these

outgoing arcs exists is sufficient to guarantee that nos ∈ C can get to outsideC. Thus, the

probability that no outgoing arc ofC exists is a lower-bound for1 − Rout(S,C). As a result,

it holds that1 − Rout(S,C) ≥
∏

(u,v):u∈C,v/∈C(1 − p((u, v))), or, equivalently,Rout(S,C) ≤

1−
∏

(u,v):u∈C,v/∈C(1− p((u, v))).

Based on the above reasoning, we can now formalize the optimization problem to be

recursively solved for generating the bi-partition of the various clusters inT . The objective

is to partition any given clusterC ∈ T into two clustersC1 andC2 such that (i) Uout(C1)

andUout(C2) are simultaneously minimized, and (ii) C1 andC2 have roughly the same size.

Noticing that minimizingUout(·) is clearly equivalent to maximizing1 − Uout(·), it is easy to

see that these requirements are fully captured by the following optimization problem.
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Problem 3.3(BUILD -RQ-TREE). Given a clusterC ∈ T , partition C into two clustersC1, C2

such that

(1−Uout(C1))(1−Uout(C2))

|C1|
+

(1−Uout(C1))(1−Uout(C2))

|C2|

is maximized.

As shown in Theorem 3.9, Problem 3.3 is equivalent toMIN -RATIO-CUT [155]. As a

result, Problem 3.3 isNP-hard.

Theorem 3.9. Problem 3.3 isNP-hard.

Proof We prove the theorem by a reduction fromMIN -RATIO-CUT. We construct a weighted

(deterministic) grapĥG containing the same set of nodes and arcs asG. We assign to each

arca in Ĝ a weightw(a) = − log(1 − p(a)), and we makêG undirected by simply ignoring

the directness of each arc. Given any two node setsNi, Nj ⊆ N , let A(Ni, Nj) denote the

set of all arcs inĜ betweenNi to Nj. Solving MIN -RATIO-CUT on Ĝ finds a bi-partition

{N1, N2} of the node setN that minimizes 1
|N1|

∑
a∈A(N1,N2)

w(a) + 1
|N2|

∑
a∈A(N1,N2)

w(a),

or, equivalently, that maximizes1|N1|

∏
a∈A(N1,N2)

(1− p(a)) + 1
|N2|

∏
a∈A(N1,N2)

(1− p(a)) =

1
|N1|

(1−Uout(N1))(1−Uout(N2))+
1

|N2|
(1−Uout(N1))(1−Uout(N2)). The theorem follows.

The similarity withMIN -RATIO-CUT implicitly provides us with a well-founded ap-

proach for heuristically solving ourBUILD -RQ-TREE problem. Indeed, one can resort to one

of the various well-established heuristics forMIN -RATIO-CUT defined in the literature. Specifi-
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Algorithm 2 BuildRQtree
Input: an uncertain graphG = (N,A, p)

Output: anRQ-tree indexT

1: C← {N}, T ← {C}

2: repeat

3: C
′ ← ∅

4: for all C ∈ C s.t. |C| > 1 do

5: build Ĝ = (N̂ , Â, w), whereN̂ = C, Â = {(u, v) | (u, v) ∈ A, u ∈ C, v ∈ C}, and

w(a) = − log(1− p(a)), for all a ∈ Â

6: {C1, C2} ←METIS (Ĝ)

7: C
′ ← C

′ ∪ {C1, C2}

8: end for

9: C← C
′, T ← T ∪ {C}

10: until C = ∅

cally, in our framework, we use theMETIS algorithm [90], as a good trade-off between accuracy

and efficiency.

All steps of our strategy for building anRQ-tree are summarized in Algorithm 2.

Index building time. Given a clusterC in T , let nC andmC denote the number of nodes and

arcs in the subgraph of the input uncertain graphG identified by the nodes inC, respectively.

Computing a bi-partition ofC by means of theMETIS algorithm takesO(nC + mC) time.

RunningMETIS on all clusters of any single level ofT takesO(
∑

C(nC + mC)). As all
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clusters in any single level ofT forms a partition of the whole set of nodes inG, the latter is

equivalent toO(n+m). The number of levels (height) ofT isO(log n), as ourRQ-tree index

building strategy guarantees forT to be a balanced tree. As a result, the overall time complexity

of building anRQ-tree index isO((n+m) log n).

Index storage space.As explained above, the height ofT isO(log n). Each level ofT contains

a partition of the whole set of nodes inG, thus each node inG is stored exactly one time for

each level. Hence, the overall storage space required by anRQ-tree index isO(n log n).

3.7 Experimental Results

In this section, we present our empirical analysis. We are mainly aimed at assess-

ing:

• Efficiency and effectiveness of the proposedRQ-tree index in terms of recall, query-

processing time, index-building time, and index size (Section 3.7.2); we also compare

our approach with two baselines, namely Monte-Carlo sampling (MC-sampling [61]), and

an alternative sampling technique designed for source-to-target reliability (RHT-sampling

[87]).

• Effectiveness of our approach by breaking-down the analysis to the two phases of our

query processing, i.e., candidate generation and verification (Section 3.7.3).

• Performance with varying the size of the query source set (Section 3.7.4).
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• Scalability of the proposed method with respect to query processing, index building time,

and index size (Section 3.7.5).

Furthermore, as an example of application, we show in Section 3.7.6 how ourRQ-

tree index can help speeding-up the iterative hill-climbing greedy algorithm [92] for theinfluence-

maximizationproblem.

All the code is implemented in C++ and experiments are performed on a single core

of a100GB, 2.50GHz Xeon server.

3.7.1 Experiments Settings

Datasets.We involve six real-world datasets, each representing a directed uncertain graph.

DBLP [47]. We consider the usual co-authorship graph where an arcconnects two authors

if they co-authored at least once. We make the graph directedby considering arcs in both

directions. We derive arc probabilities as described in [87, 131]: we consider an exponential

cdf of meanµ to the number of collaborations; hence, if two authors collaboratedc times,

we compute the corresponding probability as1 − exp−c/µ. We considerµ ∈ {2, 5, 10} in our

experiments. Keeping fixed the collaborations, higher values ofµ generate smaller probabilities

(see Figure 3.3).

Flickr [62]. Flickr is a popular online community, where users share photos, participate in

common-interest groups, and form friendships. We create a graph from a recent snapshot of

Flickr, by linking two users if they belong to at least one common interest group. Like DBLP, the

undirected graph is made directed by simply considering thearcs in both directions. Following
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Table 3.2: Reliability Queries: Dataset Characteristics.
Dataset # Nodes # Arcs

DBLP 684, 911 4, 569, 982
Flickr 78, 322 20, 343, 018

BioMine 1, 008, 201 13, 445, 048
WebGraph 10, 000, 000 174, 918, 788
Last.FM 6, 899 24, 144
NetHEPT 15, 235 62, 776

[131], we assign probability to an arc by computing the Jaccard coefficient of the groups that

the two users belong to.

BioMine. This is a recent snapshot of database of the BIOMINE project[136], which is a

collection of biological interactions. The graph is directed, and with probability associated to

the arcs [136].

WebGraph[154]. This is theuk-2007-05 web graph data [27]. For our experiments, we use a

subset containing10M pages and175M hyperlinks. For a directed arc(u, v), the probability is

computed as 1
d(u) , whered(u) is the out-degree of nodeu [71].

Last.FM [105]. Last.FM is a music web site, where users listen to their favorite tracks, and

communicate with each other based on their music preferences. We crawled a local network of

Last.FM, and formed a directed graph by connecting two usersif they communicated at least

once. Like WebGraph, the probability of a directed arc(u, v) is 1
d(u) .

NetHEPT[122]. This graph is created from the “High Energy Physics - Theory” section of

the e-print arXiv with papers from1991 to 2003. Like DBLP, two authors are connected by

directed arcs if they co-authored at least once. In this graph, we follow [38] and assign constant

arc probabilities (0.5).
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Figure 3.3: Reliability Queries: Cumulative Distribution of Arc Probabilities.

Table 3.3: Comparison betweenRQ-tree and Baselines: Recall.

Last.FM NetHEPT
η RHTRQ-tree-MCRQ-tree-LBMCRHTRQ-tree-MCRQ-tree-LB

0.4 0.97 1 0.95 1 0.95 0.98 0.78
0.6 0.98 1 0.97 1 0.96 0.98 0.82
0.8 0.98 1 0.97 1 0.96 1 0.88

The main characteristics of the selected datasets are reported in Table 3.2 (sizes) and

Figure 3.3 (cumulative distribution of arc probabilities). We use the first three datasets for

assessing index performance, whileWebGraph(the largest one) is used for assessing scalability.

The last (smaller) two datasets are used for comparison withthe baselines, both in terms of

general performance and in the influence-maximization application. Involving smaller datasets

for these comparisons is needed to allow the various baselines to terminate in reasonable time.

Query workload. For single-source queries, we select a node uniformly at random. For

multiple-source queries, we select uniformly at random a set of nodes from a subgraph of the

original graph. We vary the cardinality of the query set from2 to 20, and the diameter of

the subgraph from2 to 6. Results are averaged over100 sets of nodes, while the probability

thresholdη is varied from0.4 to 0.8.
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Table 3.4: Comparison betweenRQ-tree and Baselines: Query-Processing Time (sec).

Last.FM NetHEPT
η MC RHTRQ-tree-MCRQ-tree-LB MC RHTRQ-tree-MCRQ-tree-LB

0.4 16.5 6.21 0.1 0.008 27.23 2353 15.97 0.010
0.6 16.5 6.21 0.08 0.007 27.23 2353 15.96 0.008
0.8 16.5 6.21 0.08 0.006 27.23 2353 15.64 0.006

Competing methods. We evaluate the performance of ourRQ-tree by focusing on both

the verification strategies proposed in Section 3.5.2. Particularly, we hereinafter denote by

RQ-tree-LB the variant involving lower-bounding-based verification,and byRQ-tree-MC the

variant involving (Monte-Carlo-)sampling-based verification. We compare bothRQ-tree-LB

andRQ-tree-MC with the following baselines:

MC-Sampling. We consider a basic Monte-Carlo-sampling method [61] running on the whole

graph. We deriveK deterministic graphs by sampling the given uncertain graphaccording to the

arc probabilities. Then, we compute the set of all nodes reachable from the query node(s) in each

sampled graph. Eventually, all nodes that are reachable from the query in at leastηK sampled

graphs form the reliable set. Such a baseline method has timecomplexityO(K(m+ n)).

RHT-Sampling. This is a method proposed in [87] as a fast alternative to Monte-Carlo sampling

for the source-to-target reliability problem. The method is designed for reliability between a

single pair of nodes; thus, in order to compute the whole reliable set, it needs to be runn

times, every time using a different node in the graph as target node. As stated in [87], the time

complexity of a single execution ofRHT-Sampling is O(nd) (whered is the diameter of the

graph), hence for reliable set computation the complexity becomesO(n2d). For this purpose,
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even being faster than Monte-Carlo sampling for source-to-target reliability, we do not expect

high efficiency for this baseline in solving our generalizedproblem.

For all sampling-based methods, i.e., the two baselines andour RQ-tree-MC, we

have observed accuracy convergence on all datasets with a number of samplesK around1, 000.

This is roughly the same number observed in [87, 131]. Hence,we setK = 1, 000 for all

sampling-based methods, in all experiments.

Table 3.5: RQ-tree: Recall over Various Datasets (Single-Source Queries).
RQ-tree-MC RQ-tree-LB

η = 0.4 η = 0.6 η = 0.8 η = 0.4 η = 0.6 η = 0.8

DBLP 0.99 0.99 1.00 0.75 0.87 0.91
Flickr 0.98 0.99 0.99 0.76 0.79 0.83

BioMine 0.97 0.98 0.98 0.77 0.81 0.85

Table 3.6: RQ-tree: Query-Processing Time (sec) over Various Datasets (Single-Source).
RQ-tree-MC RQ-tree-LB MC

η = 0.4 η = 0.6 η = 0.8 η = 0.4 η = 0.6 η = 0.8 all η

DBLP 43.01 40.48 36.83 1.50 0.60 0.60 3081.85
Flickr 60.23 58.60 54.75 0.21 0.20 0.17 5058.55

BioMine6061.90 5416.84 4974.091.00 0.50 0.5025608.40

Table 3.7: RQ-tree: Recall w/ Varying Arc Probabilities (DBLP, Single-SourceQueries).
RQ-tree-MC RQ-tree-LB

η = 0.4 η = 0.6 η = 0.8 η = 0.4 η = 0.6 η = 0.8

µ = 2 0.95 0.96 0.98 0.52 0.75 0.76
µ = 5 0.96 0.97 0.98 0.75 0.87 0.91
µ = 10 0.97 0.97 0.99 0.89 0.91 0.96
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Table 3.8: RQ-tree: Query Processing Time (sec) w/ Varying Arc Probabilities (DBLP, Single-
Source Queries).

RQ-tree-MC RQ-tree-LB MC

η = 0.4 η = 0.6 η = 0.8 η = 0.4 η = 0.6 η = 0.8 all η

µ = 2 152.94 145.72 141.80 2.50 0.82 0.68 11476.60
µ = 5 43.01 40.48 36.83 1.50 0.60 0.57 3081.85
µ = 10 38.70 36.15 33.10 1.40 0.57 0.57 2257.55

3.7.2 General Performance

Comparison with baselines.We compare ourRQ-tree-LB andRQ-tree-MCwithMC-Sampling

andRHT-Sampling baselines. As said, for this comparison we focus on the two smaller datasets

only (i.e.,Last.FMandNetHEPT) to allow the baselines to terminate in reasonable time.

Computing the exact reliable set is computationally unfeasible. For this purpose, to

measure accuracy, we use the reliable set returned byMC-sampling as a proxy. Particularly, we

are interested in assessing accuracy in terms ofrecall. Denoting byT the reliable set outputted

by any selected method and byT ∗ the reliable set produced byMC-Sampling, we define recall

as |T∩T ∗|
|T ∗| . This way, the recall ofMC-sampling is clearlyalways 1, thus we avoid to report it.

Note thatprecisionprovides instead less interesting evidence of the accuracyof our methods,

then we leave it out of the presentation. Indeed, ourRQ-tree-LB guarantees perfect precision

(no false positives), while, as far asRQ-tree-MC, even though it might return false positives,

its verification strategy is more accurate thanRQ-tree-LB, and thus it guarantees very high

precision as well.

We report recall and query-processing time of the selected methods (with varyingη)

in Table 3.3 and 3.4, respectively. Table 3.3 shows that ourRQ-tree-MC achieves the best recall

results among all methods on bothLast.FMandNetHEPT, being also more accurate than the
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RHT baseline on all datasets and for allη. Particularly, it achievesperfectrecall for all η on

Last.FMand forη = 0.8 onNetHEPT. As far asRQ-tree-LC, it is in general less accurate than

RQ-tree-MC, as expected. However, its recall is very close to 1 (0.95-0.97) and comparable to

RHT on Last.FM. On theNetHEPTdataset, the recall ofRQ-tree-LC decreases, even though

it is on average greater than 0.82. A possible justification for this is given by the higher arc

probabilities present onNetHEPTas compared to those ofLast.FM.

Regarding efficiency (Table 3.4), ourRQ-tree-LB andRQ-tree-MC drastically out-

perform the baselines.RQ-tree-MC is up to 2 and 3 order of magnitude faster thanRHT-

Sampling andMC-Sampling, respectively.RQ-tree-LB is even much better: it outperforms

RHT-Sampling andMC-Sampling up to 6 and 4 orders of magnitude, respectively. We also

note that, on the smallerLast.FMdataset,RHT is more efficient thanMC-Sampling, while on

NetHEPTthe opposite happens. This is expected, as, when the size of the graph increases,

RHT becomes very expensive due to its time complexity quadraticin the number of nodes in

the graph. For instance, on larger graphs such asBioMineandFlickr, RHT could not finish in

one day. Therefore, in the remainder of this section, we compare the efficiency of our methods

with MC-Sampling only.

