UNIVERSITY OF CALIFORNIA
Santa Barbara

Towards Querying and Mining of Large-Scale Networks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of
Doctor of Philosophy
in
Computer Science
by
Arijit Khan

Committee in Charge:

Professor Xifeng Yan, Chair
Professor Subhash Suri

Professor Divy Agrawal

September 2013



The Dissertation of
Arijit Khan is approved:

Professor Subhash Suri

Professor Divy Agrawal

Professor Xifeng Yan, Committee Chairperson

July 2013



Towards Querying and Mining of Large-Scale Networks

Copyright(©) 2013

by

Arijit Khan



To my family: Ma, Baba, and Bhai



Acknowledgements

“And, when you want something, all the universe conspire$idlping you to
achieve it”

Paulo Coelho, iiThe Alchemist’

During my PhD study, | have been helped, encouraged, andaepdby many people
whom | would like to acknowledge my deepest gratitude.

My sincere thanks to my adviser Professor Xifeng Yan for hislgnce, suggestions,
and invaluable encouragement throughout the developnfiimsdhesis. His creativity, insight-
ful discussions, and passion for research provided a ptivduatmosphere for my work. | am
very grateful to Professor Divy Agrawal, Professor Amr Abh#rofessor Ben Zhao, Professor
Subhash Suri, and Alessandra Sala for their suggestion elpdahvarious phases of my PhD
study. | owe special thanks to Professor Janet Kayfetz apig$3or Doug Bradley for helping
me in improving my writing and presentation skills.

My thanks to all my collaborators for keeping trust in my daifiies. | would like
to express my gratefulness to them: Charu Aggarwal, Shu Sapriyo Chakraborty, Vish-
wakarma Singh, Shengqi Yang, Nandish Jayaram, Mahesh GanqtdProfessor Chengkai Li. |
want to mention four of my collaborators separately. Firgtighui Wu and Francesco Gullo —
| enjoyed discussing several problems with them, and thipedane a lot in improving my sci-
entific writing skill. Second, my sincere and deepest grdétto my mentors Francesco Bonchi
and Aris Gionis for always being my well-wishers. The codledtion started just as a regular
summer internship — but, then | learnt a lot about researitls flom them. They provided me

the freedom to think independently, and helped me to improyself in many different ways.



Even after the internship, they are always very encouragiageful, and supportive of me — |
hope to continue learning from them, and collaborating wigm.

Many thanks to all my Professors and collaborators from myewgraduate years:
Professor Subhas Nandy, Professor Debashish Saha, Brdfeadip Das, Professor Lawrence
Jenkins, Professor Dilip Basu, Professor Saswata Samnigkdway Mitra, and Arpan Roy.
They will always remain an inspiration who inculcated thesfufor higher studies in me.

| am very fortunate to have a close circle of friends from myengraduate days:
Sayan Bhattacharya, Amitangshu, and Shibamouli. Spdbiftbanks to Rajdeep Sau, Alessan-
dro, Francois, and Daniel Vaquero — who became good frieamdbmade life at Santa Barbara
enjoyable for me.

Last but not least, my family, relatives, and cousins. | wobéve had no chance
to complete my studies without the love, support, and eragement of my younger brother
Surajit, my parents Bina and Rampada: acknowledging theravsr enough.

This research was sponsored in part by NSF IIS 0847925,905@84, |IS 0954125,
and by the Army Research Laboratory under cooperative agrets W911NF-09-2-0053. The
views and conclusions contained herein are those of theutimd should not be interpreted as
representing the official policies, either expressed ofigdpof the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorizeghiaduce and distribute reprints

for Government purposes notwithstanding any copyrighicedtierein.

Vi



Education

Curriculum Vitee

Arijit Khan

2008-2013 (expected) PhD, Computer SciencéJniversity of California, Santa Barbara, CA

2004-2008

Selected Publications

Referred Conference

VLDB 2013

SIGMOD 2012

CIKM 2012

SIGMOD 2011

SDM 2011

Thesis: Towards Querying and Mining of Large-Scale Networks

B.E, Computer Science and Engineerjdgdavpur University, India

First Class (Honors), ranked 1st among 62 students

Arijit Khan, Yinghui Wu, Charu Aggarwal, and XifgnYan, NeMa: Fast
Graph Search with Label Similarityn Proc. of Very Large Data Bases 2013.
Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khalowards Effective
Partition Management for Large Graphis Proc. of International Conference

on Management of Data 2012.

Nan Li, Xifeng Yan, Zhen Wen, and Arijit KhaBensity Index and Proximity
Search in Large Graphsn Proc. of ACM Conference on Information and
Knowledge Management 2012.

Arijit Khan, Nan Li, Xifeng Yan, Ziyu Guan, Suga Chakraborty and Shu
Tao,Neighborhood Based Fast Graph Search in Large NetwarnkBroc. of
International Conference on Management of Data 2011.

Charu Aggarwal, Arijit Khan, and Xifeng Ya@n Flow Authority Discovery

in Social Networksin Proc. of SIAM Conference of Data Mining 2011.

Vii



SIGMOD 2010

SAS 2008

Under Submission

Submitted

Submitted

Submitted

Tutorial

ICDE 2012

Workshop Papers

GDM 2012

Arijit Khan, Xifeng Yan, and Kun-Lung Wiipwards Proximity Pattern Min-
ing in Large Graphsin Proc. of the International Conference on Management
of Data 2010.

Arpan Roy, Adway Mitra, Arijit Khan, Mita Nasipuand Debashis Saha,
LSDC: a Lossless Approach to Lifetime Maximization in \@selSensor Net-

works in Proc. of Sensors Applications Symposium 2008.

Arijit Khan, Francesco Bonchi, Aris Gionis, armdfcesco Gullo,
RQtree: an Index for Reliability Queries

Nandish Jayaram, Mahesh Gupta, Arijit Khan, @QkaiLi, Xifeng Yan, and
Ramez ElmasriGQBE: Querying EntityRelationship Graphs by Example Tu-
ples

Charu Aggarawal, Arijit Khan, and Xifeng Yan

GMatrix: A 3-dimensional Synopsis for Massive Graph Stream

Arijit Khan, Yinghui Wu, and Xifeng YarEmerging Graph Queries In Linked

Data, in Seminar of International Conference in Data Enginag2idl2.

Arijit Khan, Vishwakarma Singh, and Jian Waind Skyline Nodes in Large
Networks in Proc. of International Workshop on Graph Data Managemen
Techniques and Applications 2012, co-located with Intiomal Conference

in Data Engineering 2012 (ICDE 2012).

viii



CloudMan 2012

COMSWARE 2008

Honors and Awards

Arijit Khan, Xifeng Yan, Shu Tao, and Nikos Anesis,Workload Charac-
terization and Prediction in the Cloud: A Multiple Time SExiApproachco-
located with Network Operations and Management Symposi2 PNOMS
2012).

Arijit Khan and Lawrence Jenkingndersea Wireless Sensor Network for
Ocean Pollution Preventigrin Proc. of Communication Systems Software

and Middleware and Workshops, (COMSWARE 2008), IEEE.