Index building and query processing. We now shift the attention on larger datasets, i.e.,

DBLP, Flickr, andBioMine. We first report the basic statistics about theRQ-tree index in

Table 3.9, where it can be observed that the offline index building time is quite modest for all

datasets: for instance, building the index onBioMine (1M nodes and13M arcs) takes about50

minutes. The space requirement is contained as well: onBioMineour index takes approximately
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Table 3.9: RQ-tree: Index Building Time, Index Size, Height of the Tree, and Number of
Clusters.

Dataset Time (sec) Size (MB) Height # Clusters

DBLP (µ = 5) 1,855 123 14 735,424
Flickr 1,649 118 11 80,726

BioMine 2,890 203 15 1,040,750

200 MB. In Section 3.7.5, we report a deeper analysis of how index building time and space

requirements scale as the graph size grows.

In Table 3.5 and 3.6 we show recall and query-processing timeof our RQ-tree-LB

andRQ-tree-MC, and theMC-Sampling baseline. The recall ofRQ-tree-MC is always close

to 1 (never less than 0.97), while the recall ofRQ-tree-LB is reasonably high as well: it is 0.82

on average, up to 0.91, and never less than 0.75. In general, the recall ofRQ-tree-LB increases

asη increases. This is due to the lower-bounding verification method, which is based on the

most-likely path between source and target nodes: higher probability thresholds leads to tighter

lower bounds.

As far as query-processing times (Table 3.6), both our methods are evidently much

efficient than theMC-Sampling baseline.RQ-tree-MC is 1 order (BioMine) or 2 orders (DBLP

andFlickr) of magnitude faster than the baseline, while the speed-up achieved byRQ-tree-

LB is 3–5 orders of magnitude. We also note that the runtimes decrease asη increases. This

is because a higher threshold leads to better chance of having a smaller candidate set, which

reduces the time spent in verification.

Performance with varying arc probabilities. We next analyze the performance ofRQ-tree

with varying arc probability values, while keeping the structure of the graph fixed. Table 3.7
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Figure 3.4: RQ-tree Candidate Generation: Results on DBLP, Flickr, Biomine
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Figure 3.5: RQ-tree Candidate Generation: Results on DBLP with Varying Arc Probabilities

and 3.8 report query performance overDBLP, where the arc probabilities are assigned with

µ = 2, 5 and10, respectively (higher values ofµ generate smaller arc probabilities). The recall

of RQ-tree-MC is always greater than0.97 and it does not depend a lot on arc probabilities.
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The recall ofRQ-tree-LB instead is clearly increasing as arc probabilities decrease. This is due

to theRQ-tree-LB verification method, which considers the most-likely path between source

and target nodes as a lower bound, and the smaller the probabilities the tighter the lower bound.

Both ourRQ-tree methods andMC-Sampling have improved efficiency with smaller arc prob-

abilities. The efficiency ofRQ-tree-MC andMC-Sampling improves because the smaller the

arc probabilities, the smaller the number of arcs in the various sampled graphs. However, also

RQ-tree-LB gets faster as the arc probabilities get smaller, because this implies a smaller-sized

candidate set.

3.7.3 Insights into the Candidate-Generation Phase

We next focus on theRQ-treecandidate-generation phase, which is common to both

our RQ-tree-LB andRQ-tree-MC. We report the following measurements:

• Precision: defined as|T∩T ∗|
|T | , whereT is the set produced byRQ-tree candidate genera-

tion andT ∗ is theMC-Sampling reliable set;

• Height Ratio: defined as the ratio of the height of theRQ-tree traversed during candidate

generation over the total height of theRQ-tree;

• Candidate Ratio: defined as the ratio of theRQ-tree candidate-set size, over the total

number of nodes in the uncertain graph. This provides an indication of the pruning power

of theRQ-tree candidate generation.

The above measurements are reported in Figure 3.4 for theDBLP (with µ = 5),

Flickr, andBioMinedatasets, and in Figure 3.5 forDBLPwith varying arc probabilities.
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As expected, both the height traversed in theRQ-tree and the size of the candidate

set returned by our candidate generation decrease with higher η. Specifically, inDBLP, for

η = 0.8, the height traversed is1/4 of the entire index tree height, while the size of the candidate

set is only7% of the total nodes. The precision of the candidate generation phase improves as

the probability threshold increases, e.g., precision is0.75 for η = 0.8 in DBLP. However, in

many cases the precision is around (or even below) 0.5, meaning that half of the candidates

are not part of the final solution, thus confirming the need forverification. We also observe

that the performance of our index improves with smaller arc probabilities. This is because the

probability that a node can get to outside its cluster decreases, thus strengthening the pruning

power ofRQ-tree.

Figures 3.4 and 3.5 also report the candidate-generation running times, which are

decreasing with smaller arc probabilities and larger probability thresholds.

3.7.4 Performance with Varying Source-Set Size

We next analyze the performance of theRQ-tree index for multiple-source queries.

For the sake of brevity, here we focus only on theRQ-tree-LB variant. Table 3.10 reports

query-processing results onDBLP with µ = 5 andη = 0.6. The table reports recall of our

overall query-processing method, precision of the candidate generation phase, height ratio, and

query-processing time. We vary both query set size (2, 5, 10, and20) and query diameterd,

i.e., the diameter of the subgraph (of the original uncertain graph) from which the queries are
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Table 3.10: RQ-tree-LB Query-Processing Results on DBLP (µ = 5, η = 0.6), Varying the
Size of the Set of Query Nodes (1st Column) and the Diameter (d) of the Subgraph from which
these Nodes were Picked.

Recall of the Overall Method, Precision of the Candidate Generation Phase, Height Ratio, and

Query-Evaluation Time.

# nodes
recall precision height ratio

d = 2 d = 4 d = 6 d = 2 d = 4 d = 6 d = 2 d = 4 d = 6

2 0.85 0.86 0.82 0.65 0.61 0.55 0.40 0.41 0.44
5 0.82 0.85 0.82 0.60 0.45 0.24 0.40 0.57 0.81
10 0.82 0.81 0.81 0.55 0.37 0.17 0.40 0.80 0.87
20 0.76 0.76 0.75 0.55 0.17 0.13 0.45 0.93 0.95

# nodes
RQ-tree-LB runtime (sec) MC runtime (sec)
d = 2 d = 4 d = 6 d = 2 d = 4 d = 6

2 0.60 0.60 0.67 8502 8431 8130
5 0.61 0.87 2.50 10500 10500 11352
10 0.60 2.35 3.32 11200 11200 11200
20 0.71 3.41 4.20 13600 14900 15100

Table 3.11: Scalability Analysis using Single-Source Queries withη = 0.6 on the WebGraph
dataset.

# Nodes RQ-tree characteristics RQ-tree-LB runtime (sec)
and# Arcs Size Height # Clusters Index building Query processing

1M, 15M 62MB 17 1,202,754 1,221 0.11
3M, 50M 177MB 18 3,410,221 7,312 0.13
5M, 81M 421MB 19 5,810,934 11,273 0.17
7M, 122M 813MB 21 9,570,259 25,315 0.21
10M, 175M 1,220MB 21 11,758,022 37,146 0.27

randomly selected (d = 2, 4, and6). Note that, as the query diameter increases, it is more likely

that the smallest cluster containing all the query nodes is close to the root of theRQ-tree.

We observe the following. (1) The recall of our method is always in the range

[0.75, 0.85], which confirms the high effectiveness of our verification method. (2) The effi-
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ciency is clearly decreasing as the size of the source set increases. However, the speed-up with

respect toMC-Sampling is still very significant: at least 4 orders of magnitude.

3.7.5 Scalability

We analyze the scalability of ourRQ-tree on theWebGraphdataset. For these ex-

periments, we consider subgraphs of the originalWebGraphwith a number of nodes1M, 3M,

5M, 7M, and10M, respectively. The corresponding index building space and time, as well as

the query processing time, are reported in Table 3.11. We observe that the index time increases

polynomially with the number of nodes in the uncertain graph, while the search time is linear

with respect to the graph size. The results assess the high scalability of ourRQ-tree.

3.7.6 Application: Influence Maximization

The problem known asinfluence maximization[92], whose most significative appli-

cation isviral marketing, has received a great deal of attention in the data mining literature over

the last decade. It requires to find a setS of cardinalityk such that it maximizes theexpected

spread, i.e., the expected number of nodes that would be infected bya viral cascade started in

S, according to an underlying propagation model. A popular propagation model for influence

maximization is theindependent cascade model[92]: each active neighborv of a nodeu has

one shot at influencingu and succeeds with the probabilityp(v, u) associated to the arc(v, u),

which represents the strength of the influence ofv on u. Given a directed probabilistic graph
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G = (N,A, p), the expected spreadσ(S) of a set of nodesS ⊆ A is

σ(S) =
∑

G⊑G

Pr(G)
∑

t∈A

PG(S, t).

Rearranging the terms and using the notation reported in Equation (3.2), the expected spread

can be rewritten as

σ(S) =
∑

t∈A

R(S, t).

The problem of finding the setS of cardinalityk that maximizesσ(S) is NP-hard. However,

thanks to the submodularity and monotonicity ofσ(S), the simpleGreedy approach that itera-

tively adds toS the node that brings the largest marginal gain in the objective function, provides

(1 − 1/e) approximation guarantee [92]. Unfortunately, finding sucha node requires to com-

pute reliability, which is#P-complete. Therefore, the existing body of research usually applies

sampling methods (e.g., Monte Carlo) to compute the best seed node at each iteration of the

Greedy algorithm.

We next show how the classicGreedy algorithm can exploit anRQ-tree index to

avoid resorting to costly Monte-Carlo sampling, thus achieving very high speed-up and paying

almost nothing in terms of accuracy.

At each iteration of theGreedy algorithm, given the current set of selected nodesS,

we need to compute the nodew ∈ N \ S such that
∑

t∈A R(S ∪ {w}, t) is maximum.

We use a histogram-based method to exploit theRQ-tree index. We fix a few prob-

ability threshold values in ascending order, i.e.,η1 < η2 < . . . < ηp. Let f(S, ηi) de-

note the size of the reliable setRS(S, ηi): we determined the expected spread fromS as

f(S, ηp)ηp + [f(S, ηp)− f(S, ηp−1)]ηp−1 + . . . + [f(S, η2)− f(S, η1)]η1.
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Figure 3.6: Influence Maximization: Last.FM

 1
 40
 80

 120
 160
 200
 240
 280

 1  10  20  30  40  50

ex
pe

ct
ed

 s
pr

ea
d

# seed nodes

RQ-tree
MC-sample

 2000

 5000
 10000

 25000
 50000
 90000

 250000
 500000

 1.1e+06

 1  10  20  30  40  50

ru
nt

im
e 

(s
ec

)

# seed nodes

RQ-tree
MC-sample

Figure 3.7: Influence Maximization: NetHEPT

Next, we compare the standardGreedy algorithm coupled with Monte-Carlo sampling

(using 1,000 samples), and the same algorithm empowered with theRQ-tree index: the results

on Last.FMandNetHEPTare reported in Figure 3.6 and 3.7, respectively.

We measure the effectiveness of the methods as the expected spread achieved by

the set of nodes selected. This is computed via Monte-Carlo sampling. We observe that the

expected spread achieved by the two methods (left plots in Figure 3.6 and 3.7) is almost the

same, while, as far as running time, employing theRQ-tree index allows at least one order of

magnitude of speed-up (right plots in Figure 3.6 and 3.7). For instance,RQ-tree requires7

hours to identify a seed set of 50 nodes inLast.FM, as compared to8 days usingGreedy along

with Monte-Carlo sampling.
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3.8 Summary

In this chapter, we introduceRQ-tree, a novel index to efficiently answer a gen-

eralized version of reliability queries in uncertain graphs. The proposed index is based on a

hierarchical partitioning of the nodes of the graph above which we apply a candidate genera-

tion phase based on maximum flow, and a verification phase based on either a lower-bounding

strategy or sampling.

Our experimental results over several real-world datasetsshow that: (1)RQ-tree is up

to six orders of magnitude faster than the state-of-the-artsampling methods, while guaranteeing

high accuracy in terms of recall ([0.75− 0.98]); (2) The effectiveness of our approach improves

with smaller arc probabilities, and also with higher probability thresholds; (3)RQ-tree scales

very well with the size of the input graphs. Finally, we also show how the use ofRQ-tree index

in the well-known influence-maximization problem obtains alarge speed-up over state-of-the-

art methods, while achieving comparable accuracy.

In future work, we plan to extend our method for reliability queries when the arc prob-

abilities are not independent. We also plan to apply ourRQ-tree in several diverse applications.
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Chapter 4

Social Influence Maximization

“Is Social Intelligence More Useful than IQ?”

Daniel Goleman, author of the‘Social Intelligence’

A central characteristic of social networks is that it facilitates rapid dissemination of information

between large groups of individuals. This chapter will examine the problem of determination

of information flow representatives, a small group of authoritative representatives to whom the

dissemination of a piece of information leads to the maximumspread. Clearly, information flow

is affected by a number of different structural factors suchas the node degree, connectivity,

intensity of information flow interaction and the global structural behavior of the underlying

network. We will propose a stochastic information flow model, and use it to determine the

authoritative representatives in the underlying social network. We will first design a heuristic,

but more accurateRankedReplace algorithm, and then use a Bayes probabilistic model in order

to approximate the effectiveness of this algorithm with theuse of a fast algorithm. We will
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examine the results on a number of real social network data sets, and show that the method is

more effective than state-of-the-art methods.

4.1 Introduction

In recent years, social networks have found increasing popularity because of their

ability to connect geographically disparate groups of individuals. Social networks are well

known to enjoy the benefits of thenetwork effect, wherein the increase in the size of the social

network also increases the perceived benefits of using it. Much of this benefit is embedded

in the information flows in the social network. These information flows arise as a result of

the communication between the different entities in the social network. The information flow

is also impacted by the network topology and the intensity ofinformation flow interactions

between different nodes. Since information flows play such akey role in the popularity of social

networks, significant research has been performed in recentyears to characterize important

characteristics of such flows [108,109].

A key question which arises in the context of social networksis to determine thein-

formation flow authoritiesin the social network. Information flow authorities are defined as a

very small group of members at which the dissemination of information leads to the most rapid

spread throughout the social network. The concept of information authorities is peripherally

related to that of the concept ofhubs and authoritiesin web networks [99]. The concept of hubs

and authorities is used in order to find central points of influence in web networks. However, the

concept ofinformation flow authoritiesis quite different from that of the hub-authority frame-
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work, in that it is more critically dependent upon the structure of theflows along the underlying

network. This is dependent both upon the structural characteristics of the network and the flow

intensity along different edges (which can be measured in many applications). In the experi-

mental section, we will see that the use of a purely structural method (calledPeerInfluence) is

not sufficient for effective determination of flow authorities. The use of aninformation flow

modelis critical in determining the best nodes for information dissemination. Furthermore, our

model also allows for the development of particular variants which can target specific nodes for

influence. This is interesting in a number of applications inwhich only a subset of the nodes

may be relevant for dissemination of information.

Clearly, the flow authorities in the social network are likely to be central and well

connected entities in the network. This is related to the concept of determiningcentral nodes

[65] in graphs and social networks. However, the local structural measures alone do not provide

a global view of thecentrality of flowsin the social network. Rather, the flow centrality is

defined by the global topology, and the pattern of interactions between different nodes. A related

problem is that of virus propagation in computer networks and epidemic spreading [34,123]. It

has been observed in earlier work [34], that the flow of information in social networks, blogs,

and network-based product-recommendation systems is verysimilar to that of virus spread in

computer networks. It has been observed in this work that thestructure of the network and the

interaction intensities between nodes can play a critical role in the information dissemination

process.
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We will design a stochastic approach in order to model the flowbehavior in social net-

works. We will leverage this flow model in order to design an approach (calledRankedReplace)

for determining flow authorities in social networks. Then, we will approximate the flow model

with a random-walk based model in conjunction with a probabilistic Bayes algorithm. We will

refer to this algorithm as theBayesTraceback algorithm. This approximation is very efficient,

and turns out to be almost equally effective in practice. We will show that our techniques are

much more effective than state-of-the-art techniques which can be adapted to this problem.

4.2 Related Work

Social networks represent individuals and their relationships, such as friendships, col-

laborations, or recommendation seeking relations. There are dedicated websites, such as Face-

book [53], Twitter [146], Orkut [125], hi5 [77], Myspace [121], LiveJournal [112], Last.FM

[105], and Delicious [49] which provide online social networking capabilities. Social networks

have been shown to have advantages as a medium for fast, widespread information cascade.

They provide rapid access to large scale news data, sometimes even faster than the mass media,

e.g. the announcement of death of Michael Jackson [1]. They can serve as a medium to collec-

tively achieve a social goal. For instance, with the use of group and event pages in Facebook

and Twitter, events such as “2011 Egyptian Protest” quicklyreached to the protestors world-

wide [132]. Social networks can also perform as a platform for online marketing [52, 70, 113].

Thus, it is important to find a small subset of influential individuals who can influence the largest

number of people in a social network. More formally, theinfluence maximization problemcan
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be stated as follow: Given a probabilistic model for influence, determine a set ofk seed nodes

generating the largest expected information cascade. The formulation of influence maximiza-

tion as an optimization problem is due to Domingos and Richardson [52], who modeled influ-

ence by an arbitrary Markov random field, and provide heuristics for maximization. The first

provable approximation guarantees are given by Kempe, Kleinberg, and Tardos in [92,93]. Sev-

eral heuristics have been also proposed to improve the efficiency of that method [37,38,71,108].

Recently, there have been several works on graph influence maximization in the pres-

ence of a competing negative information spread [25, 32, 36,111]. In [104], Lappas et. al.

introduced the concept ofk-effectors. Thek-effectors problem identifiesk seed nodes, such

that, the spread of an information is maximized over a set of given nodes and minimized out-

side the set.

4.3 Flow Authority Model for Social Networks

In this section, we will introduce the flow authority model for social networks. We

assume that the universal set of nodes over which the social network is defined is denoted by

U , and the edge set byA. Therefore, the underlying graph is denoted by(U,A). The graph

is assumed to be directed, since information flows are specific to direction in the most general

case. However, this assumption is not specific to the techniques discussed in this work and they

can easily be applied to undirected networks. This can be achieved by replacing an undirected

edge with two symmetric directed edges. The set of nodes fromwhich an incoming edge is

incident into nodei is denoted byN(i). In other words, we haveN(i) = {k : (k, i) ∈ A}. The
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set of nodes on which the outgoing edges ofi are incident are denoted byO(i). Therefore, we

haveO(i) = {k : (i, k) ∈ A}. We assume a model of information transmissibility, in which

a nodei which isexposed toinformation can transmit it to one of its neighbors. Information

transmission can take on many forms in practical settings:

(1) In a social network, information may be forwarded to any of the friends of a given user in

the form of publicly visible text posts, hyperlinks, videosor messages. This user may or may

not choose to adopt this piece of information and transmit itfurther.

(2) In a peer-to-peer recommendation or viral marketing system, a user may send a recommen-

dation to any neighbor. The neighbor may or may not make a buying decision based on this

recommendation. Furthermore, this recommendation may be forwarded to one of the neighbors

of the node. In general, it has been observed [52] that customers in a network-marketing system

have a certain value in terms of their being able to influence other members of the network. The

determination of flow authorities will help us in identifying key points in the network which

lead to the greatest spread of information.

(3) The above dynamic is generally true for a variety of network-based epidemic outbreaks,

and may be generalized to social networks, blog posts [109],water monitoring systems, or any

general network infection system which has structural similarity to epidemic outbreaks [34].

We will formally define the concept ofinformation exposure.

Definition 4.1. A node is said to be exposed to information bitsI, if at least one of its neighbors

contains the informationI.
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It is important to note that the concept of neighborhoodinformation exposure(as

defined in this work) only entails thepresence of the informationat one of its neighbors, rather

than any further explanation of what is done with it. The default assumption is that if a node

contains some information bits, then all of its neighbors are automatically exposed to those bits.

The probability that such an exposure results ineventualinformation assimilation is determined

by a transmission matrix, which we will discuss shortly. We denote the transmission probability

along edge(i, j) by pij. Note that this transmission probability simply indicatesthe probability

that an exposure of nodei also results in theinformation being assimilated bynodej. Nodej

then automatically becomes eligible to transmit to its neighbors. We denote the corresponding

matrix of transmission probabilities byP = [pij]. We note that this matrix is extremely sparse,

because it is often overlaid on very sparse graphs such as social networks. We note that ifri

be the probability that a given nodei contains informationI, then iteventuallytransmits the

informationI to adjacent nodej with probabilityri ·pij . The value ofpij can often be estimated

from the underlying data.

In this work, we will examine the problem of picking a set ofk points in the network

which maximizes the aggregate probability of information assimilation over all nodes in the

graph. We refer to thesek nodes as the information authorities in the underlying network. We

summarize the problem as follows:

Problem 4.1. Determine the setS of k data points at which release of the information bitsI

would maximize the expected number of nodes over whichI is assimilated.
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Algorithm SteadyStateSpread(Initial Set:S,

Transmission Matrix:P )

begin

for each i ∈ S setq0(i) = 1;

for each i 6∈ S setq0(i) = 0;

t = 0;

repeat

for each i ∈ S setqt+1(i) = 1;

for each i 6∈ S do

begin

qt+1(i) = 1−
∏

l∈N(i)(1− pli · q
t(i));

end

Ct+1 =
∑

i6∈S
|qt+1(i)− qt(i)|;

t = t+ 1;

until (Ct < 0.01 · C1);

return (
∑

i6∈S
qt(i));

end

Figure 4.1: Determining the Expected Information Spread for a Given Starting Set of Nodes

We note that this is a particularly difficult problem, because the probability of the

spread of the information at any particular node cannot be expressed easily in closed form.

Rather, it is described in the form of anon-linear systemof equations. We defineπ(i) to be the

steady-state probability that nodei assimilates the information. Then, the expected steady state

number of nodes which assimilate the information are given by
∑

i∈U π(i). In order for nodei

to assimilate the information, it must receive the transmission fromat leastone of its neighbors.
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The flip side of this argument is that in order for nodei to not assimilate the information, it

must not receive the transmission fromany of its neighbors. The probability that none of the

neighbors of nodei transmit to it is given by
∏

l∈N(i)(1− π(l) · pli). Therefore, we have:

1− π(i) =
∏

l∈N(i)

(1− π(l) · pli) (4.1)

In addition, for each of thek nodes inS at which the information is released, we set the corre-

sponding value ofπ(·) to 1. Therefore, we have:

π(i) = 1 ∀i ∈ S (4.2)

The above system of equations is nonlinear, since it uses a product of the probability of (non-)

exposure from different neighbors. This is a difficult set ofequations to solve, and the corre-

sponding result can only be obtained via numerical estimation. Furthermore, it is required to

determine the setS optimally. The optimization problem is even more challenging. We will

now restate Problem 4.1 more formally in terms of the relationships discussed above:

Definition 4.2. Determine the setS of nodes which maximizes
∑

i∈U π(i) subject to the follow-

ing constraints:

• 1− π(i) =
∏

l∈N(i)(1− π(l) · pli) ∀i 6∈ S

• π(i) = 1 ∀i ∈ S

Next, we will describe a simple algorithm to determine the information authorities

with the use of an iterative numerical method. Later, we willpresent a much faster probabilistic

method for the same problem. This method uses a Bayes model inorder to determine the

optimal flow authorities.
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4.4 Determining Optimal Information Flow Authorities

In this section, we will present algorithms for determiningoptimal information flow

authorities. In order to determine optimal flow authorities, we also need to have a way to eval-

uate the (aggregate) steady state assimilation probability of all nodes, when the information is

released at aparticular set of nodesS. In order to design this algorithm, we will use an itera-

tive algorithm in whichqt(i) denotes the estimation ofπ(i) in the tth iteration. This iterative

approach is natural to solve the non-linear system of equations. In each iteration, we update

the value ofqt(i) from the value ofqt−1(i) with the use of the equations in Definition 4.2. The

overall algorithm is denoted bySteadyStateSpread in Figure 4.1. The input to the algorithm

is the setS at which the information is released.

The algorithm initializesq0(i) = 1 for each nodei ∈ S and 0 for nodes which are not

in S. Subsequently, an iterative approach is used to update the value ofqt+1(·) is updated from

qt(·) with the use of the equations in Definition 4.2. In each iteration, we trackCt, which is the

aggregate change in the absolute probabilities fromqt(·) to qt+1(·). The algorithm is terminated

when the change in a given iteration is less than1% of the change in the first iteration. At this

point, it is assumed that the probability values have converged to values which are close to their

true values.

The above method for determining the steady-state probabilities can be leveraged in

order to determine the optimum set ofk nodes at which the information should be released.

We make use of a greedy approach which maximizes the expectedincrease in the information

spread as calculated by Figure 4.1. The algorithm works withthe use of an iterative approach
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Algorithm RankedReplace(Transmission

Matrix: P , NumberOfAuthorities:k);

begin

DetermineSteadyStateSpread({i},P ) for

each nodei in the universal setU ;

S =Initial set ofk authority nodes with the

highest value ofSteadyStateSpread({i}, P );

Sort nodes inU − S in descending order of

SteadyStateSpread(·);

for each nodei in U − S in

descending orderdo

begin

Sort the listS in ascending order

of SteadyStateSpread({j}, P );

Pick the first element (if it exists) of

sorted listS which is such that

replacingi with it increases value of

SteadyStateSpread(S,P )

if no replacement has occurred in the last

r consecutive iterations, then

return (S) and terminate;

end

return (S);

end

Figure 4.2: TheRankedReplace Algorithm
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in which we start off with a candidate set ofk nodes and continually increase its maximum

flow value. We first pick the topk nodes with the largest individual steady state spread as the

initial candidate set of flow authorities. Of course this wayof picking the candidates ignores the

structural relationships between these nodes. In general,we would like our flow authorities to be

reasonably well separated from one another in order to maximize the probability of propagation

of information throughout the social network. In order to achieve this goal, we use aranked

replacealgorithm in which the nodes inU − S are tried as possible replacements for nodes in

S in decreasing order of their flow value.

The iterative portion of the algorithm proceeds as follows.We sort the nodes inU−S

in descending order of the steady state flow. In each iteration, we pick the next nodei from

U − S and use it to replace a node inS, if such a replacement increases the total flow of

S. Even though the flow value ofi is typically less than that of the node it replaces, the to-

tal flow value may increase because of the nature of the network location of the two nodes.

For this purpose, the nodes inS are tried as candidates for replacement in ascending value of

SteadyStateSpread(·). The first replacement in this order which increases the objective func-

tion for the steady state information spread is executed. Itis possible that no such replacement

may exist. We continue to try different nodes inU − S for replacement, until such attempts

are unsuccessful forr consecutive iterations. At this point, the algorithm terminates, and the

set of nodesS are reported as the flow authorities. The overall algorithm is illustrated in Figure

4.2. The algorithm is referred to asRankedReplace, which corresponds to the broad approach

of ranking the nodes and iterative replacement based on the steady state flow impact.
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4.4.1 The BayesTraceback Algorithm

The main problem with the solutions presented in the previous sections is that the

algorithms require iterative determination of the steady-state probabilities. This can be rather

slow in practice. In this subsection, we will discuss how to speed up the algorithms for deter-

mination of the information authorities. This algorithm provides an an approximation of the

information authorities. The core-idea is to use arandom walkbased approach in which an

information packet is viewed as a token, and it is assumed that the token at a given nodej is

inherited from one of itsincoming nodesi with probability proportional topij. Random walk

modeling is used for the page rank problem, though this approach is different in the sense that

we use it fortrace backof the bestsource of information, rather than those nodes which will

be visited often by a random surfer. Thus, the algorithm tends to bebackward looking from a

desired result, rather thanforward looking to determine the result. In the experimental section,

we will show that a direct application of the page rank model does not yield as accurate results

as theBayesTracebackmethod.

The random walk model is a relaxation of the original model for two reasons:

(1) In the original model, a node can be infected only once, whereas a random walk can visit a

node multiple times.

(2) In the original model, a given node may infect multiple nodesat once, whereas in this case,

we are trying to trace the behavior of a single token, which is(stochastically) present only at

one node at a time.
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Algorithm BayesTraceback(Transmission Matrix:P

Discard Fraction:f , NumberOfAuthorities:k);

begin

t = 0;

for each nodei setq0(i) = 1/n;

repeat

q−(t+1)(j) =
∑

i
q−t(i) ·

pji∑
l∈N(i) pli

t = t+ 1;

Remove a fractionf of the nodes

from the graph with the least value of

q−(t+1)(·), with the restriction

that at leastk nodes should remain;

Scale up probabilitiesq(−(t+1)(·) of

all remaining nodes by the same factor

so that the remaining probabilities sum to 1;

until (k nodes remain);

return remaining nodes;

end

Figure 4.3: TheBayesTraceback Algorithm

We note that this simplification of the model allows us a trace-back of the steady-state

probabilities with the use of a Bayes model. We will see that this approach is extremely efficient

and provides a good approximation to the exact algorithm.

In the case of the random walk model, our aim is to pickk nodes in the data which are

such that by releasing the information at thesek points, the information spreads as evenly over

the entire network as possible. Intuitively, this corresponds to release points which results in as
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much of the network being disseminated with the informationas possible. We note that the even

spread of information may not be possible in steady-state, since thesteady-stateprobabilities

in a random-walk model are dependent upon the structure of the network and the transition

probabilities, and are independent of the initial startingpoint probabilities. Nevertheless, our

goal is to create an evenly spread probability distributionas anintermediate transientafter a

small number of iterations of the walk model. The goal is to find a set ofk starting points which

will create such an intermediate transient at some point. Therefore, for a network containing

n nodes, we will start off with afinal transient probability distributionof 1/n for each node,

and then use the Bayes theorem repeatedly totrace backthe initial probabilities for a certain

number of iterations, and pick thek nodes with the largest apriori probability with the use of this

traceback technique. Therefore, we start off with the probabilities forn nodes which are denoted

by q0(·) = q0(1) . . . q0(n). As noted earlier, each of these values is equal to1/n. In subsequent

iterations, we will use the Bayes formula to determine the values ofq−1(·), q−2(·) . . . q−r(·).

Note that we use negative superscripts for the time component in order to denote the traceback

starting from the0th step of the walk. The vectorq−t(·) indicates the probabilities after tracing

the walk back fort steps.

Next, we will examine how the values ofq−(t+1)(·) can be determined fromq−t(·).