Received IBM Ph.D. Fellowship 2012-13.

Received NSF ICDE 2012 Scholarship.

Received SDM Student Travel Award 2011.

Received P1 fellowship 2009-10, Computer Science, University olifGa
nia, Santa Barbara.

Received CITRIX GO-TO fellowship 2008-2009, Computer Science, Uni
versity of California, Santa Barbara.

Winner, Gold Medal from the Department of Computer Science and-Engi
neering, Jadavpur University in 2008.

Winner, Gold Medal by Tata Consultancy Services Ltd. for being thstb
student of the Department of Computer Science and Engimgeiadavpur
University in 2008.

Winner, Award for Academic Excellence by a Student, 2004 by Telglgra

School Awards.



Research Experience

Sep. 2008-Now

Jun. 2012-Sep. 2012

Jun. 2010-Sep. 2010

Jun. 2011-Jul. 2011

Jun. 2007-Sep. 2007

Selected Talks

Jun. 2012

Apr. 2012

Dec. 2011

Received Agarwal Rashtriya Puraskar (Award), 2002 & 2004 presebted

Shri Viren J. Shah, then Governor of West Bengal, India.

Received National Merit Scholarship, India from 2004 to 2008.

Computer Science, UC Santa BarbaraSanta Barbara, CA

Graduate Research and Teaching Assistant

Yahoo! Research Lal Barcelona, Spain

Research InterfiMentor: Francesco Bonchi and Aris Gionis.

IBM T. J. Watson Research Center Hawthorne, New York

Research InternMentor: Shu Tao, Manager: Nikos Anerousis.

Center for Nanotechnology, UC Santa BarbaraSanta Barbara, CANSET
Research Mentor

Electrical Engineering, Indian Institute of Science India

Summer Research FellpWentor: Lawrence Jenkins.

Towards Querying Large-Scale Heterogeneous Netwdiddsoo! Research,
Barcelona, Spain

Emerging Graph Queries in Linked Datautorial in the International Con-
ference in Data Engineering 2012CDE 2012).

Novel Graph Queries in Large Networkevited Talk atComputer Science,

IIT Guwahati, India .



Jun. 2011

May 2011

Jun. 2010

Aug. 2010

Aug. 2007

Professional Activities

Neighborhood Based Fast Graph Search in Large Netwdrkthe Interna-
tional Conference on Management of Data 2081GMOD 2011).

On Flow Authority Discovery in Social Networkis SIAM Conference of
Data Mining 2011, $DM 2011).

Towards Proximity Pattern Mining in Large Graphia the International Con-
ference on Management of Data 20181GMOD 2010).

Workload Characterization and Prediction in the Cloud: A Iiple Time
Series ApproachatIBM T. J. Watson Research Centerin Hawthorne, New
York.

Undersea Wireless Sensor Network Protocols for Ocean fRafiPrevention

at Electrical Engineerindndian Institute of Science, India.

Reviewer for Journal of Knowledge Based Systems (Elsevienrnal of In-
formation Systems (Elsevier), IEEE Transactions on Kndgéeand Data
Engineering, International Conference on Informationt&ys, Fundamenta
Informaticae, and Journal of Zhejiang University Science.

External Reviewer for IEEE Transactions on Neural NetwpW<DB 2014,
MLG 2013, SIGMOD 2013, ICDE 2013, WWW 2013, VLDB 2013, ICDM
2012, SIGMOD 2011, SDM 2011, SIGKDD 2010, SDM 2010, SIGMOD
2010, ICDM 2010, ICDM 2009, ICDE 2009.

Student member of the ACM and IEEE.

Student member of the Information Network Academic Rese@enter (INARC),

University of California, Santa Barbara.

Xi



Member in General Committee and Best Paper Committee inuatadstu-
dent Workshop, Computer Science, University of Califor@anta Barbara,

2011 and 2012.

Conferences Attended: SIGMOD 2010, 2011, SDM 2011, and KDD12

Xii



Abstract

Towards Querying and Mining of Large-Scale Networks

Arijit Khan

With the advent of the internet, sources of data have inetedsamatically, including
the World Wide Web, social networks, knowledge graphs, nadind government records.
Oftentimes, relations exist among the entities in thesa.daherefore, we observe structures
in the data, but these structures are implicit, and not ad dgregular as found in standard
database systems. These semi-structured data are usmibsented as large networks with
labeled nodes and edges. Querying and mining of these lidd&tedets are essential for a wide
range of emerging applications, such as viral marketindy search, malware detection, image
retrieval, and social networks analysis. However, the dempombinations of structure and
content, coupled with the massive volume of these datee sEgeral challenges that require
new efforts for smarter and faster graph analysis.

My research interests span the emerging problems in laxge;sheterogeneous,
semi-structured data, with a focus on querying and pattaningnin social and information
networks using scalable algorithms and machine learnicigniques. My research on large-
scale graphs could be categorized into two broad directiGhisquerying of large-scale net-
works, including heterogeneous networks, uncertain aedust graphs, and (2) pattern mining
over large graphs. In the domain of querying heterogeneetwanks, due to noise and lack

of schema, structured methods such as SPARQL — which reguinenderlying schema to

Xiii



formulate a query — are often too restrictive. Without knogvihe exact structure of the data
and the semantics of the entity labels and their relatigussitan we still query them and obtain
the relevant results? In addition, how do we query uncegeaphs and streams? In the area of
graph pattern mining, what graph features one should extraawder to build an accurate and
efficient classifier over large networks? From the perspedti advertising and viral marketing,
what are the top-k most interesting itemsets and the top-#t influential persons in a social
network? In my dissertation, | shall discuss our effectind afficient techniques to solve these

emerging problems associated with querying and mining ofptex Big-Graphs.

Professor Xifeng Yan

Dissertation Committee Chair

Xiv
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Chapter 1

Introduction

“If you can write, you can code. If you can sketch, you can ugeagh database.”
Neo4j

Recent advances in social and information science haverstiawlinked data pervade our so-
ciety and the natural world around us [153]. Therefore, ysadpave become ubiquitous models
to represent complex structures and schema-less data sutfikgedia, Freebase [64], and
various social and information networks. Many of these dateoften represented hsteroge-
neousgraphs, where the nodes are labeled entities, and the esjgesent the relation between
two entities. In many novel applications, uncertainty sodhherent in the data due to a variety
of reasons, such as noisy measurements [9], inference adit{ion models [5,103], or explicit
manipulation, e.g., for privacy purposes [26]. In theseesadata can further be represented as
an uncertaingraph, also callegirobabilistic graph, i.e., a graph whose arcs are labeled with
a probability of existence. In addition, many graphs suclthase defined by the activity on

social networks, communication networks, or telephongvors are defined dynamically by
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Large Networks
v
‘ retter Mlnlng

Heterogeneous Network Proximity Pattern

B Search Mining
(SIGMOD 11, VLDB 13) (SIGMOD 10)

L, Reliability Query in
Uncertain Graphs

Influence Maximization
—| in Social Networks
(SDM 11)

> Querying Graph Streams

Figure 1.1: My Contributions
Source codes and datasets of our accepted papers are guliallable (Section 1.2)

fast edgestreamson a massive domain of nodes. Querying and mining such grafhate
essential for a wide range of emerging applications indgdntelligence, predictive analytic,
social network analysis, decision and process management.