For any particular nodei, let us examine all the incoming edges from the corresponding node

setN(i). We note that the a-priori probabilityP (j → i| − tth node= i) that an information

token at nodei came from nodej in the previous step of the random walk is given by the Bayes

118



Chapter 4. Social Influence Maximization

formula over all possible nodes incoming into nodei. Therefore, we have:

P (j → i| − tth node= i) =
pji∑

l∈N(i) pli
(4.3)

In order to trace back the values ofq−(t+1)(·) from q−t(·), we can examine the different cases

over which the−tth node isi and sum up the values ofP (j → i| − tth node= i) over these

cases. Therefore, we have:

q(−(t+1)(j) =
∑

i

q−t(i) · P (j → i| − tth node= i)

=
∑

i

q−t(i) ·
pji∑

l∈N(i) pli

The second equation above simply traces back for the probability distribution of the position

of the information token at time stamp−(t+ 1) using the probability distribution of the token

at time stamp−t. Therefore, we can start off with the evenly distributed probability vector

q0(·) and start tracing back the probabilities. The nature of the above probabilities suggest

that nodes with high outdegree and outgoing probabilities will see increased probability during

the traceback process. The process above is repeated forr iterations, and then thek nodes

with the largest value ofq−r(i) are picked as the correct candidates. It remains to describethe

termination criterion. Furthermore, we need to design the algorithm in such a way, so that the

algorithm converges.

It turns out that both of the above issues can be solved by making a heuristic change

to the algorithm. This heuristic change speeds up the convergence and also provides a natu-

ral termination criterion to the algorithm. Note that sincewe only wish to determine the high

probability nodes after the traceback, we can start removing the nodes, whose influence to this
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is minimal. After each iteration of updatingq−(t+1)(·) from q−t(·), we conceptually discard a

fraction f of nodes with the least probability (least value ofq−(t+1)(·)), by setting the corre-

sponding values ofq−(t+1)(·) to zero. We also delete the corresponding nodes and edges from

the graph. At the same time, we scale up the probabilities of the remaining nodes (by the same

factor), so that they continue to sum to 1. This process is repeated iteratively until exactlyk

nodes are remaining. Note that the last iteration is specialin the sense that less than a fraction

f of the nodes may need to be dropped in order to ensure that we continue to havek nodes

remaining. Thesek nodes are reported as the information authorities. The overall algorithm

is illustrated in Figure 4.3. The input to the algorithm is the discard fractionf and the tran-

sition matrixP . The choice of thediscard fractionf determines the speed of termination of

the algorithm. A larger choice off leads to faster convergence, but somewhat more inaccurate

results. In practice, we chosef to be about5% of the total number of nodes. We note that

this algorithm is extremely efficient, since each iterationis a straightforward update step on the

different nodes. Furthermore, for a graph containingn nodes, the maximum number of iter-

ations is log(n/k)/log(1/(1 − f)). This is because the number of nodes reduces by a factor

of (1 − f) in each iteration, and the number of nodes need to be reduced from n to k in all

iterations. Because of the logarithmic variation, this turns out to be quite modest. For example,

for a network containing106 nodes,k = 10 andf = 0.05, the total number of iterations is less

than 180.

We note that successive removal of nodes and edges from the graph will eventually

lead to the underlying graph becoming disconnected. This does not change the overall algo-
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rithm, since the iterative transition relationships continue to hold within each connected com-

ponent. Conceptually, the algorithm will eventually find the “most significant nodes” in thek

highest probability components.

4.4.2 Restricting Source and Target Nodes

In the previous discussion, we picked the most relevant flow authorities for the entire

set of nodes. In this section, we will examine the case when wewish to determine the flow

authorities for a particular setT of target nodes. Such situations may arise in a number of sce-

narios in which a user may target a particular subset of nodeson which the information flow

needs to be maximized. This problem can be achieved by simplemodifications to each of the

above algorithms:

(1) For the case of theRankedReplace algorithm, the only change is to modify theSteadyState-

Spreadalgorithm. In the modified algorithm, we add the setT to the input parameters. The

actual state probabilities on the nodes are computed using the same algorithm as before, except

that the final information flow value which is returned is determined by summing up these prob-

ability only overT rather than the entire set of nodes. When theRankedReplace algorithm is

executed with this new method of determining the steady state flow, it automatically picks the

set of flow authorities which maximize the flow to the target set T .

(2) For the case of theBayesTraceback algorithm, we consider the nodes within target set as the

sink nodes. Note that, the nodes that have the maximum influence over a set of target nodes in-

tuitively correspond to the nodes that can evenly spread theinformation within the target nodes
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as quickly as possible. However, to achieve the maximum flow within target nodes, we are free

to take help of non-target nodes. Now, in this modifiedBayesTraceback approach, the algo-

rithm still remains the same inside the subgraph imposed by the target nodes. For the subgraph

imposed by the non-target nodes, we do not care the total flow that could be aggregated there by

the whole process, as this is used only for the flow propagation within the target nodes. There-

fore, the only change to the method is that we do not propagatethe flow from target node to

non-target node, but we propagate flow from non-target to target sets.

It is further possible to restrict the set of influential nodes to a particular setS. This

situation can arise in cases, where the information can be released only at specific nodes. This

generalization can be solved by adding this as an input parameter in case ofRankedReplace

algorithm. We only use the nodes inS for the ranking process in this case. For the case of the

BayesTraceback algorithm, we run the algorithm in the same way as the previous case, except

that the top-k nodes from the setS are picked as the final solution.

4.5 Experimental Results

We will present experimental results which illustrate the effectiveness, efficiency and

robustness of our techniques on a number of real data sets. Tocompare our results, we consider

some of the structural and random walk based algorithms as natural baselines. For example,

we implemented theRecursive Neighbor Mean (RNM ) Algorithm [120], which determines

the peer influence groups and thereby identifies the dense clusters in a large network. The

node with the highest degree centrality [51] in each clusteris considered the authority node in
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Rank RankedReplace BayesTraceback Peer-Influence Degree Discount IC

1 W. Gao W. Gao L. Fortuna W. Li
2 F. Catthor P. S. Yu D. Roy Chowdhury W. Wang
3 P. S. Yu M. T. Kandemir Timothy D. Sullivan L. Zhang
4 M. T. Kandemir F. Catthoor Wei Li I. T. Foster
5 A. L. S. Vincentelli A. L. S. Vincentelli S. C. Lin W. Zhang
6 E. Bertino T. S. Huang E. K. Zavadskas M. Li
7 T. S. Huang E. Bertino K. J. Archer L. Zhang
8 I. T. Foster W.-Y. Ma H. Van Keulen L. Wang
9 L. Benini D. F. Towsley W. Wang A. L. S. Vincentelli
10 H.-P. Seidel I. T. Foster R. Andrushkiw J. Wang
11 W.-Y. Ma E. D. Demaine A. Thanachayanont W. Liu
12 E. D. Demaine H.-P. Seidel H. Zimmermann J. Zhang
13 M. Li Ming Li S. P. Perone J. Wang
14 D. F. Towsley V. Keulen C. Lpez-Garca L. Li
15 W. Wang J. Han M. McCormick F. Catthoor
16 W. Li H. Zhang C. Jiang Y. Zhang
17 M. Piattini P. Nagley L. F. Osborne E. Bertino
18 H. Chen J. Saltz J. Dongarra X. Li
19 L. Zhang M. J. Irwin J. P. Woodruff W. Gao
20 H. Garcia-Molina G. Weikum A. Halme H. Zhang

Table 4.1: Top-20 Results Obtained by Different Influence Maximization Methods

each cluster using this baseline approach. We refer to this algorithm asPeer-Influencein the

experimental section. We also implemented theDegree Discount ICheuristic [39] discussed

earlier. In the IC model, each active node gets a single chance to activate each of its neighbors

independently with a certain probability. In theDegree Discountheuristic of the IC model,

while selecting some nodev as the authority node, we do not count the edgevu towards its

degree, ifu has already been selected as an authority node. Finally, we compare our top-k flow

authority nodes with the top-k nodes having the highestPageRank[29] values.
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Figure 4.4: Influence Maximization: Effectiveness Results (DBLP)
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Figure 4.5: Influence Maximization: Effectiveness Results (Last.FM)
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Figure 4.6: Influence Maximization: Effectiveness Results (Twitter)

4.5.1 Data Sets

The algorithms were tested on a variety of different kinds ofinteraction networks.

These interaction networks were constructed from a number of different kinds of social net-
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Figure 4.7: Influence Maximization: Efficiency Results (DBLP)
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Figure 4.8: Influence Maximization: Efficiency Results (Last.FM)
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Figure 4.9: Influence Maximization: Efficiency Results (Twitter)

work settings. We describe the data sets in detail below.

DBLP Collaboration Network: We use the well known DBLP collaboration graph [47] con-

sisting of684, 911 distinct authors and7, 764, 604 collaboration edges among them. We define
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the transmission probability of an edge to be proportional to the number of times that the two

authors publish a paper together. The proportionality factor is the inverse of the maximum num-

ber of collaborations between any pair of authors in the network.

Last.fm Social Network: We crawled a social network consisting of818, 800 users from the

last.fmsite. This is a music web site where users listen to their favorite tracks and communicate

with each other based on their choice of music. There are a total of 3, 340, 954 edges among

these users. In each case, an edge represents user posts which correspond to song recommen-

dations between users. The transmission probability of an edge is proportional to the number

of times a recommendation was sent from one user to another. The proportionality factor is the

inverse of the maximum number of communications between anytwo users.

Twitter Social Network: We crawled a social network consisting of1, 994, 092 users from

http://twitter.com. Twitter is a free social networking and micro-blogging service that enables

its users to send and read messages There are a total of6, 450, 193 edges among these users.

In each case, an edge represents messages sent from one user to another. The transmission

probability of an edge is proportional to the number of timesthe users have communicated.

As in the previous case, the proportionality factor is the inverse of the maximum number of

communications between any pair of users.

4.5.2 Case Studies

Before more concrete presentation of the effectiveness results with quantitative mea-

sures on the information spread, we will provide an intuitive exploration of the results obtained
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with the different algorithms for theDBLP data set. This provides an intuitive understanding

of the nature of the results obtained by the different methods. We provide the name of authority

nodes fork = 20 in Table 4.1. It is evident that the authority nodes determined by theRanked-

ReplaceandBayesTraceback algorithms mostly contain well-known and influential researchers

from different fields of computer science. Furthermore, we note that even though the algorithms

are quite different from one another, the authority nodes determined are quite similar. Further-

more, these researchers arestructurally placedin such a way so as to maximize the interaction

with other researchers. All these factors contribute to thetotal aggregate flow across the entire

network. ThePeer-Influencemethod is particularly poor in determining good authority nodes,

because it does not properly compute the flows on the basis ofrandom walk behavior, and pure

structural diameters simply do not encode enough information to ensure robustness. This re-

sults in lower aggregate flow across the whole graph. We also tested theDegree Discount IC

algorithm. TheDegree Discount ICalgorithm determines better quality results than thePeer-

Influencealgorithm, because it uses a weighted version of random-walk, where the weight is de-

termined by the degree of a node and the corresponding transmission probabilities; however, the

determined authority nodes are quite different from theRankedReplace andBayesTraceback al-

gorithms, because it performs a forward calculation as opposed to Bayes-based backward mea-

sures. This difference is quite significant; in the next section, we will use quantitative measures

on the information spread to show that theRankedReplace andBayesTraceback algorithms are

more effective than theDegree Discount ICalgorithm in many cases.
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4.5.3 Effectiveness Results

In order to measure the effectiveness of a set of authority nodesS, we used expected

value of the steady state flow from the determined setS to the remaining set of nodes. We

determine the expected aggregate flow for different values of k, the number of authority nodes.

Figure 4.4 illustrates the effectiveness result for theDBLP data set. The value ofk is illustrated

on theX-axis, whereas the flow value is illustrated on theY -axis. The expected aggregate

flow increases with the number of authority nodes, since the release of information at a larger

number of nodes leads to greater spread of information. TheRanked-Replacemethod slightly

outperforms theBayesTracebackalgorithm. We will see that theBayesTracebackmethod is

also extremely efficient, and therefore it is the most practical alternative among the different

methods. Furthermore, both techniques performsignificantly better than the three baseline

techniques. For example, when we setk = 60, the expected aggregate flow using theRanked-

Replace, BayesTraceback, PageRank, Degree Discount ICand thePeer-Influencemethods are

296.70, 275.42, 211.67, 250.28 and111.48 respectively.

Figure 4.5 illustrates the effectiveness results of our method for thelast.fm data set.

Both theRanked-ReplaceandBayesTraceback algorithms perform very similarly, and also sig-

nificantly outperform the three baseline methods. Fork = 60, the expected aggregate flow using

the Ranked-Replace, BayesTraceback, PageRank, Degree Discount ICand thePeer-Influence

methods are1682.62, 1692.21, 1450.62, 1523.50 and527.27 respectively. In Figure 4.6, we

illustrate the results for theTwitter data set. In this case, theDegree Discount ICheuristic per-

forms slightly better than theBayesTraceback method. For example, fork = 80, the expected
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aggregate flow using theRankedReplace, BayesTraceback, PageRank, Degree Discount ICand

thePeer-Influencemethods are933.64, 851.47, 258.76, 891.24 and222.34 respectively.
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Figure 4.10: Influence Maximization: Effectiveness vs. Network Size (DBLP)
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Figure 4.11: Influence Maximization: Effectiveness vs. Network Size (Last.FM)

4.5.4 Efficiency Results

We compare the running time of theRankedReplace andBayesTracebackmethods

with that of the three baseline methods. Figure 4.7 shows theefficiency result for theDBLP

data set. The number of authority nodesk is varied from20 to 100 on theX-axis, whereas the
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Figure 4.12: Influence Maximization: Effectiveness vs. Network Size (Twitter)
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Figure 4.13: Influence Maximization: Efficiency vs. Network Size (DBLP)
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Figure 4.14: Influence Maximization: Efficiency vs. Network Size (Last.FM)
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Figure 4.15: Influence Maximization: Efficiency vs. Network Size (Twitter)

running time is illustrated on theY -axis. ThePeer-Influenceapproach is the most inefficient,

and its running time increases rapidly with the number of authority nodes. TheBayesTraceback

algorithm, on the other hand, is very efficient, though theDegree Discount ICalgorithm is the

fastest. Fork = 60, the running time of theRankedReplace, BayesTraceback, PageRank,

Degree Discount ICand Peer-Influencemethods are3904, 343, 104, 71 and50743 seconds

respectively. The running times for thelast.fm data set are illustrated in Figure 4.8. Fork =

60, the running time of theRanked-Replace, BayesTraceback, PageRank, Degree Discount IC

and thePeer-Influencemethod are29265, 628, 301, 105 and98930 seconds respectively.Thus,

the Peer-Influencemethod is two orders of magnitude slower than our two methods. Also,

the BayesTraceback method is an effective alternative to theRankedReplace method, while

maintaining a significantly high level of effectiveness.

Besides, the time requirement for theBayesTraceback method does not vary much

with respect tok. This is because a fixed fraction of the nodes are discarded ineach iteration,

and the number of iterations for convergence of this method is inversely proportional tolog n.
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The Ranked-Replacemethod is a greedy approach and it does not follow any specificpattern

with respect tok. However, the running time of theDegree Discount ICis proportional tok [39].

We note that, in theTwitter dataset (Figure 4.9), theBayesTraceback approach is more efficient

than theDegree Discount ICheuristic for higher values ofk. For example, when we setk = 80,

the running times of theRanked-Replace, BayesTraceback, PageRank, Degree Discount ICand

thePeer-Influencemethods are40225, 275, 1001, 362 and312345 seconds respectively.
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Figure 4.16: Maximum Aggregate Flow for Particular Target Nodes (DBLP)
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4.5.5 Robustness and Scalability with increasing Network Size

Our goal in this section is to test the robustness and scalability of the method with

increasing network size. This will show the effectiveness of the method with different network

sizes, and also the scalability of the method. In order to obtain networks of increasing sizes, we

randomly deleted nodes (and their incident edges from the data set), and tested the algorithm

over networks of increasing size. We setk, the number of authority nodes, as20. We provide

results on the effectiveness and efficiency for increasing number of nodes.

Figure 4.10 shows the variation of the maximum information spread with increasing

number of nodes for theDBLP data set. The total flow value initially increases with the number

of nodes, because the full benefit of multiple points of information release in small networks is

not realized. On the other hand, if the networks are too large, then the information spread may

get sufficiently damped in a few iterations. Therefore, the flow value increases relatively fast

up to the value ofn = 300, 000 for both theRanked-ReplaceandBayesTraceback methods,

and then levels off. TheRanked-ReplaceandBayesTraceback method both outperform the

baseline approaches by a high margin for all values ofn. This suggests that the method is

extremely robust over networks of different sizes. Figure 4.11 shows the corresponding results

for last.fm data set. As in the case of theDBLP data set, the expected aggregate flow for the

Ranked-ReplaceandBayesTraceback methods are much higher than that ofDegree Discount

IC, PageRankand thePeer-Influencemethods over the entire range of possible network sizes.

We plot the expected aggregate flow for different network sizes for the case of theTwitter data

set in Figure 4.12. The results are similar to the case of the other two data sets when the number
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of nodes is less than1, 000, 000. However, forn greater than1, 000, 000, theDegree Discount

IC heuristic performs slightly better than theBayesTraceback method.

Figure 4.13 illustrates the running time scalability with increasing number of nodes

for theDBLP data set. For theBayesTraceback method, the running time does not vary much

with respect to the number of nodes since the number of iterations increases only logarithmically

with the number of nodes. As observed earlier, it is slower than theDegree Discount ICmethod

but significantly faster than either theRankedReplace or thePeer-Influencemethods. For small

values of the number of nodesn, thePeer-Influenceapproach is slightly faster than theRanked-

Replacemethod; however, the former does not scale well and is much slower than theRanked-

Replacemethod for larger networks. Forn = 500, 000 or higher, thePeer-Influenceapproach

requires significantly more time than theRanked-Replacetechnique. The results for thelast.fm

data set show similar trends, as is evident from Figure 4.14.The results for theTwitter data

set are illustrated in Figure 4.15. In this case, the runningtimes ofDegree Discount ICand

BayesTracebackalgorithms are comparable. These algorithms are also significantly faster than

the other two methods.

4.5.6 Targeted Flow Authorities

We also tested our two schemes for the case when we determinedthe flow authorities

for a particular set of target nodes. For theDBLP collaboration graph, we randomly selected a

set of1000 target nodes and determine the corresponding authority nodes which will maximize

the flow within that target set. Figure 4.16 illustrates the expected aggregate information spread
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within this target set (for different numberk of authority nodes) using the modifiedRanked-

ReplaceandBayesTraceback methods. Figure 4.17 illustrates the corresponding running time

to find the authority nodes. In this case, we do not show the baseline methods because they can-

not be easily modified when particular nodes are targeted. Thus, our scheme also provides better

functionality than the baseline methods. It is evident thatthe modifiedBayesTracebackmethod

performs almost as well as the modifiedRanked-Replacetechnique; however it is significantly

faster in terms of running time. Unlike theRankedReplace method, the running time of the

BayesTraceback method is relatively insensitive to the number of authoritynodesk. Therefore,

theBayesTraceback method provides the best tradeoffs between quality and efficiency.

4.6 Summary

In this chapter, we designed an algorithm for the determination of optimal flow au-

thorities in social networks. We designed two algorithms for the task, which correspond to the

RankedReplace andBayesTraceback algorithms. We presented experimental results illustrating

the effectiveness of our methods on a number of social networking and collaboration graphs.

Our results show that the techniques proposed in this work are much more effective than the

currently available techniques. While theRankedReplace technique is slightly more effective

than theBayesTraceback method, the latter is significantly more efficient. Furthermore, it is

much superior to the baseline methods in terms of effectiveness. TheBayesTraceback algo-

rithm provides the best tradeoff between quality and efficiency.
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Chapter 5

Graph Pattern Mining

“Nature uses only the longest threads to weave her patterns,so that each small
piece of her fabric reveals the organization of the entire tapestry.”

Richard P. Feynman

Mining graph patterns in large information networks is critical to a variety of applications such

as malware detection and biological module discovery. However, frequent subgraphs are of-

ten ineffective to capture association existing in these applications, due to the complexity of

isomorphism testing and the inelastic pattern definition.

In this chapter, we introduce proximity pattern which is a significant departure from

the traditional concept of frequent subgraphs. Defined as a set of labels that co-occur in neigh-

borhoods, proximity pattern blurs the boundary between itemset and structure. It relaxes the

rigid structure constraint of frequent subgraphs, while introducing connectivity to frequent item-

sets. Therefore, it can benefit from both: efficient mining initemsets and structure proximity

from graphs. We developed two models to define proximity patterns. The second one, called
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Normalized Probabilistic Association(NmPA), is able to transform a complex graph mining

problem to a simplified probabilistic itemset mining problem, which can be solved efficiently

by a modified FP-tree algorithm, calledpFP. NmPA andpFP are evaluated on real-life social

and intrusion networks. Empirical results show that it not only finds interesting patterns that are

ignored by the existing approaches, but also achieves high performance for finding proximity

patterns in large-scale graphs.

5.1 Introduction

Graph patterns are building blocks for several key graph applications, including graph

indexing, graph search, graph classification and clustering [40, 50, 160, 167]. Existing graph

pattern mining algorithms, like those developed in [28,79,81,84,101,124,150], achieved great

success using strategies that efficiently traverse the pattern space. However, the definition of

frequent subgraphs might not be appropriate for new application scenarios present in social and

information networks. First, the definition is not elastic enough to capture fuzzy patterns exist-

ing in massive attributed graphs. Figure 5.1 shows one example, where each node is attached

with a set of labels. These labels can be movies recommended by a user, functions carried by

a gene, or intrusions initiated by a computer. As illustrated in Figure 5.1,a, b, c often occur

together and formulate an association pattern, whiled, c are not associated together. However,

{a, b, c} is neither a frequent subgraph, nor a frequent itemset if we treat each node as a trans-

action. Pattern{a, b, c} has three characteristics: (1) Proximity, these three labels are tightly

connected; (2) Frequency, they appear many times; (3) Flexibility, they are not always con-
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nected in the same way. Due to these characteristics, we can not apply the traditional frequent

graph mining algorithms such as FSG [101] and gSpan [159] to find them. On the other hand,

frequent itemset mining [12,73] can not be used either, since{a, b, c} do not appear in the same

set of nodes.

ab

e

a

a

ab

c

bc

d

d

b c

f

Figure 5.1: Proximity Pattern{a, b, c}

Secondly, for small graphs such as chemical structures, isomorphism checking is

never a problem as demonstrated by the existing frequent graph mining algorithms. However,

for large graphs like intrusion networks and social networks, there can be a huge set of isomor-

phic embeddings existing for frequent subgraphs. It becomes costly to generate all kinds of

frequent subgraphs. To overcome the above two issues, we propose a new graph pattern con-

cept, calledProximity Pattern. A proximity pattern is a subset of labels that repeatedly appear

in multiple tightly connected subgraphs inG. {a, b, c} in Figure 5.1 is an example. Proximity

pattern is an itemset. However, it has a connectivity requirement: the labels must be associated

tightly and frequently in the graph. For example, in a socialnetwork, it can be a set of movies

that are watched by multiple groups of users. That is, in order to find proximity patterns among

movies, one should not only consider the collection of movies watched by each person (in this

case, it is a traditional itemset mining problem); instead,one should also consider the movies

watched by his or her friends and friends of friends. In this case, labels associated with two
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different nodes are related due to the connection between these two nodes. The same mining

problem also exists in finding associations of intrusions onthe Internet, where each node cor-

responds to an IP address and there is a directed edge betweentwo IP addresses if an intrusion

attack takes place between them. It is interesting to find theassociation of different attack types,

which can be used to analyze intrusions.

In this work, we first introduce an intuitive neighbor association model to define and

allocate proximity patterns by identifying the embeddingsof these patterns in a graph and then

finding a weighted maximum independent set among these embeddings. Although this approach

is intuitive, it is inefficient to find patterns in large graphs due to the complexity of embedding

enumeration and maximum independent set finding. Therefore, we redefine proximity patterns

from an influence point of view, using a probabilistic information propagation model. Based

on this model, we propose novel techniques for finding proximity pattern within a large graph,

which consider conditional probabilistic association of the labels at each vertex. In the end, a

statistical test is developed to measure the significance ofdiscovered proximity patterns.

Our Contributions. To the best of our knowledge, this is the first research work introducing

the concept of proximity patterns in large graphs.

We model the problem of determining the proximity among labels in two distinct

approaches, neighbor association and information propagation. While the neighbor associa-

tion model is a direct approach of finding the association among labels based on their distance

across the edges of the graph, we have shown that this method is not efficient for large scale

graphs. In the information propagation model, we develop novel probabilistic techniques to
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determine the proximity among labels in a graph database, based on the Markov model [128].

We justify that they will be efficient as well as consistent under interpretations of “relation be-

tween transactions” and the “association of labels”. The propagation model is able to transform

a complex graph mining problem to a simplified probabilisticitemset mining problem, which

can be solved efficiently by a modified FP-tree algorithm, calledpFP(probabilistic FP-growth).

Furthermore, for the discovered patterns, we define an objective function that will measure their

interestingness using randomized test.

In summary, we propose a complete pipeline to define and mine proximity patterns

in massive graphs in a scalable manner. As tested in real-life social networks and intrusion

networks, proximity patterns turn to be interesting and areable to capture patterns missed by

frequent itemsets and frequent subgraphs.

5.2 Related Work

Finding graph patterns is an active research topic in data mining. In the area of mining

a set of graphs, efficient frequent subgraph mining algorithms have been proposed, including

AGM [84],FSG [101], gSpan [159], followed by Path-Join, MoFa, FFSM, GASTON, etc. Re-

cently, techniques were developed to mine maximal graph patterns [82] and significant graph

patterns [75]. These methods adopt subgraph isomorphism testing as a way to count the support

of graph patterns in multiple graphs.

In the area of mining single massive graphs, [35, 60, 102] developed techniques to

calculate the support of graph patterns, i.e., how many times we should count a subgraph in
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one graph, when there are overlapping embeddings. Kuramochi and Karypis [102] proposed

using the maximum independent set as the support of subgraphs, which is proved to have the

downward closure property by [60]. [19] proposed a support measure that is computationally

less expensive and often closer to intuition than other measures. Since subgraph isomorphism

is still used in these methods, they cannot handle the proximity patterns discussed in this work,

where strict isomorphism is not desired.

Discovering rules from transactions has been extensively studied. The concept of

association rules was first introduced in [11, 13], where theauthors proposed an Apriori based

approach to determine all frequent itemsets. [129] describes a hash-based algorithm which is an

improvement over the Apriori approach. In [164], Zaki proposed a depth-first search algorithm

using set intersection. FP-growth was introduced by Han et al. in [73], which uses an extended

prefix-tree (FP-tree) structure to store the database in a compressed form. In [18], Au and Chan

introduced fuzzy association rules based on the fuzzy set theory. Here, each item is assigned a

non-binary weight according to its significance with respect to a user defined criterion. In [116],

Mangalampalli and Pudi have shown how the existing algorithms like Apriori and FP-growth

can be modified to mine data in a fuzzy environment. Very recently, Bernecker et al. [24] and

Charu et al. [8] proposed techniques for mining frequent itemsets from uncertain databases.

Their techniques could also be applied. However, to the bestof our knowledge, no previous

work targets the problem of finding proximity patterns in thecontext of massive graphs.
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5.3 Preliminaries

An attributed graphG = (V,E) has a label setL and each node is attached with a set

of labels. The label set of a nodeu in G isL(u). Let I be a subset of labels such that the labels

in I tightly connect and appear repeatedly inG. I is named as“Proximity Pattern”. Proximity

patterns are degenerated to frequent itemsets, if we drop all the edges inG. In this work, we

focus onbidirectional andunweightedgraphs. However, the proposed models and algorithms

can be applied todirectedgraphs as well. Some modifications are required forweightedgraphs,

which we shall discuss later in Section 5.5.3.

Let D = {t1, t2, . . . , tm} be a set ofindependent transactions(in the context of

attributed graphs, the set of nodes). Each transaction contains a subset of items inL.

Definition 5.1 (Support). The supportsup(I) of an

itemsetI ⊆ L is the number of transactions in the data set that containI. Sometimes, we also

use the percentage to represent support.

An itemset is calledfrequentif its support is greater than a user-defined minimum

threshold. Nearly all the classical frequent itemset mining algorithms apply the property of

Downward Closure[12] to prune the pattern search space.

Definition 5.2 (Downward Closure). For a frequent itemset, all of its subsets are frequent; and

thus for an infrequent itemset, all of its supersets must be infrequent.

Unfortunately, since frequent itemset mining does not consider the connections in an

attributed graph, it might miss interesting patterns. Figure 5.2 shows an example. If we consider
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each node as an independent transaction,{l1, l2} will not be reported as a frequent itemset.

The two items do not occur together in any of the nodes. However, a careful examination of

Figure 5.2 reveals that they always occur within one-hop distance of each other.{l1, l2} is a

proximity pattern:l1 is associated in the proximity ofl2.

l1 l2,l4

l1,l5

l1,l3

l2,l4

l2,l5

v1

v2

v3

v4

v6

v5

Figure 5.2: Frequent Itemset vs Proximity Pattern

For a proximity patternI, we need to identify locations of this pattern inG. Each of

these locations shall contain all of labels inI.

Definition 5.3 (Embedding and Mapping). Given a

graphG and a subset of verticesπ, π ∈ V (G), LetL(π) be the set of labels inπ, i.e.,L(π) =

∪u∈πL(u). Given a label subsetI, π is called an embedding ofI if I ⊆ L(π). A mappingφ

betweenI and the vertices inπ is a functionφ : I → π s.t.,∃ l, φ(l) ∈ π and l ∈ L(φ(l)). A

mapping is minimum if it is surjective, i.e.,∀v ∈ π,∃l s.t.φ(l) = v.

In Figure 5.2,{v1, v2, v3} forms an embedding of{l1, l2, l5}. There can be two pos-

sible mappings in this embedding: (1)φ1 mapsl1 to v2, l2 to v1, andl5 to v3, and (2)φ2 maps

l1 to v2, l2 to v3, andl5 to v3. In these two mappings,φ1 is minimum,φ2 is not. The vertices in

π might not be connected. For example,{v1, v3} is an embedding of{l4, l5}
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Given an itemsetI and a mappingφ, we need a functionf(φ) to measure its associ-

ation strength: how tightly the mapped labels inπ are connected. For example,f(φ) could be

the inverse of diameter ofφ or the inverse of
∑

u,v∈V (φ) d(u, v), whered(u, v) is the shortest

distance betweenu andv. Since there could be multiple mappings inπ, we always choose the

mapping that has the highest value off(φ). To simplify the presentation, we also denote the

strength of an embedding asf(π).

In the next section, we are going to investigate two models todefine the support of

proximity patterns.

5.4 Neighbor Association Model

The complexity of proximity patterns rises from the interconnections of labels in a

graph. One has to perform the following three steps to identify proximity patterns:

1. Find all the embeddings,π1, π2, . . . , πm of an itemsetI in the graph,

2. For each embeddingπ, measure its strengthf(π),

3. Aggregate the strength of the embeddings,F (I) =
∑m

i=1 f(πi). TakeF (I) as the support

of I.