Most of the existing graph algorithms do not perform well tmmplex and large
networks. My thesis describes the efforts in developingatife and efficient techniques to

solve the emerging problems associated with querying anchgdf such complex graphs.

1.1 Contributions

My research in the area of large-scale networks can be lyreatibgorized into two

directions — graph querying and pattern mining. Figure Idvides an outline of my works.



Chapter 1. Introduction

1.1.1 Graph Querying

In the broad area of graph querying, | have worked on heteemes networks search
[86, 95, 96], reliability queries in uncertain graphs [9#ifluence maximization problem in

social networks [7], and querying graph streams [6].

Heterogeneous Networks Searchit is increasingly common to find real-life data represented
as networks of labeled, heterogeneous entities. To quesgethetworks, one often needs to
identify the matches of a given query graph in a (typicalkgég network modeled as a target
graph. The subgraph isomorphism problenNB-hard [43]. In addition, due to noise and
the lack of fixed schema in the target graph, the query graptsubstantially differ from its
matches in the target graph in both structure and node lathels bringing challenges to the
graph querying tasks. We propdsdeMa (Network Match) [96] — neighborhood structure and
label similarity-based fast approximate subgraph matchéchniques for querying real-life

networks.

Reliability Queries in Uncertain Graphs. Due to noisy measurements, inference errors, and
other causes, in many emerging application domains datepresented in the form of uncer-
tain graphs, that is graphs whose arcs are associated withbalplity of existence. A funda-
mental problem on such graphs is to compute the reliabl&$§é5, ) — the set of all nodes
that are reachable from a query set of noflegith probability no less than a given thresheld
Reliable set computation is a generalization of the sotodarget reliability problem, which is

known to be#P-complete [148].
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In this work [94], we proposd&kQ-tree, a novel index for efficiently estimating the
reliable set, which is based on a hierarchical clusteringhefnodes in the graph, and fur-
ther optimized using balanced minimum cut techniques. @aseRQ-tree, we define a fast
filtering-and-verification online query evaluation stgatehat relies on a maximum-flow-based
candidate-generation phase, followed by a verificatiorspltansisting of either a lower-bounding
method or a sampling technique. The first verification mettioes not return any incorrect
node, thus guaranteeing perfect precision, completelidav&ampling, and is more efficient.

The second verification method ensures instead bettet.recal

Influence Maximization in Social Networks. A central characteristic of social networks is that
it facilitates rapid dissemination of information betwedarge groups of individuals. This work
examines the problem of determination of informatftaw representatives— a small group of
authoritative representatives to whom the disseminatfaamiece of information leads to the
maximum spread. The problem of finding the tofflow representatives in a social network
is NP-hard [92]. Therefore, we first design a heurisienkedReplace algorithm, and then
propose &8ayesTraceback model in order to approximately find the tépHow representatives

with the use of a fast algorithm [7].

Querying Graph Streams. In many practical settings, the graphs may be drawn on a weassi
set of nodes, and the edges may arrive rapidly in the form ohplgstream — such as those
defined by the activity on social networks, communicatiotwoeks or telephone networks. It

requires a huge space to store all the graph steams overairdajuery answering over graph

stream are also inefficient since each query might requipgdoess massive streams from the
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past. In this work [6], we examine the problem of synopsisstimrection of massive graph
streams. We define tHeMatrix structure, which is &-dimensional synopsis structure that can
summarize massive graphs. A key property of@héatrix structure is that it retains information
about the structural behavior of the underlying graph stcedhis ensures that it is possible to
use this synopsis structure to answer important structpraties such as finding all connected

components of the underlying graphs.

1.1.2 Graph Pattern Mining

We have defined a novel graph pattern, calledghimity pattern [97], and pro-

posed efficient techniques to mine such patterns from lscgée networks.

Proximity Pattern Mining. Mining graph patterns in large networks is critical to a griof
applications such as malware detection and biological teodiscovery. However, frequent
subgraphs are often ineffective to capture associaticstiegiin these applications, due to the
complexity of isomorphism testing and the inelastic pattéefinition. In this work [97], we
introduceproximity pattern which is a significant departure from the traditional corniag#gre-
guent subgraphs. Defined as a set of labels that co-occuighbwrhoods, proximity pattern
blurs the boundary between itemset and structure. It reléheerigid structure constraint of fre-
guent subgraphs, while introducing connectivity to fregfuitiemsets. Therefore, it can benefit

from both: efficient mining in itemsets and structure prakjnfrom graphs.
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1.2 Source Codes and Datasets

We make the source codes and datasets of our accepted papkck/@vailable for
research purposes only. All our codes are sequential cotleswmemory graph representation

using the free edition of LEDA library [107]. Specificallype may download them as follows.

e proximity pattern [97]: http://habitus.cs.ucsb.edu/SIGMOD10_Proximity

Pattern.zip ,

NESS [95]: http://habitus.cs.ucsb.edu/SIGMOD11_Ness.tar.gz ,

NeMa [96]: http://habitus.cs.ucsb.edu/VLDB13_NeMa.tar.gz ,and

Influence Maximization [7]: http://habitus.cs.ucsb.edu/Gflow.zip

The workability and repeatability of oyroximity pattern and NESS source codes

were verified by the SIGMOD RWE committee [2].

1.3 Outlines

This dissertation is structured as follows. Chapter 2 diessNeMa for the heteroge-
neous network search problem. Chapter 3 presenR@ree indexing method for efficiently
answering reliability queries over uncertain graphs. @mag considers the influence maxi-
mization problem, and our algorithms to find the toflow authorities. Chapter 5 describes

proximity pattern mining over large-scale networks. HiyaChapter 6 concludes this thesis.



Chapter 2

Heterogeneous Networks Search

“Web search is designed to take any open-ended query andygiwdinks that
might have answers. Linking things together based on thimafsyoure interested
in is a very hard technical problem. Graph Search is desigiwethke a precise
query and give you an answer, rather than links that mightig® the answer”

Mark Zuckerberg

It is increasingly common to find real-life data represeraschetworks of labeled, heteroge-
neous entities. To query these networks, one often needtemify the matches of a given
query graphin a (typically large) network modeled asaget graph Due to noise and the lack
of fixed schema in the target graph, the query graph can sutadha differ from its matches in
the target graph in both structure and node labels, thugibgrchallenges to the graph query-
ing tasks. In this chapter, we propddeMa (Network Match), a neighborhood-based subgraph
matching technique for querying real-life networks. (1)yfieasure the quality of the match, we
propose a novel subgraph matching cost metric that agg®etad costs of matching individual

nodes, and unifies both structure and node label similsri{® Based on the metric, we formu-
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late the minimum cost subgraph matching problem. Given ayquraph and a target graph, the
problem is to identify the (tog) matches of the query graph with minimum costs in the target
graph. We show that the problemN&-hard, and also hard to approximate. (3) We propose
a heuristic algorithm for solving the problem based on aeriice model. In addition, we
propose optimization techniques to improve the efficienfcgur method. (4) We empirically
verify that NeMa is both effective and efficient compared to the keyword deartd various

state-of-the-art graph querying technigues.