In order to find the support of a proximity pattern, one has to first enumerate all

the embeddings of the pattern. Unfortunately, due to graph connections, there could be an

exponential number of redundant embeddings. First, the boundary between the embeddings of

a pattern is not obvious. When two embeddings overlap, the overlapped part might be double
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counted. The support derived from multiple embeddings willviolate the downward closure

property (Definition 5.2). That is, the support of a patternI might be less than a patternI ′, even

thoughI ⊆ I ′, which makes it difficult to design fast mining algorithms. Secondly, any subset

of vertices,π, could be an embedding of a patternI as long asI ⊂ L(π), though for those

loosely connected embeddings, their strength might be negligible.

In order to solve the above two issues, we introduce two models in this chapter, neigh-

bor association model and information propagation model.

Letπ1, π2, . . . , πm be the embeddings ofI in G. we build an overlapping graph: each

node represents an embedding and an edge connects two embeddings if they share at least one

common vertex. In the overlapping graph, each node hasf(π) as its weight. Figure 5.3 shows

an example of a partial overlapping graph derived from Figure 5.2.

̟3

̟4

̟5̟1

̟2

̟1={v1, v2}

̟2={v2, v3}

̟3={v2, v4}

̟4={v4, v5}

̟5={v4, v6}

Figure 5.3: Overlapping Graph

For frequent graph mining in a single graph, Kuramochi and Karypis [102] proposed

using the maximum independent set as the support of subgraphs, which is proved to have the

downward closure property [60]. An independent set in a graph is a subset of vertices with

no edge connecting them. In Figure 5.3, embeddingsπ1, π4 form a maximum independent set.

This concept can be extended to the overlapping graph with weights. For a label setI, the

support ofI could be the sum of vertex weights derived by the maximum weight independent
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set. It can be proved that the support defined using maximum weight independent set has the

downward closure property too. We call this modelNeighbor Association Model.

While the neighbor association model solves the pattern overlapping issue, it is NP-

hard in general with respect to the number of embeddings for agiven pattern [161]. Since the

number could be huge, in practice, it is not feasible to generate all the embeddings of proximity

patterns and then find their maximum weight independent set.Thus we resort to the second

model,Information Propagation Model.

5.5 Information Propagation Model

The neighbor association model examines the association from a graph structure per-

spective. For example, for two labelsl1, l2, in a graph, how closely they are connected and how

often they are connected. It is possible to examine the same problem from a network influence

perspective. Take a movie recommendation social network asan example, where users could

recommend movies to their friends. AssumeG0 is the initial graph. Based on the recommen-

dations, users might watch more movies and generate a new graph G1 with updated watched

movie lists. This process iterates until it reaches a stablegraph where the movie list for each

user does not change any more.

G0 → G1 → . . .→ Gn.

In an ideal situation, it is meaningful to mine frequent itemsets inGn. However, in

reality we only have an incomplete snapshot betweenG0 andGn. Proximity patterns inGi
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could be interpreted as an approximation to frequent itemsets inGn. With that being said, if we

are able to simulate the influence process by generatingG̃ from Gi to approximateGn, we can

instead use frequent itemsets mined from̃G to represent proximity patterns inGi. This is the

main idea of the information propagation model.

We model the influence process using a first order Markov model. The given graph

is considered as the present state, and the association among labels in the future state will be

reached through an iterative stochastic process. LetL(u) be the present state ofu, denoted by

the labels present inu, andl be a distinct label propagated by one of its neighbors andl 6∈ L(u).

Hence, the probability of observingL(u) andl is written as

P (L ∪ {l}) = P (L|l)P (l), (5.1)

whereP (l) is the probability ofl in u’s neighbors andP (L|l) is the probability thatl is suc-

cessfully propagated tou.

For multiple labels,l1, l2, . . . , lm, the joint probability of observingL ∪ {l1, . . . , lm}

can be written as, assuming each label is propagated independently,

P (L ∪ {l1, . . . , lm}) = P (L|l1) ∗ . . . ∗ P (L|lm) ∗ P (l1) ∗ . . . P (lm). (5.2)

The propagation model captures an important characteristic in social graphs where

nodes can influence each other. As the distance increases, the influence decreases [4], which is

exactly what proximity patterns would like to capture. In the next two subsections, we intro-

duce two distinct approaches to assign values to the aforementioned conditional probabilities,
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P (L|l), along with the detailed algorithms. These two approaches handle the situation when

the same label is propagated by multiple nodes, with different distances.

5.5.1 Nearest Probabilistic Association

According to the exponential decay model of transmissibility [156], the transmissi-

bility decays as a power of the distance from the initial source. In theNearest Probabilistic

Associationmodel (NPA), the conditional probabilityP (L(u)|l) of Eq. 5.1,Au(l), is defined

as follows.

Definition 5.4 (Nearest Association). Let l be a label present inv which is the nearest one to

u, wherel 6∈ L(u). Au(l) = P (L(u)|l) = e−α·d, whered is the distance fromv to u, andα is

the decay constant (α > 0).

Au(l) decays to zero asd approaches to∞. For an unweighted graph, we assume

d = 1 for each edge. The algorithm to find the stable propagated graph G̃ is outlined in

Algorithm 3. G̃ is like a classical transaction database, where each node represents a transaction

and each label represents an item. However, unlike transactions, inG̃, items could have values

0, 1 or a fraction between them due to the probabilistic propertyof our model. Similar to

classical transactions,1 denotes full association and0 no association; whereas a proper fraction

indicates partial association of the labels at that vertex.The association value should decrease

as the distance between a vertex and a label increases [59, 106]. Therefore, we have an input

cut-off parameterǫ in Algorithm 3. We do not propagate a label when the nearest association

value for that label is less thanǫ.

148



Chapter 5. Graph Pattern Mining

Algorithm 3 Generate Intermediate DatasetG̃

Input: GraphG, cut-off parameterǫ.

Output: Intermediate Dataset̃G.

1: i = 0 // iteration

2: for all vertexu of G do

3: LetL0(u) be the label set ofu

4: ∀l ∈ L0(u), Au(l)=1; otherwiseAu(l)=0

5: end for

6: for all vertexu of G do

7: for all label l in Li(v) \ Li(u), v is u’s neighbordo

8: updateAu(l) using Definition 5.4 (choose the maximum one)

9: If less thanǫ, do not propagatel to u

10: end for

11: Li+1(u) = {Li(u) ∪ {l}|Au(l) > 0}

12: end for

13: if Li+1 = Li for all vertices inG then

14: OutputAu for all u ∈ V (G)

15: else

16: i = i+ 1, goto step2

17: end if
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Note thatAu(l) = 1 whenu itself has the labell; Au(l) = 0 whenl is considerably

away fromu, or there is no path fromu to any of the vertices havingl. Since the association

of a label at a vertex is determined by the nearest occurrenceof the label, we call it “nearest

association”. Once the intermediate dataset is formed, following the joint distribution of Eq. 5.2,

we shall define the support of a proximity pattern.

Definition 5.5 (Probabilistic Support). Given an intermediate dataset̃G derived by the Nearest

Probabilistic Association model, the support ofI = {l1, l2, . . . , lm}, sup(I) =
1

|V |

∑

u∈V

Au(l1)

· · ·Au(lm), whereAu(l) represents the probability of observingl at u.

The support definition inNPA has the downward closure property. That is,sup(I) ≥

sup(J) if I ⊆ J . This is due to the fact thatAu(l) ≤ 1. Let I = {l1, l2, . . . , lm} and

J = {l1, l2, . . . , lm, lm+1 . . . , ln}. Since

m∏

i=1

Au(li) ≥
m∏

i=1

Au(li)
n∏

i=m+1

Au(li),

we have

sup(I) ≥ sup(J).

1

2 2

1

2

1

2

11

2

l1, l2

l1, l2 l1, l2

l1, l2l1, l2 l1, l2 l1, l2

l2 l2

(a) (b) (c) (d) (e)

(a) sup(l1, l2) = 1

(b) sup(l1, l2) = 1

(c) sup(l1, l2) = 0.69

(d) sup(l1, l2) = 0.57

(e) sup(l1, l2) = 0.50

Figure 5.4: Consistency:NPA and Frequent Itemset
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The definition is also consistent with the support definitionof frequent itemsets, where

Au(l) can only be0 or 1. Figure 5.4 shows the connection, where the decay constantα is

set at1. NPA rightly assigns the highest support value(= 1) for {l1, l2} in Figure 5.4(a)

and 5.4(b), which is consistent with frequent itemsets. Thesupport value gradually decreases

in Figure 5.4(c), 5.4(d), and 5.4(e). The decreasing order of support reflects the association

strength ofl1, l2 in different structures. Figure 5.4(c) has a higher supportfor {l1, l2} than

Figure 5.4(d) since there are twol2’s close tol1. Note that, we assumeα = 1 for all these

examples.

l1 l1 l2

l3
l3

l2

1 12

3

2

3

(a) (b)

Figure 5.5: Support vs Structure Difference

TheNPA support is both commutative and associative. It can also tell slight difference

between structures. Table 5.1(a) and 5.1(b) show the intermediate dataset for two different

substructures in Figure 5.5(a) and Figure 5.5(b) respectively. Rightly this approach assigns

higher support for{l1, l2, l3} in Figure 5.5(a).

Table 5.1(a)
l1 l2 l3

node 1 1 0.37 0.37

node 2 0.37 1 0.37

node 3 0.37 0.37 1

sup(l1, l2, l3) = 0.14

Table 5.1(b)
l1 l2 l3

node 1 1 0.37 0.14

node 2 0.37 1 0.37

node 3 0.14 0.37 1

sup(l1, l2, l3) = 0.08

Table 5.1: NPA Intermediate Dataset for Figure 5.5
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Complexity. Let |V | be the total number of vertices inG, the average degree of each vertex

be d, and the average number of labels in each vertex bes. If there are totalt iterations in

Algorithm 3, the time complexity of generating the intermediate dataset̃G is O(|V | · dt · s).

Sincet << |V |, the complexity is almost linear in the number of vertices. The parametert is a

measure of the maximum depth where we may look for a label. Thedepth will be determined

by the decay constantα andǫ. In social networks, the mutual interaction and social influence

usually decays quickly with distancet [4, 31, 78, 118]. The influence is negligible whent > 3.

In NPA, the probabilistic association value of a label at a distance t is given bye−α·t. Since we

ignore the value less thanǫ, t ≤
1

α
ln

(
1

ǫ

)
.

1 1

2 2 3

l1l1

l2l2l2

(a) (b)

Figure 5.6: Problem withNPA

The NPA model is fast to calculate. However, there is a potential issue: For each

vertex, it only considers the nearest neighbor of each label. Thus it cannot differentiate the

situations when there are more than one nearest vertices with the same label. Figure 5.6 shows

two graphs. In both cases,sup(l1, l2) = 0.37 according toNPA. In order to differentiate them,

we propose the second model, Normalized Probabilistic Association, to take into account all

the nearest occurrences of the same label.
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5.5.2 Normalized Probabilistic Association

In the normalized probabilistic association model (NmPA), we try to normalize the

association by the number of neighbors who have the same label.

Definition 5.6 (Normalized Association). Given an attributed unweighted graphG and a node

u, if the number of neighbors ofu is n and there arem neighbors having the labell, the

normalized probabilistic association ofl at u is NAu(l) = P (L(u)|l) =
m

n+ 1
e−α.

The normalizing factorZ =

(
m

n+ 1

)
will give more association strength for the

labels that are contained by many neighbors. In order to differentiate the two cases in Figure

5.6, we choosen + 1 rather thann as the denominator. SinceNAv(l) ≤ 1, the downward

closure property is maintained. For weighted graphs, the modified version ofNmPA will be

discussed in Section 5.5.3.

For an itemsetI, the support ofI underNmPA could be calculated similar toNPA

(see Definition 5.5), by following the joint distribution inEq. 5.2. The supports inNmPA shall

be smaller than those inNPA.

NmPA has two advantages overNPA. We have the following lemmas.

Lemma 5.1. Given two nodesu andu′, assumeu andu′ have the same number of neighbors,

label l 6∈ L(u), l 6∈ L(u′), we haveNAu(l) > NAu′(l) if more neighbors ofu containl.

Lemma 5.2. Given two nodesu andv, assumeu has more neighbors thanv, labell 6∈ L(u), l 6∈

L(v), we haveNAu(l) > NAv(l) if the percentage ofu’s neighbors that containl is no less

than that ofv’s.
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Lemmas 5.1 and 5.2 show that theNmPA could break the tie situations when there is

an equal number of neighbors or an equal number of neighbors having l. NmPA favors the case

when more neighbors containl. These are desirable properties overNPA.

For the two substructures shown in Figure 5.6. The normalized association ofl2 at

vertex 1 is 0.37
2 ≈ 0.19 for Figure 5.6(a) and0.37×2

3 ≈ 0.25 for Figure 5.6(b). Therefore,

NmPA assigns a higher support for{l1, l2} in Figure 5.6(b) than that in Figure 5.6(a). It can be

verified that thesup(l1, l2) values will be1.0, 1.0, 0.59, 0.52, 0.50 for the substructures shown

in Figure 5.4(a), (b), (c), (d) and (e) respectively. Therefore, similar toNPA, theNmPA support

of {l1, l2} decrease gradually from Structures (a) to (e) in Figure 5.4.

Next we apply Algorithm 3, as before, to find the intermediatedataset. The only

change will be in Line8 of Algorithm 3. We shall use the following equation to updatethe

probability,

NAu(l) =
1

n+ 1

∑

v∈N(u)

e−α ∗NAv(l), (5.3)

whereNAv(l) is the association strength ofl at v andN(u) is the neighbor set ofu. Sincel

could be a label propagated from another vertex,NAv(l) could be less than1.

Complexity. NmPA has the same complexity asNPA. However, in practice the propagation

decays much faster since we normalize the probabilistic association with respect to the number

of neighboring nodes at every iteration. UsingNPA andNmPA, the set of all proximity patterns

can be determined efficiently from the intermediate dataset, as they follow the downward clo-

sure property. In addition toNPA andNmPA, other influence models could be adapted here. As
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long as the probabilistic association is calculated by Definition 5.5, the same mining algorithm

could be applied.

5.5.3 Modification for Weighted Graphs

It is easy to verify thatNPA andNmPA are also applicable to weighted graphs. In

NPA, we consider only the nearest vertex of any label among all the neighboring vertices.

Suppose, the nearest occurrence of a labell is at distanced from vertexu. Then, theNPA

probabilistic association ofl atu is given byNu(l) = e−α·d. If there are totaln neighbors from

vertexu, and among themm neighbors, each at distancedi from u, have the labell. TheNmPA

probabilistic association ofl atu is given byNAu(l) =
∑m

i=1 e
−α·di/(n + 1). The procedure

of generating the intermediate dataset remains the same.

5.6 Probabilistic Itemset Mining

Given an attributed graphG, the proposed information propagation models such as

NPA and NmPA will generate a large set of probabilistic itemsets, whose number is equal

to |V (G)|. Each itemset has tuples〈I,Aid(I)〉, whereid is the vertex id andAid(I) is the

probabilistic association of labelI to this vertex. To be consistent with the terminology used in

frequent itemset mining, we also call vertex as transaction.

In the existing frequent itemset mining algorithms such as Apriori [13] and FP-

growth [12,73], the support of an itemset is the number of occurrences of all the items together

in that itemset. Our problem setting is inherently different since it has to multiply the fractional
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support values of all the constituent items to determine thejoint support of an itemset. In the

following discussion, we will first describe an algorithm tomine all the proximity patterns from

the intermediate dataset generated by theNPA or NmPA model described earlier. Next, we

provide an approximate version that will improve efficiencyand reduce memory consumption.