2.1 Introduction

With the advent of the Internet, sources of data have inecedsamatically, including
the World-Wide Web, social networks, genome databasesylkdge graphs, medical and gov-
ernment records. Such data are often representgtaptis where nodes are labeled entities
and edges represent relations among these entities [12Quérying and mining of graph data
are essential for a wide range of emerging applications4,3,33].

To query these graphs, one often needs to identify the matfteegivenguery graph
in a (typically large)target graph Traditional graph querying models are usually defined in
terms ofsubgraph isomorphismand its extensions (e.qg., edit distance), which identifygsaphs
that are exactly or approximately isomorphic to query gedfif38,142,171]. In addition, a wide
range of query models and languages are proposed — such &@P#nd XDD for the RDF
and XML data — which require a standard schema of queriesamgdttgraphs. Nevertheless,

the real-life graphs areomplexandnoisy, and often lack standardized schemas [3]. Indeed,
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(a) the nodes may be heterogeneous, referring to differgtittes (e.g., persons, companies,
documents) [72]. (b) Node labels in a graph often carry rismantics, e.g., id, urls, personal
information, logs, opinions [74]. (c) Worse still, the setties of entities and their interconnec-
tions in various datasets may be different and unknown tesys. In this context, a match
may not necessarily be (even approximately) isomorphih¢oquery graph in terms of label
and topological equality. Thus, traditional graph quegytachniques are not able to capture
good quality matches. Consider the following example okherlMDB movie dataset.

K. Winslet ? K. Winslet ?

(Actor)  (Movie)  (Actor) (Movie)
Winslet, K. Titanic

(actor)  (Movie)

?
(Director)

?
(Director)
Cameron, J. Lang, S.

(Director) (1)
(Actor)

S. Lang
(Actor)

S. Lang ?
(Actor) (Movie)
(a) Query Graph 1 (b) Query Graph 2 (c) Top-1 Match

Figure 2.1: NeMa: A Query and Its Match (Example 2.1)

Example 2.1. A user wants to find a movie of actress ‘Kate Winslet' that iealed by the

same director who also worked with actor ‘Stephen Lang’.rEfi¢he schema and exact entity
labels of the target network are not available, the user didhcome up with some reasonable
graph representation of the query [74, 85], as illustratedrigure 2.1(a) and 2.1(b). Observe
that such graphical representation may not be unique, aedetimight not be an exact match
of the query graph in the dataset. Indeed, the result in Fegitl(c) (a star-shaped graph) is
by no means similar to the query graphs in Figure 2.1 (a) andlfbth chain-shaped graphs)

under traditional graph similarity definitions. Graph ediistance of the result graph with query
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graphs1 and 2 are 4 and 6, respectively. The size of the maximum common subgrapimis
both cases. Nevertheless, ‘Titanic’ is the correct answdhe query; and hence, the result
graph shouldbe considered a good match for both the query graphs using smwel graph

similarity metric.

This motivates us to investigate fast subgraph matchirfgnigoes suitable for query
answering, which carelaxrigid structural and label matching constraints of subbrigpmor-
phism and other traditional graph similarity measures. @aposed graph similarity metric is
based on following observations: (a) if two nodes are clasequery graph, the corresponding
nodes in the result graph must also be close. However, (b thay be some differences in
labels of the matched nodes.

While the need for such a graph similarity metric is evideng(SAGA [142], IsoRank
[138]), there is little work on subgraph matching in largéwarks considering both the criteria.
Our previous workNESS [95] was proposed for subgraph matching that considersrihem-
ity among nodes, but it resorts to strict node label matchirtge NESS algorithm is based on
afiltering-and-verificationapproach. In the filtering phase, the less promising catelidades
are pruned iteratively, until no more candidates can bequtuithe output of the filtering phase
is a limited number of final candidates for each query nodenTh verifies all possible graph
matches formed by these final candidates, in order to findaé graph matches. One can
modify NESS to leverage for node label differences. However, this maodgiion reduces the
effectiveness of its filtering phase, and results in a langmlver of final candidates for each

guery node (See Appendix for an example). Indeed, in ourrarpats, we find a very low

10
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‘ H NeMa ‘ BLINKS 1 ‘ IsoRank ‘ SAGA ‘ NESS ! ‘ gStore ‘
Precision 0.91 0.52 0.63 0.75 Filter: 0.17 0.59
(Node) Filter+Verify: 0.80
Recall 0.91 0.52 0.63 0.75 Filter: 0.83 0.59
(Node) Filter+Verify: 0.80
Precision 0.88 0.50 0.40 0.69 Filter: 0.39 0.55
(Graph) Filter+Verify: 0.74
Recall 0.88 0.50 0.40 0.69 Filter: 0.75 0.55
(Graph) Filter+Verify: 0.74
Top-1 Match 0.97 1.92 4882.0 | 15.95 Filter: 0.59 0.92
Finding Time (sec) Filter+Verify: 56.16

Table 2.1: NeMa vs. Keyword Search and Graph Querying Methods.

The query graphs were extracted from théDB graph, and later modified by adding)%

structural noise and0% label noise. We determined the topnatch for each query graph

using various methods, and measured effectiveness at\vbede(a) query nodes, and (b)

query graphs. At the node level, precision is defined as ttie od correctly discovered node

matches over all discovered node matches, while recall ssored as the ratio of correctly

discovered node matches over all correct node matcheslagiynat the graph level, precision

is defined as the ratio of correctly discovered graph matdwes all discovered graph matches,

and recall is measured as the ratio of correctly discoverabh matches over all correct graph

matches. A graph match is considered correct if at 1§85t of its nodes are matched correctly.

Since we consider only the tdpmatch, precision and recall have the same value. In addition

we also report precision and recall &fESS filtering phase. For details about the query graphs,

noise, and evaluation metrics, see Section 2.7.

precision score foNESS, at the end of its filtering phase (Table 2.1). Hence, it bezouite

expensive to determine the tépgraph matches from these large number of final candidates. In

11
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contrast, our proposddeMa framework employs an inference algorithm that iterativedpsts
the score of more promising candidate nodes, consideritiglabel and structural similarity;

and thereby directly finds the tdpgraph matches.

Contributions. In this work, we proposé&leMa, a novel subgraph matching framework for
guerying heterogeneous networks.

(1) We define the query result as the match of a given quenhgreptarget graph, in terms of a
notion of homomorphism-based subgraph matching. To medkarquality of the matches, we
further define a novel subgraph matching cost metric betwlesequery graph and its matches
(Section 2.3). In contrast to strict subgraph isomorphisar,proposed metric aggregates the
costs of matching individual query nodes, which in turn dejseon the cost of matching node
labels and their neighborhoods within a certain hops.

(2) Based on the cost metric, we propose the minimum costraphgnatching problem (Sec-
tion 2.4), which is to identify the matches of the query graptih minimum costs in the target
graph. We show that the problemNs>-hard and also hard to approximate.

(3) We propose a heuristic method for the minimum cost sydbgraatching problem (Sec-
tion 2.5). In a nutshellNeMa converts the underlying graph homomorphism problem into
an equivalent inference problem in graphical models [188Y thereby allows us to apply an
inference algorithm to heuristically identify the optimalatches. Our method avoids costly
subgraph isomorphism and edit distance computations. Wefupropose indexing and opti-

mization technigues for our method in Section 2.6.

YIn this chapter, all experimental results wKHESS and BLINKS correspond to their modified versions, where
we allow two nodes to be matched if their label differenceithin a predefined threshold.

12
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(4) We empirically verify the effectiveness and efficiendyNeMa. Our experimental results
on real-world networks in Section 2.7 show thé¢Ma finds better quality results quickly
as compared to keyword search (eLINKS [76]) and various graph querying techniques

(e.g.JsoRank [138], SAGA [142], NESS [95], gStore [171]).

2.2 Related Work

Subgraph Matching. Ullmann’s backtracking method [147Y,F2 [44], Swiftindex [137] are
used for subgraph isomorphism checking.

The subgraph matching problem identifies all the occuremdea query graph in
the target network. In bioinformatics, exact and approtérsubgraph matchindnave been
extensively studied, e.gPathBlast [91], SAGA [142], NetAlign [110], IsoRank [138]. Among
them, SAGA is close to ours in terms of problem formulatioowdver, these algorithms target
smaller biological networks. It is difficult to apply themlarge heterogeneous networks.

There have been significant studies on inexact subgraphhingtin large graphs.
Tong et al. [144] proposed the best-effort pattern matchivitich aims to maintain the shape
of the query. In contrast, we identify the optimal matcheteims of proximity among entities
rather than the shape of the query graph. Tian et al. [143]jge®d an approximate subgraph
matching tool, calledrALE, with efficient indexing. Mongiovi et. al. introduced a s®tver-
based inexact subgraph matching technique, c&8l&MA [119]. Both these techniques use
edge misses to measure the quality of a match; and therefanmot incorporate the notion

of proximity among entities. There are other works on ine»abgraph matching. An in-

13
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complete list (see [66] for surveys) includes homomorphizmsed subgraph matching [55],
belief propagation based net alignment [22], edge-ediiadice based subgraph indexing tech-
nique [166], subgraph matching in billion node graphs [148yular expression based graph
pattern matching [21], schema [117] and unbalanced ongalagtching [169]. Among them,
homomorphism based subgraph matching [55] is close to elowever, instead of identifying
the top4 matches, our work reports all the subgraphs where the quigigsecan be mapped to
paths of a given maximum length and the label differencesvihén a certain threshold.

There are several works on simulation and bisimulatioretbagaph pattern match-
ing, e.g., [54,114], which define subgraph matching edation among query and target nodes.
Compared to thenieMa, is more strict, since we define subgraph matchingfasetionfrom

guery nodes to target nodes.

Label and Concept Propagation.Label propagation has been widely used in semi-supervised
learning, e.g., labeling of unlabeled graph nodes [135]ndépt Propagation /Concept Vec-
tor, on the other hand, was originally formulated to measlieesemantic similarities between
terms/concepts in a taxonomy [98]. We note that the sprgaatitivation theory of memory [16]
used a similar idea of activation propagaticdP/CV and spreading activation have been ef-
fectively used in [41, 95] for approximate structural mauchin trees, graphs and also for in-
formation retrieval from associated networks [23]. Theseks consider only strict node label
matching. However, subgraph matching without node lalsedstiarder problem than subgraph

matching with node labels [165]. Therefore, instead otstibode label equality, when one al-

14
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lows approximate node label matching (e.g., in our curremiyy it significantly increases the

complexity of the search problem.

Querying Semi-structured Data. Lorel andUnQI are among the preliminary query languages
designed for semi-structured data. Both of them model idpta as labeled graphs, while per-
mitting users to write queries without detailed knowledpewt the schema. Later, an under-
lying query processing system converts those queries fatalard SQL or structural recursion
queries, respectively, for retrieving the correct answetss idea of query rewriting has been
explored in the context of both relational and semi-stneridata, e.q., [45,74,127,162]. Ob-
serve that such query rewriting techniques alleviate Usens the complexity of understanding
the schema; nevertheless, the underlying query procesgstgm still requires a fixed schema.

In the realm of RDFSPARQL is widely used as the query processing language. How-
ever, writing of aSSPARQL query is often too challenging, because it requires theteaamwl-
edge of structure, node labels and typgStore [171], which is the first study that considers a
subgraph matching-based query answering technique in RE# alows approximate node la-
bel matching, but adheres to strict structural matchesomtrast, ouNeMa framework permits
both structural and node label mismatches.

Our work is different from the keyword search in graphs [83, &s our queries have

bothstructureand keywords (node labels).

2.3 Preliminaries

We start with a few definitions.

15
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2.3.1 Target Graphs, Queries and Matching

Target graph. A target graph that represents a heterogeneous netwakala@ian be defined as
alabeled, undirected grajgh= (V, E, L), with the node set’, edge set’, and a label function
L, where (1) eacltarget nodeu € V represents an entity in the network, (2) each edgeF
denotes the relationship between two entities, and.(i3)a function that assigns to each node
u a label L(u) from a finite alphabet. In practice, the node labels may ssprethe attributes

of the entities, e.g., name, value, etc.

Query graph. A query graph?) = (V, Eq, Lg) is an undirected, labeled graph, with a set of
query noded/y, a set of query edgels, and a label functiotl g, which assigns to each query
nodev € Vg alabelLg(v) from a finite alphabet.

We next define theubgraph matchingf a (connected) query graph in a large target
network.

Given a target grapli: = (V, E, L) and a query grapl@ = (Vo, Eg,Lg), (1) a
nodeu € V is acandidatefor a query node € V;, if the difference in their labels (i.eL(u)
andLg(v), respectively), determined by a given (polynomial-timenpoitable)abel difference
functionAy, is less than or equal to a predefined threskolV/e denote abl(v) the candidate
set of the query node. (2) asubgraph matching a many-to-one function : Vo — V/, such

that, for each query nodee Vy, ¢(v) € M(v).

Remarks. (1) The label difference functiod\; between two node labels can be defined by

a variety of criteria, such as the Jaccard similarity, gtralit distance, or more sophisticated

16
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semantic metrics, e.g., ontology similarity [45]. In thisrk, we use Jaccard similarity measure
to determineA 1, (Section 2.7)(2) In contrast to strict one-to-one mapping as in traditioni-s
graph isomorphism tests, we consider a more general maogecubgraph matching function.
Indeed, two query nodes may have the same match [55, {3Bln practice, the nodes in the
target and query graphs may be annotated with types (egurd=2.1 and [74]), where a query
node can only be matched with target nodes having the saraeltyguch cases, our subgraph

matching model can be easily adapted to capture the typéraons by refining candidate sets.