Finally, in addition to the support definition, we introducean objective function to measure the

“interesting-ness” of a proximity pattern and make the algorithm more efficient and effective to

generate only the top-k interesting patterns.

5.6.1 Exact Mining

Algorithm 4 describes an exact mining algorithm, calledpFP(Probabilistic FP-Growth).

pFP is derived from FP-Growth in [73]. It first removes the infrequent1-itemsets and constructs

the FP-tree, where transactions share the same upper path iftheir first few frequent items are

the same. We briefly introduce FP-tree here. For details, readers are referred to [73]. FP-tree

is a prefix tree. The root of an FP-tree is a NULL node, since each transaction can be prefixed

by a NULL item. In the original FP-growth algorithm, each node v in the tree is labeled by

an itemI and also associated with a count, denoted bycount(v), representing the number of

transactions that pass through the node. At the same time, a header table is built. For an entry

(I,H(I), ptr) in the header table,H(I) denotes the count of nodes in FP-free containing the

itemI andptr records the list of nodes containing the itemI. This is also known as theside-link

of I. Now, for each frequent length-1 patternI present in the header table, the following tech-

nique is applied. The FP-growth algorithm starts from a frequent length-1 pattern, sayI, and
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for each nodeu attached to the side-link ofI, it follows the path till the root of the tree. These

paths are called the conditional pattern base ofI. Then, an FP-tree on this conditional pattern

base (conditional FP-tree) is constructed, which acts as a transaction database with respect toI.

Next, the algorithm recursively mines this resulting FP-tree to form all possible combinations

of itemsets prefixed withI.

In our problem setting, labels are probabilistic and we needto multiply these prob-

abilistic association values to determine the joint association of multiple labels. To handle

probabilistic itemsets, in our algorithm, each nodev in the FP-tree is associated with a bucket

B(v) consisting of the probabilistic association values of all single items contained in that node,

which is a set of tuples〈id : Aid(I)〉, wherev is in the side-link of itemI and id is the

transaction id contained inv. The buckets can be stored in the disk and accessed when the

corresponding nodes are processed. As we move up the tree, the buckets corresponding to the

composite itemsets in the sub-header table can be formed recursively by the intersection of the

buckets of its constituent items. For example, consider an intermediate dataset given in Ta-

ble 5.2. Assume, the minimum support threshold is set at0.06. Thus, the infrequent iteml5

having support=0.15/3 = 0.05 can be removed first. The remaining items are then arranged in

a decreasing order of their frequency asl2, l1, l3, l4. The correspondingFP -tree is depicted in

Figure 5.7. Note that, althoughl1 has higher support than that ofl2, it is placed belowl2 in the

FP -tree, since frequency ofl1 is lower than that ofl2 in the dataset.

The exact algorithm is given in Algorithm 4. Here,H(I) in the header table denotes

the sum of the probabilistic association values for itemI. For example, while processingl3
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transaction id l1 l2 l3 l4 l5
1 1 0.3 0 0 0.1

2 0.5 0.2 0.5 1 0

3 0 0.2 0.5 0 0.05

Table 5.2: Proximity Patterns: Intermediate Dataset

Root

l2

l1

l3 l3

l4

l2: 0.7

l4: 1.0

l3: 1.0

l1: 1.5

1: 0.3

2: 0.2

3: 0.2

2: 0.5

1: 1.0

2: 0.5

3: 0.5

2: 1.0
H

Figure 5.7: FP-Tree for Table 5.2

from the original header tableH, we start moving upwards froml3 following two distinct paths

l3 → l1 → l2 → root andl3 → l2 → root. The first node encountered isl1, so it will be added

in the sub-header tableHl3 of l3 with Hl3(l1) = 0.5 × 0.5 = 0.25 > minsup × DBSIZE

(see Figure 5.8). So,l3l1 is a frequent pattern. The corresponding bucket will contain only the

entry2 : 0.25, which can be formed as an intersection of buckets ofl3 andl1. The algorithm

now recursively considers the sub-header tableHl3l1 by moving upward froml1 along the path

l1 → l2 → root. It calculatesHl3l1(l2) = 0.25 × 0.2 = 0.05 < minsup × DBSIZE. So,

l3l1l2 is not a frequent pattern. Now, the control comes back toHl3 , where the next entry is

l2, with Hl3(l2) = 0.5 × 0.2 + 0.5 × 0.2 = 0.2 > minsup × DBSIZE. So, l3l2 is also

frequent. Its bucket will contain two entries2 : 0.1 and3 : 0.1; which can be determined by the

intersection of buckets ofl3 andl2. Note that, it cannot be extended further and this also finishes
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the processing ofl3 from the original header tableH. So, the algorithm starts processingl4,

which is next tol3 in H.

l2: 0.7

l1: 1.5

l3: 1.0

l4: 1.0

l1: 0.25

l2: 0.2

l2: 0.05

H

H l3

H l3 l1

Figure 5.8: pFP applied on Table 5.2

The problem with the exact algorithm (Algorithm 4) is that, the running time increases

compared to that of the original FP-growth algorithm [152],because we need to access the

bucket whenever the corresponding node is processed. However, the arguments in support of

this exact algorithm can be as follow.

1. Each bucket size is small compared to the original intermediate dataset size. Therefore,

pFP is still efficient compared to apriori based approaches, where the whole dataset needs

to be scanned every time.

2. During the execution ofpFP, we need only two recent buckets in the main memory.

Therefore, the buckets used before can be removed from the main memory. Since the

buckets for the composite itemsets are formed by intersection of its constituent itemsets,

the bucket of a large itemset usually gets smaller than that of its constituent itemsets.
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5.6.2 Approximate Mining

The exact mining algorithm needs to maintain a bucket with a list of transaction ids,

since we have to multiply the fractional association valuesto determine the joint support of

multiple items. However, is it possible to compress bucketsso that they can be accommodated

in the main memory along with the FP-tree? The compact representation of buckets must be

sufficient enough to generate an approximation to the joint association of multiple items. Here,

we propose that, instead of maintaining a long bucket list of〈id,Aid(l)〉 for each node in the

FP-tree, we can associate two variables,sum andoccurrence, with each node.

Supposelx andly are two distinct labels appearing at nodesvx andvy respectively in

the FP-tree, wherevx is the parent ofvy. Let, the bucketsB(vx) andB(vy) in the exact algo-

rithm have the association valuesA1(lx) = x1, A2(lx) = x2, . . . , An(lx) = xn andA1(ly) =

y1, A2(ly) = y2, . . . , An(ly) = yn for transactions1, 2, . . . , n respectively. Note that some of

yi can be zero. We definesum for vx andvy assum(vx) =

n∑

i=1

xi andsum(vy) =

n∑

i=1

yi. The

variableoccurrence is defined as the number of all non-zero occurrences of that label in the

corresponding node of the FP-tree. Clearly,occurrence(vx) = n andoccurrence(vy) ≤ n.

The approximate algorithm associates these two variablessum andoccurrence with each node

while forming the FP-tree. Now, we define theapproximate joint associationof lx and ly as

given in Eq. 5.4.
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Ã(lx, ly) =
sum(vx) · sum(vy)

max{occurrence(vx), occurrence(vy)}

=
1

n

n∑

i=1

xi ·
n∑

i=1

yi

(5.4)

The exact joint association oflx andly is given byA(lx, ly) =
n∑

i=1

{xi ·yi}. Therefore,

the absolute errorE due to the approximation can be expressed as follow.

E = A(lx, ly)− Ã(lx, ly)

=
n∑

i=1

[xi · (
sum(vy)

n
− yi)]

=

n∑

i=1

[yi · (
sum(vx)

n
− xi)].

(5.5)

The errorE is small compared toA(lx, ly) when all thexi’s or all theyi’s are very

close to each other. For example, if we consider the nodes of the FP-tree corresponding tol2

and l1 in Figure 5.7, the exact joint associationA = 0.40, whereas the approximate joint as-

sociationÃ = 0.35, and the absolute errorE = 0.05. Using this summarization technique,

we developaFP(approximate probabilistic FP-Growth), an approximationto pFP. Only the

build subtable procedure needs to be changed from the exact mining algorithm described ear-

lier (see Algorithm 4). The newbuild subtable procedure is given in Algorithm 5.

5.6.3 Top-k Interesting Patterns

The support value defined by our probabilistic association model only tells the as-

sociation strength of a proximity pattern in a given graph. In order to measure its real “inter-
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estingness”, we need to compare the support value with the one generated by a randomization

test.

Randomization Test. Given an attributed graphG, where each node has a set of labels, we

conduct the following random permutation: Randomly selecttwo nodesu, v and one of their

labels,lu, lv , respectively, then swap these two labels so thatu haslv attached, andv haslu

attached. The permutation is repeated until all the labels are swapped. LetQ be the result

graph.

Assume thatp andq be the support value of an itemsetI in G andQ respectively,

using our probabilistic association model. IfI is not found in the permutated graphQ, i.e.,

q = 0, we replaceq with the product of support values of all its constituent labels. Now,

we considerI as interestingif the difference betweenp andq is high. Note that, the higher

difference betweenp andq indicates that the individual items inI truly formulate a pattern.

If we only consider thep value ofI, it might be high since some of its members occur very

frequently, in which case,q value will also be high. Thus, by considering the differencebetween

p andq, we can eliminate those uninteresting patterns from the result set. We propose to apply

G-test score [139] as an objective function to measure the interestingness of a pattern.

p · ln
p

q
+ (1− p) · ln

1− p

1− q
(5.6)

We developed a pruning method similar to the vertical pruning approach proposed

by Yan et al. [158] and integrate it withpFP andaFP to mine interesting patterns using the

probabilistic FP-tree built fromG andQ.
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Proximity Patterns vs Frequent Itemsets. It is also possible to compare the proximity patterns

mined from a graphG with the frequent itemsets mined from the node label sets if one ignores

the connection between nodes. One can run the above test by replacingq with the support of

frequent itemsets. The result will tell the new patterns that are missed by the classic frequent

itemset mining approaches. In the experiment section, we will demonstrate such patterns.

5.7 Experimental Results

In this section, we present experimental results which illustrate the effectiveness of

the information propagation modelNmPA and the efficiency of our approximate itemset min-

ing frameworkaFP on a number of real-life graph datasets. We are not going to experiment

neighbor association model due to its time complexity. In order to evaluate the effectiveness,

we report the top-k interesting patterns discovered by our approaches. We shall also analyze

the effectiveness and efficiency of the approximate itemsetmining algorithm (aFP) over the

exact one (pFP). Finally, we provide a comparison of our result with that offrequent itemset

and subgraph mining. The experiments are performed using a single core in a32GB, 2.50GHz

Xeon server.

5.7.1 Graph Datasets

Our models and mining algorithms are tested on a variety of real graph data sets

including Last.FM, Intrusion network, and DBLP.
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LAST.FM We crawled a local network consisting of6, 899 users from [105]. Last.FM is a

music web site where users listen to their favorite tracks and communicate with each other

based on their choice of music. For each user, we crawled the most recent communications

among them. These communications recommend songs. We treatthem as edges. There are

total 58, 179 edges. For each user, we also crawled the name of3 artists (or musical bands) of

the most recently listened tracks by that user. There are total 6, 340 artists and musical bands

crawled. We mined proximity patterns among these artists and musical bands by using the

social network graph that we built.

Intrusion Alert Network This network contains the anonymous log data of intrusion alerts in

a computer network. It has200, 858 nodes and703, 020 edges where each node is a computer

and an edge means a possible attack such as Denial-of-Service and TCP Service Sweep. Each

node has25 labels (computer generated alerts in this case) on average.There are around1, 000

types of alerts. We aim to find the association of alerts in this graph data, which could reveal

multi-step intrusions.

DBLP Collaboration Graph The DBLP graph is downloaded from [47]. There are684, 911

distinct authors and7, 764, 604 collaboration edges among them. We consider the keywords

present in the paper titles as the labels corresponding to these authors. We select130 important

keywords to determine the association among them. Each nodehas around9 labels on average

in this graph.
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5.7.2 Effectiveness

# Proximity Patterns Score

1 Tiësto, Armin van Buuren , ATB 0.62

2 Katy Perry, Lady Gaga, Britney Spears0.58
3 Ferry Corsten, Tiësto, Paul van Dyk 0.55

4 Neaera, Caliban, Cannibal Corpse 0.52

5 Lacuna Coil, Nightwish, Within 0.47
Temptation

Table 5.3: Top-5 Proximity Patterns (Last.FM)

We present the top-5 interesting patterns for theLast.FM data set in Table 5.3. We

applied theNmPA propagation model and theaFP mining algorithm. For theNmPA model,

we set the decay constantα = 1 and cut-off parameterǫ = 0.12. These parameters ensure

that we propagate a label at most two hops. A label is propagated to a node only when at least

one third of its immediate neighbors contain that label. Thepatterns are ranked by the G-test

score defined in Eq. 5.6. Also, we report only the top-5 patterns after eliminating their smaller

sub-patterns.

These patterns are practically interesting, i.e.,ATBandPaul van Dykare popular Ger-

man DJ; whereasTiësto, Ferry Corsten and Armin van Buurenare Dutch trance producers and

DJ. Britney Spears, Lady Gaga, Katy Perryare American female pop singers and entertainers.

Lacuna Coil, Nightwish and Within Temptationare Gothic metal bands from Italy, Finland and

Netherlands respectively.Neaeraand Caliban are death metal bands from Germany; while

Cannibal Corpseis an American death metal band.

Table 5.4 illustrates the proximity patterns discovered byour algorithms but ranked

low by the classic frequent itemset mining algorithm. It shows that the top-5 patterns in Ta-
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# Proximity Patterns Score

1 Tiësto, Armin van Buuren , ATB 0.62

2 Katy Perry, Lady Gaga, Britney Spears0.58
3 Ferry Corsten, Tiësto, Paul van Dyk 0.55

4 Neaera, Caliban, Cannibal Corpse 0.52

5 Lacuna Coil, Nightwish, Within 0.47
Temptation

Table 5.4: Proximity Patterns minus Frequent Itemsets (Last.FM)

ble 5.3 and 5.4 are the same. That is, none of these top-5 ‘interesting’ patterns are reported by

the classical frequent itemset mining algorithm, since theitems of these patterns do not co-occur

frequently in individual nodes.

# Interesting Patterns Score

1 Ping Sweep, SmurfAttack 2.42

2 TFTP Put, Audit TFTP Get Filename, 2.32
ICMP Flood, PingFlood

3 TCP ServiceSweep, EmailError 1.21

4 HTML Outlook MailTo CodeExecution, 1.15
HTML NullChar Evasion

5 SQL SSRPSlammerWorm, 0.88
SQL SSRPStackBo

Table 5.5: Top-5 Proximity Patterns (Alerts)

The top-5 proximity patterns for theIntrusion Network data set are given in Ta-

ble 5.5. The first one describes a Smurf denial of service attack. The ICMP echo request (Ping)

packets addressed to an IP broadcast address cause a large number of responses, which might

consume all available network bandwidth. The second one describes a TFTP (Trivial File Trans-

fer Protocol) attack, which allows remote users to write files to the target system without any

authentication. The fifth one is an attack to Microsoft SQL Server 2000 which is vulnerable to
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a stack-based buffer overflow in the SQL Server Resolution Service. The discovered proximity

patterns show that multiple attacks are often coupled together to complete one intrusion.