Q(Vg, Eq, Lq) query graph
G(V,E,L) target graph
p: Vo=V subgraph matching function
Arp label difference function
M(v) candidate set of node
Re(u) neighborhood vector of node
Ny(v,u) neighborhood matching cost betweeandu
Fy(v,u) individual node matching cost betweemndu
C(o) subgraph matching cost function

Table 2.2: NeMa Notations: Target Graphs, Queries and Subgraph Mutchi

2.3.2 Subgraph Matching Cost Function

There can be many valid matching functions for a given queaply and a target
graph [66]. As stated earlier, our novel graph similaritytmieemust preserve the proximity
among node pairs in the query graph, while the labels of thiclmed nodes should also be
similar. Taking this as our guideline, we introduce gébgraph matching cost functian
NeMa as a metric to measure the goodness of a matching. The faredids up the costs of

matching a query node with its candidate, thereby captutieglifference between labels and

17
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neighborhood structures of the two nodes. We first introdbeenotion of a neighborhood

vector.

Neighborhood vectorization Given a node: in the target grapky, we represent the neighbor-
hood ofu with a neighborhood vectoR¢ (u) = {(v/, Pa(u,u’))}, whereu’ is a node within

h-hops ofu, and Pg (u, u') denotes thg@roximity of «’ from u in G.

) it d(u,u') < h;
PG(uv ’LL/) = (21)

0 otherwise.

Here,d(u, ') is the distance betweenandw’. Thepropagation factor is a param-
eter betwee and1; andh > 0 is the hop number (effectively, the radius) of the neighborch
for vectorization. The neighborhood vector of nadencodes the proximity information from
u to its h-hop neighbors. It often suffices to consider small valuek @#.g.,h = 2), since the
relationship between two entities becomes irrelevant eis slocial distance increases [30].

Based on neighborhood vectors, we now proceed to model thehing cost of the
neighborhoods of a query node and a target node. Let us deéreotet of neighboring nodes
within h-hops ofv asN(v). Given a matching functiow, the neighborhood matching cost

betweerv andu = ¢(v), denoted byV, (v, u), is defined as:

Lwenw) A+ (Po(v, '), Po (u, ¢(v')))

Ny(v,u) = (2.2)
¢( ) ZUIEN(’U) PQ(U7 U/)
whereA (z,y) is a function defined as
x—y, ifx>y;

0 otherwise.

18
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Intuitively, N,(v,u) measures the matching cost of the neighborhood vectors of
andu. Note that (i) the user issues a query based orvaguenotion of how the entities are
connected in the target graph. Hende, avoids penalizing the cases when two nodes are
closer in the target graph, as compared to their correspgnmbdes in the query graph. (ii) We
normalize Ny (v, «) over the neighborhood af that incurs more cost when same number of
node misses occurs in a smaller neighborhood.

Recall that we assume the existence of the label differemeetibn0 < A, < 1.
Now, the individual node matching cost for matching funetipis defined as a linear combina-

tion of the label difference function and the neighborhoaatahing cost function.

whereu = ¢(v).

This node matching cost combinesthlabel matching cost and neighborhood match-
ing cost via a parametér < A < 1, whose optimal value lies betwe@B ~ 0.5 empirically
(Section 2.7).

We are now ready to define our subgraph matching cost func@ren a matching
¢ from the query nodes € V;, to target nodes(v) € V, the subgraph matching cost function

is defined as:

C(¢) = Y Fyv,6(v)) (2.5)

UGVQ

Intuitively, C(¢) is the matching cost af between the query gragh and the target

graphG, and the problem is to find a matching functigrthat minimizesC(¢). Note that,
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assumingA, is non-negativef (v, ¢(v)) and therefore('(¢) are both non-negative, so the

minimum value that”(¢) can take ig).

2.3.3 Cost Function Properties

The following properties of our subgraph matching cost fiomcillustrates its con-

nection with subgraph isomorphism.

Property 2.1. If the query graph( is subgraph isomorphic (in terms of structure and node
labels equality) to the target grapfy, then there exists a minimum cost matching function

with C'(¢) = 0.

Property 2.1 ensures that all the matching functionshich identifies exact (isomor-
phic) matches for), must have cosi. However, a matck of @, whereC'(¢) = 0, may not

necessarily be isomorphic . We refer to such matches fase exact matches

Example 2.1.Consider a query graph), a target grapld: (Figure 2.2), and a subgraph matching
function ¢, where¢(vy)=u1, ¢(v2)= ¢(v4)=us, and ¢(vs)=us. Assumingh = 1 anda =
0.5, the neighborhood vectors @ are: Rg(vq)={(ve, 0.5), (v3, 0.5)}, Rg(v2)={(v1, 0.5)},
Rg(v3)={(v1, 0.5), (v4, 0.5)}, andRg(vs)= {(v3, 0.5)}. Similarly, we have the following
neighborhood vectors i66: R (u1) = {(ug, 0.5), (us, 0.5)}, Rg(uz) ={(uq, 0.5), (us, 0.5)},
andR¢(uz) = {(u1,0.5), (uz, 0.5)}. Therefore, the individual node matching coBlsis 0 for

all v € Vg, and the subgraph matching c@st¢) is 0. Observe that the match identified by

is not isomorphic ta).
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However, if the matching functioa is one-to-onethe following property shows that

the false exact matches can be avoided,.

Property 2.2. If the match identified by is not isomorphic to the query graph, and¢ is a

one-to-one function, thefi(¢) > 0.

oo
Vi ° V3 u

Query Graph Q

Figure 2.2: Example of False Exact Match MeMa

Proof Since( is connected and is a one-to-one function, if the match identified byis
not isomorphic taQ), one of the following must hold.(1) There exists some node € VJ,
s.t, Ar(Lg(v), L(¢(v))) > 0. Then,C(¢) > 0, assuming\ # 0 in Eq. 2.4. (2) There
exists an edgév, v’) in Eg; but the corresponding edde, «') is not in graphG. ¢(v) = u
and ¢(v') = «/. This impliesPg(v,v") = «, but Pg(u,u') < «, which in turn implies

Ny(v,u) > 0. Assuming\ # 1in Eq. 2.4, we geC(¢) > 0. O

2.4 Problem Formulation

The subgraph matching cost function favors matches withni@atching costs. Based
on the matching cost function, we introduce the minimum sasigraph matching problem as

follows.
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Problem 2.1. Minimum Cost Subgraph Matching. Given a target graphG, a query graph

Q, and the label noise threshold find the minimum cost matchirg

argmin C(¢), (2.6)
¢
st. Arp(Lg(w),L(u)) <€ Vv e Vg,u=¢(v) (2.7)

Intuitively, instead of checking subgraph isomorphisnt,moblem formulation iden-
tifies the optimal match by minimizing node label differepees well as node pair distances. The
identified matches serve as answers to the query graph.

The problem is, however, nontrivial. The following theorshows that the decision
version of the problem is intractable, even when the sulbgnagtching functionp is not injec-

tive.

Theorem 2.1. Given a target networkz, a query graph@, it is NP-complete to determine

whether there exists a matghwith NeMa subgraph matching cost(¢) = 0.

Proof The problem ifNP, since there is a nondeterministic algorithm which gueasesatch-

ing function¢, and verifies whether its coét(¢) = 0, in polynomial time. We prove thNP-
hardness by reduction from the graph homomorphism probidrith isNP-complete [43]. A
homomorphism from a grapl’ to a graph’ (both unlabeled) is a function that preserves node
adjacency (i.e., each edge @i is mapped to an edge i@@’). Given an instance of the graph
homomorphism problem, we construct an instance of the miningost subgraph matching

problem, where all nodes in the target graghand query grapld) have identical labels. We
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also assumey.l.o.g, that the depth of vectorizatioln = 1. One may verify that if there exists
a homomorphismy’ from @’ to G’, then there exists a corresponding matchinfjom Q to
G, s.t. C(¢) = 0. Conversely, if¢’ is not a homomorphic matching, then there exists an edge
(v,") in Eg, but the corresponding edg@é(v), ¢(v')) is not inG. Hence,C(¢) > 0 (A # 1
in Eq. 2.4). Therefore, there exists a matching functidrom @ to G, whereC(¢) = 0, if and
only if there is a homomorphic matchirg from Q’ to G’. This completes the proof. O
One may want to find a polynomial time approximation alganth However, the

problem is also hard to approximate.

Theorem 2.2. The minimum cost subgraph matching is APX-hard.

Proof We show that this optimization problem is APX-hard by pariorg a reductior(f, g)
from the Maximum Graph HomomaorphisiviGH) problem without self loops, which is APX-
hard [126]. AnNMGH problem identifies a matching which maximizes the numberdgks of
the query grapld) that can be mapped to edges of the target gi@gboth unlabeled). Given
an instance of MGH, we construct an instancg of the minimum cost subgraph matching
problem, where all nodes in the target netwarkand query graph®) have identical labels.
Let n, ande, be the total number of nodes and edges, respectivety, iw.l.0.g, assume the
depth of vectorizatiorh = 1, and the proportionality constant = 1 — niq We denote by
OPT(I) the value of the optimal solution of problem instangeand VAL(Z, x) the value of a
feasible solution: of the problem instancé. Assume OPTI) = e, and VAL(I,z) = e for

some feasible solutiom of instancel. Clearly,e, > 1. Hence,(1) OPT(I') < 1 < e, =

OPT(I). Also, given some feasible solutionof instancel’, one may verify thatOPT(I) —
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VAL (I,9(y))| = e, — e, and|OPT(I') — VAL (I,y)| > 7e==. Therefore,(2) |OPT(I) —
VAL (1,9(y)) | < 2n4eq|OPT(I") — VAL (I, y)|. Thus, there exists a reductidtf, g) from

MGH to the minimum cost subgraph matching problem, and the émedollows. O

2.5 Query Processing Algorithm

In this section, we propose a heuristic solution to iderttify minimum cost match-
ings. We start by introducing the max-sum inference problemgraphical models [130], and
show how our graph homomaorphism problem underlyingNb®la framework is equivalent to

an inference problem in graphical models.

Max-Sum Inference. In graphical models, the joint probability distributionniction p(X) of

a set of variables = {x1,x2,... ,2)} can be expressed as a product of the fe(d{) =

L fi(X;), where eachX; C X. Alternatively,logp(X) = >, log fi(X;). The Max-Sum
inference problem is to find the values of the variableseo, . . ., z; that result in maximum
p(X). In other words, we would like to maximiZeg p(X) that can be decomposed as the
sum of several functions of the forlag f;(X;), each of which depends only on a subset of the
original variables.

The objective of the max-sum inference problem is similathiat of the minimum
cost subgraph matching problem, which isrtmimizethe overall subgraph matching c@sto).
Recall that (1)C'(¢) is an aggregation of the individual node matching c@$t&, ¢(v)) of all
guery node®, and (2) the individual node matching cost of a query nedepends only on the

matches ob and its neighbors ifN(v). In light of this, we propose aiterative inferencealgo-
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rithm similar to the loopy belief propagation algorithm Q3used for inferencing in graphical

models.

2.5.1 Iterative Inference Algorithm

In this section, we introduce our inference algorithm, ded@asNemalnfer and il-

lustrated in Figure 2.3.

Overview. Given a query graptp and a target grapfy, Nemalnfer first computes the candidate
set for each query node using the node label similarity fonch ;, (line 1). Next, it initializes
aninference cosU, (v, u) by assigning it to the minimum possible value of individuaie
matching costs, (v, u), over all possible matching functions s.t., p(v) = w (line 2-3). It
theniteratively computes aimference costor each query node and its candidates, and selects
the optimal matchof v as its candidate with the minimum inference costNemalnfer keeps
track of the optimal matches for each query node. The praeethpeats until it reaches a
fixpoint, where the optimal matches for more than a threshalaber of query nodes remain
identical in two successive iterations (lines 4-12). HinaNemalnfer refines the matches of
each query node and its neighborhood that it “memorizes’aviaemoization technique, and
obtains the best match (line 13). The constructed subgragtbhae is then returned (line 14).

We next introduce several proceduresNeialnfer in detail.

Inference cost and optimal match(lines 3-12). The algorithrilemalnfer improves the quality

of the matching in each iteration, based on the notion @fifemence cosand theoptimal match
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Algorithm Nemalnfer

Input: Target graptG(V, E, L), Query GraptQ(Vy, Eq, Lg).

Output: Minimum cost matching of) in G.

1. for eachnodev € Vi, do computeM(v);

2. i:=0;flag ;= true;

3. Initiate iterative inferencing with Eq. 2.8;
4. while flag do

5. 1:=1+1,

6. for eachv € Vg do

7. for eachu € M(v) do

8. computdJ; (v, u) with Theorem 2.3;

9. keep track of the current matches of neighhdrs N(v);
10. compute optimal mataB; (v) using Eq. 2.10;

11. if more than a threshold number of

query node® satisfyO;(v) = O;_1(v) then
12. flag := false;
13. construct for all v € Vi, (with Eq. 2.11, 2.12).

14. return &;

Figure 2.3: Iterative Inference AlgorithnNemalnfer

Inference costAt each iteratiori of Nemalnfer, the inference codt;(v, v) for eachv € Vg

andu € M(v) is defined as follows.
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Up(v,u) = min Fy(v,u 2.8

o(v,u) (en (v, u) (2.8)

Ui(v,u) = min [Fs(v,u) + Z Ui—1 (v, )] (2.9)
{¢:¢(v)=u} o EN(w)

We assumeé > 0, andu’ = ¢(v') in Equation 2.9. Intuitively, the inference cost is
the minimum sum of the individual node matching cé3i(v, «) and the previous iteration’s
inference costéfi_l(v’, ¢(v’)) for all neighborsy’ of v, over all possible matching functions
¢, with the constraint(v) = u.