# Interesting Patterns Score

1 ICMP Flood, PingFlood 0.94

2 Email Error, SMTPRelay
Not Allowed, HTML Null 0.94

Char Evasion
3 ImageRIFF Malformed, 0.90

HTML NullChar Evasion
4 TFTP Put, PingFlood, 0.80

Audit TFTP Get Filename
5 Email CommandOverflow,

Email Virus Double Extension, 0.75
Email Error

Table 5.6: Proximity Patterns minus Frequent Itemsets (Alerts)

Table 5.6 illustrates the proximity patterns discovered byour algorithms but ranked

low by the classic frequent itemset mining algorithm on the intrusion network dataset. The first

one is related to ICMP DOS Attack. The second one could be triggered by spammers who use

an open relay to send unsolicited email to a number of email accounts. The fifth one could

indicate an attacker’s attempt to overflow a buffer using a command that is longer than 512

characters.

# Interesting Patterns Score

1 Association, Rules, Mining 1.17

2 Distributed, Network, Architecture 0.84

3 Sensor, Video, Network 0.80

4 Channel, Allocation, Network 0.67

5 Vector, Machine 0.45

Table 5.7: Top-5 Proximity Patterns (DBLP)
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Table 5.7 shows the top-5 interesting patterns mined from theDBLP data set. Item-

sets1 and5 are related to Data Mining and Machine Learning. Itemsets2 is from distributed

systems. The remaining patterns are from sensor and networkfields.

5.7.3 Efficiency and Scalability

Steps Last.FM Intrusion DBLP

NmPA 2.0 5.0 187.0

FP-tree 1.0 10.0 89.0
Formation
Top-k Pattern 4.0 2.0 254.0
Mining

Table 5.8: Proximity Pattern: Runtime (sec)

We present the running time for our algorithms on the three above mentioned data sets

in Table 5.8. It can be observed that each component runs pretty fast. For example, theDBLP

collaboration graph with about0.7 million nodes requires less than9 minutes to be processed.

Next, we analyze the influence of different parameters on therunning time of infor-

mation propagation, FP-tree building and Top-k pattern mining. We use theDBLP graph for

these experiments. Figure 5.9(a) shows the variation of running time with respect to the num-

ber of nodes present in the graph. In order to vary the number of nodes, we randomly delete

some nodes and the corresponding edges from the graph. We setthe decay constantα = 1 and

vary the depth of propagation from1 to 3 for this experiment. The cut-off parameter is set at

ǫ = 0.36, 0.12 and0.04 respectively. Figure 5.9(a) shows that theNmPA running time in-

creases linearly with the increasing number of nodes. However, the slope of the lines increases

as we increase the depth of propagation.
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Figure 5.9: NmPA Time (DBLP)

Figure 5.9(b) shows the variation of running time with respect to the propagation

depth usingNmPA method. We setα = 1. In order to achieve a propagation depth at1, 2, 3

and4, we set the cut-off parameterǫ = 0.36, 0.12, 0.04 and0.01 respectively. Experiments are

performed for different values ofn. Figure 5.9(b) shows that theNmPA running time increases

exponentially with the increasing depth of propagation; which can be explained as the number

of h-hop neighbors increases exponentially as we increase the depthh.

Next, we show the variation of running time with respect to the total number of labels

in Figure 5.10. We use the completeDBLP graph and labels are selected randomly for this

experiment. Similar to the previous case, we set the decay constantα = 1 and vary the depth of

propagation from1 to 3. It can be observed that the running time ofNmPA on theDBLP data

set increases linearly with the increasing number of labels.

In Figure 5.11, we analyze the running time of FP-tree formation and top-k pattern

mining usingaFP with respect to the number of nodes. The propagation is done usingNmPA

with α = 1 andǫ = 0.12. Note that, as we increase the number of nodes, the running time for

the FP-tree formation increases almost linearly. However,the running time for mining levels off

after a certain value ofn. This can be explained as follow. If there ares labels, each transaction
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Figure 5.10: NmPA Time vs. # of Labels (DBLP)
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Figure 5.11: Mining Time vs. # of Nodes (DBLP)

requires at mosts scans to form the complete FP-tree. So, the time complexity of building the

FP-tree is almost linear in the number of nodes present in thegraph. However, once the FP-tree

is built, the mining depends on the size of the FP-tree and noton the actual size of the database.

Hence, the running time for mining levels off after a certainvalue ofn.

In Figure 5.12, we plot the running time of FP-tree formationand top-k pattern mining

usingaFP with respect to the number of labels. Note that, the latter increases at a higher rate

compared to the former as we increase the number of labels.
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5.7.4 Exact vs. Approximate Mining

We compare the effectiveness of our two mining algorithms, i.e. pFP (exact) and

aFP (approximate) onLast.FM data set. Table 5.9 reports the top-5 proximity patterns minus

frequent itemsets reported by thepFP mining algorithm. If we compare these patterns with

those reported by theaFP in Table 5.4, the top-5 patterns remain the same. Only the score

values differ slightly and therefore, the rank is a little bit different for some patterns. However,

if we consider the running times given in Table 5.10, it is easy to conclude that theaFP is very

efficient compared to thepFP . Moreover, this difference in running time grows very fast as the

size of the database increases. For theDBLP graph data, thepFP mining algorithm requires

about8 hours, whereasaFP reports the top-k patterns in less than9 minutes.

# Proximity Patterns Score

1 Katy Perry, Lady Gaga, Britney Spears0.58
2 Ferry Corsten, Tiësto, Paul van Dyk 0.55

3 Tiësto, Armin van Buuren, ATB 0.55

4 Neaera, Caliban, Cannibal Corpse 0.51

5 Lacuna Coil, Nightwish, Within 0.46
Temptation

Table 5.9: Proximity Patterns minus Frequent Itemsets using Exact Mining Algorithm
(Last.FM)

Steps aFP(approximate) pFP(exact)

FP -tree Formation 1.0 3.0

Top-k Pattern Mining 4.0 21.0

Table 5.10:Proximity Pattern: Runtime Comparison (sec) (Last.FM)
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5.7.5 Frequent Subgraph Mining

Subgraph patterns are a subset of proximity patterns, if we collapse their structure.

For Last.FM, the top-5 significant patterns discovered by LEAP search [158], are given in Ta-

ble 5.11. These top-5 patterns are also discovered by our probabilistic association method. If

the support threshold is set at1%, there are67 frequent subgraphs, while our approach discovers

5, 444 proximity patterns. If we raise the support threshold further, our approach could still find

interesting patterns, while the existing subgraph mining algorithm cannot. For Last.FM(≈ 6K

nodes), the running time of subgraph mining is comparable with ours. But for the Intrusion

Alert Network (≈ 200K nodes), it needs about4 hours, while our algorithm terminates within

17 seconds. Our approach avoids subgraph isomorphism testing.

# LEAP Patterns

1 Nirvana, Arctic Monkeys, Muse
2 Radiohead, Arctic Monkeys, Muse
3 Red Hot Chili Peppers, Arctic Monkeys, Metalica
4 Radiohead, Placebo, Depeche Mode
5 Radiohead, Cold Play, Arctic Monkeys

Table 5.11:Significant Patterns via LEAP (Last.FM)
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5.8 Summary

We introduced a new pattern concept in graphs - proximity pattern, which is a signif-

icant departure from the traditional concept of frequent subgraphs and frequent itemsets. Prox-

imity pattern blurs the boundary between itemset and structure. It relaxes the rigid structure

constraint of frequent subgraphs, while introducing structure association to frequent itemsets.

We discussed the weakness of a neighbor association model and proposed an information prop-

agation model that is able to transform a complex mining problem to a simplified weighted

itemset mining problem, which was solved efficiently by a modified FP-tree algorithm. Fur-

thermore, for the discovered patterns, we defined an objective function that could measure their

interestingness using randomization test. In summary, we proposed a complete pipeline to de-

fine and mine novel proximity patterns in massive graphs in a scalable manner. This pipeline

was evaluated on real-life social and intrusion networks. Empirical results show that it not only

finds interesting patterns that are ignored by the existing approaches, but also achieves high

performance for finding proximity patterns in large-scale graphs.

173



Chapter 5. Graph Pattern Mining

Algorithm 4 pFP: Probabilistic Itemset Mining
Input: Intermediate transaction dataset; and the minimum supportthreshold: minsup.

Output: frequent itemsets above the minsup.

Method:build the FP-tree; then callmine tree(∅,H)

proceduremine tree(X,H)

1: for all entryI (top down order) inH do

2: if [ H(I)
DBSIZE ] ≥ minsupthen

3: output{I} ∪X;

4: create a new header tableHI by callingbuild subtable(I);

5: mine tree({I} ∪X,HI);

6: end if

7: end for

procedure build subtable(I)

1: for all nodev on the side-link ofI do

2: walk up the path fromv to the root once;

3: if encounter a nodeu with labelJ then

4: add/update the entry forJ in HI as below:

5: insertu as a side-link ofJ for that entry;

6: HI(J) = HI(J) +
∑

id∈B(v)∩B(u)

{Aid(J) · Aid(I)};

7: add{id,Aid(J) ·Aid(I)} in B(vu) for all id ∈ B(v)
∧
B(u)};

8: end if

9: end for
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Algorithm 5 aFP, Approximate Itemset Mining
procedure build subtable(I)

1: for all nodev on the side-link ofI do

2: walk up the path fromv to root once;

3: if encounter a nodeu with labelJ then

4: add/update the entry forJ in HI as below:

5: insertu as a side-link ofJ for that entry;

6: calculateÃ(u, v), the approximate joint association of nodesu andv as mentioned in

Section 5.6.2;

7: HI(J) = HI(J) + Ã(u, v);

8: sum(vu) = Ã(u, v);

9: occurrence(vu) = occurrence(u);

10: end if

11: end for

175



Chapter 6

Conclusion and Future Directions

“In literature and in life we ultimately pursue, not conclusions, but beginnings.”

Sam Tanenhaus, in‘ Literature Unbound’

6.1 Concluding Discussion

With the advent of complex social and information networks,new graph queries are

emerging, including graph pattern matching and mining, similarity search, ranking, and dis-

covery of influential nodes that require smarter and faster graph data analysis. My dissertation

makes fundamental contributions in proposing effective and scalable techniques to solve these

novel problems, and thereby significantly advances the state-of-the-art in this field.

In the domain of querying heterogeneous networks, we proposed NeMa [96] — a

novel graph-based query-answering framework that is oblivious to the network schema. We

represented the user’s query also as a graph (not necessarily subgraph-isomorphic to the data

graph), and defined the query results as the top-k approximate matches of the query graph in
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the data graph. Our method,NeMa advances state-of-the-art network querying methods in two

ways. First, we proposed a neighborhood-vectorization based cost metric for approximate sub-

graph matching, which relaxes the rigid structural and label matching constraints of subgraph

isomorphism. Second, we designed machine learning-based efficient and scalable algorithms to

identify the top-k graph matches in large networks. Empirical evaluation overseveral real-life

datasets shows thatNeMa efficiently finds high-quality matches, as compared to state-of-the-art

graph querying and keyword search methods, e.g.,BLINKS [76], SAGA [142], IsoRank [138],

andgStore [171]. In addition,NeMa is very robust against structural and label noises, and also

scales well with the size of the data graph.

In the area of querying uncertain graphs, we proposedRQ-tree [94] — an indexing

method to efficiently answer reliability queries, that is finding the set of all nodes that are reach-

able from a query set of nodesS with probability no less than a given thresholdη. Based on

RQ-tree, we defined a fast filtering-and-verification online query evaluation strategy. Extensive

experiments on real-world uncertain graphs and under several settings show that our approach

is very efficient—speed-up over sampling methods up to six orders of magnitude, as well as

accurate—recall typically in the[0.75, 0.98] range. In addition, we have shown application of

RQ-tree in the influence-maximization problem [92].

In the domain of viral marketing, we designed a heuristic algorithm,RankedReplace

[7] for the influence maximization problem. We then proposeda BayesTraceback model in

order to approximate the effectiveness of this algorithm with the use of a faster technique. We

also examined the results on a number of real social network data sets, and verified that our
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methods are more effective than state-of-the-art approaches. In addition, we also considered the

targeted source and targeted destination versions of the influence maximization problem.

For querying massive graph stream, we constructed a structural synopsis, calledGMatrix

[6], with the use of a 3-dimensional sketch structure. Our synopsis maintains information about

the structural behavior of the underlying network. Thus,GMatrix is useful for a variety of

structural queries such as the determination of edge frequencies, subgraph frequencies, inverse

queries, or the determination of connected components. Ourexperimental results also show that

GMatrix can compress very large streams into a small space.

In [97], we introduced a novel graph pattern, called theproximity pattern, which is

a significant departure from the traditional concept of frequent subgraphs. Proximity patterns

relax the rigid structure constraint of frequent subgraphs, while introducing connectivity to

frequent itemsets. Therefore, it benefits from both: efficient mining in itemsets and structure

proximity from graphs. We developed two models to define proximity patterns. The second

one, calledNormalized Probabilistic Association(NmPA), transforms a complex graph mining

problem to a simplified probabilistic itemset mining problem, which is solved efficiently by a

modified FP-tree algorithm, calledpFP. NmPA andpFP were evaluated on real-life social and

intrusion networks. Empirical results show that it not onlyfinds interesting patterns that are

ignored by the existing approaches, but also achieves high performance for finding proximity

patterns in large-scale graphs.
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6.2 Future Directions

My immediate goal is to extend my previous work on graph querying and mining,

whereas my long-term goal is more open ended and related to analysis, processing and man-

agement ofBigGraphssuch as the knowledge graph.

I would like to work on the following, and other related problems, in my immediate

research.

Graph Query. Can we integrate thesemantic searchwithin graph querying methods? Can

we perform large graph alignment based on the answers of a fewsample graph queries? How

can one obtain diversified answers [151] over graphs, and what techniques should we use to

incorporate the users’ feedbacks? What features one must consider in order to build a classifier

over graphs [67]? Can we leverage theCrowdsourcing[15, 46, 63] to formally improve the

expressive power of SQL and SPARQL? Willgraph embeddingtechniques [168] be useful

to answer queries over social and information networks? Last, but not least, can we apply

these graph querying techniques in theweb search? We often like to get direct answers of our

queries instead of links that point to various webpages. With the emergence of several types

of graph-structured data, such as Freebase, DBpedia, Yago and Google’s knowledge graph,

integrating graph querying techniques has become an essential next step for an improved web

search experience.

Uncertain Graphs. Many classical graph problems, such ascommunity findingandgraph clus-

tering can be considered within the context of uncertain graphs. Next, how can one embed a
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probabilistic graph in a lower dimension [141]? I am also interested in the influence maximiza-

tion problem withco-operative campaigners, where each campaigner wants to maximize her

influence in her native region, and does not want to influence other campaigners’ native regions.

Dynamic Graphs and Streams.I would like to study graph matching and mining problems in

streaming and semi-streaming models [58]. For example, howcan one performco-clustering

over graph streams? Can we mine theperiodic proximity patternsfrom graph streams and

time-evolving graphs? How do we detect thesuspicious graph patternsin a telephone or email

network where the communications are received as graph streams [33]? How can one deal with

dynamic updates in the query graphs?

Finally, my long-term goal is to explore new topics in the domain ofBigGraphs. The

continued growth of semi-structured and network data and novel applications – along with the

emergence of cost-effective storage – ensure that the area of BigGraphs processing and manage-

ment will pose many interesting problems. Usually the challenges in BigData are classified into

three broad categories:volume, variety, andvelocity. Due to variety in BigData, researchers are

looking for a flexible data-model that can capture the relations among various entities, while

being not strictly typed. Therefore, graph has the potential to be a data-model for BigData.

One may need to consider various aspects beyond the structure of the graph, for example, the

node and edge attributes, uncertainty, and graph streams. Interdisciplinary knowledge from

social science, machine learning, databases, distributedcomputing, and graph theory are also

important. I am very interested in investigating the important problems in these domains.
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