Note that although we consider the minimization over allgitle matching functions
o, s.t.,0(v) = u, in Equation 2.9, it only depends on the matches of the neighd nodes in

N(v). As discussed later, inference costs can be computed inqoiial time.

Optimal match In every iteration, we also define tlogtimal matchof each query node. The

optimal match of a query nodeat iteration:, denoted byO;(v), is defined as follows.

O;(v) = argmin U;(v,u); >0 (2.10)
ueM(v)

Example 4.1. We illustrate the idea of one iteration Bemalnfer using Figure 2.4. Assume
we have already determined the candidate matd{iés) for every query node» using the
label similarity functionA . For exampleM(vy) = {ug, us,ug} andM(vy) = {ur,u1p} in
Figure 2.4. Also, considgs = 1. Ati = 0, Up(ve, us) = Up(va,ug) = 0. Therefore, we can

not distinguish betweens andug in the initialization round, as which one is a better match
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of vo. However, observe thdfy(vy, u19) < Up(vs,u7). uig iS @ neighbor ofug, while u; a
neighbor ofus. Thus, it not only influences the optimal mat€h(v,) of v4 at iterationi = 0,
but it also make#/; (ve, ug) < Uj(v2, us) atiterationi = 1, via Eg. 2.9. Hence, we improve the

matches in each iteration and proceed towards the minimwsin(leeuristic) subgraph match.

Invariant. The algorithmNemalnfer posses the following invariant in each of its iteration,
which illustrates the connection between the inferencé and the subgraph matching cost

(Section 2.3).

Invariant 2.1. If there exists a matching functiotfrom the nodes af) to the nodes of7, such

that, C(¢) = 0, thenUj; (v, ¢(v)) = 0 for all v € Vg andi > 0.

However, the converse is not always true. In fact, basedeprbperties of the loopy
belief propagation algorithm, there is no guarantee thatabgorithm will converge forall
guery nodes after a certain number of iterations. Therefeesterminate the procedure when
more than a threshold number of query nodesatisfy the conditiorO;(v) = O;_1(v). We
empirically verified in Section 2.7 that our method usuabguires abou® to 3 iterations to
terminate — aroun@5% of query nodes converge usitigDB dataset, and also performs well

in real-life networks.

Matching refinement (line 13). The optimal match of each query node at the finaaiiten
might not correspond to the subgraph matching function thighminimum (heuristic) aggregate
cost [130]. This can happen if there are multiple graph matcfunctions that result in the

minimum cost graph matches. Therefore, we need to refinegtimal node matches from the
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final round ofNemalnfer to identify one such minimum cost subgraph matching fumctgay
&. We refer to the matches of the query nodes correspondiagiathemost probable matches
To find these most probable matches, the standeschoizatiortechnique can be used after the
termination of our iterative inference algorithm. Firsguery node, say, is selected randomly,

and its most probable match, denotedady) € M(v), is determined as follows:

®(v) = argmin Uy (v, u) (2.11)
ueM(v)

In Eg. 2.11,: = ¢ denotes the final iteration. For the remaining nodes, thet mabable
matches are determined by memoizing recursively, i.e., @apKkrack of the matches of the
neighboring nodes that give rise to the most probable mdttheccurrent node. For example,
the most probable matchegv’) of all v € N(v) are obtained using the most probable match

of v as follows.

¢p = argmin [F¢(v,<1>(v))+ Z Uy_1 (v/,qb(v/))]
{p:0(v)=2(v)} v'€N(v)

&(v') = (1) (2.12)

The aforementioned memoization technique is performed tivt most probable

matches of all query nodes are computed.

Computation of Inference Costs A straightforward approach to determine the inference cos
U;(v,u) for a query node and its candidate (Eg. 2.9) considers all possible combination of

matches for all nodes’ € N(v), which has exponential time complexity and might be very
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expensive. In this section, we propose a technique to camtphatinference cost ipolynomial
time

Partial inference costTo evaluate the inference cds$f(v, «) for a query node and its candi-
datew at iterationi of the algorithmNemalnfer, we compute gartial inference costor each

nodev’ € N(v), which is denoted byV; (v, u,v"), and defined below.

Wi(v’ u, U,) [5(”) ' A-i— (PQ(U’ UI)? Fq (ua (;3(2)/)))

= min
{p:p(v)=u}

+ Ui—1 (v, 0(v"))] (2.13)

Here,3(v) = X, enew) Pa(v, v’)]~1. To computeV; (v, u, v"), we only need to find
the minimum value in Eq. 2.13 over the candidate®li(v’). Hence, the partial inference cost
W;(v,u,v") can be computed in polynomial time, for each triplet:, v, whereu € M(v) and

v" € N(v). Next, we show the relation between the partial inferenst @od the inference cost.

Theorem 2.3. The inference codV; (v, u) is computable in polynomial time via the following

formula:

Uilw.u) = Ap(Lo(). L) + 3 Wilw,u.r/) 214)
v'€N(v)
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Proof
Ui(v,u)
= 0 [AL(LQw),L(u))w(v)-U, 3 A (Pa(ea),Po(uo())
Fy(v,u)
+ T Ui ()]
v/ EN(v)
= i B [0 A (Poe!) Polud ) +Uir 0 6(1)
+ Ar(Lo(),L(w)
= Z i (08 (o) Polud ) +Uia 0 6()
W (v,uv’)
+ AL(Lo),L(w)
= AL (Lo(v), L(w) + Y Wi(v,u,v)
v’ €N(v)
Hence, the theorem. O

It follows from Theorem 2.3 that the inference cé5tv, ) of nodesv andu can be
efficiently computed in polynomial time, by (1) determinithg partial inference co$V; (v, u, v")
for eachv’ € N(v), and (2) aggregating these partial inference costs With(L¢(v), L(u)).
The aforementioned technique also keeps track of whichhmatof the neighboring query
nodes give rise to the most probable match of the currentyquede. This information is

required during matching refinement.

Time complexity. We analyze the time complexity of the algorititemalnfer. Let us denote

the number of nodes in the target gra@tand the query grap® as|V'| and|Vy|, respectively.
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V5

Query Graph Q Target Graph G

Figure 2.4: NeMa: Optimal Subgraph Match Finding Algorithm

(1) It requiresO(|Vg| - |V]) time to identifyM(v) for each query node € V (line 1). (2) We
denote the maximum number of candidates per query nodegasind the maximum number
of h-hop neighbors of each query nodedas The computation of the optimal mat€h (v) per
query nodev has time complexit;@(mé2 -dg) following Theorem 2.3 (line 10). Therefore, the
time required for each iteration &femalnfer is O(| V| -mé -dg). If there are total iterations,
the overall time complexity is given b9 (|Vg| - V| + I - [Vgl - mé -dg). Observe thafV|,

I, |[dg| andm are typically small. Indeed, as verified in our experime®sdtion 2.7),[ is
typically less thant andm is 35, for query graphs witlh nodes and real life graphs containing

12M nodes.

2.5.2 Generalized Queries

In this section, we extendlemalnfer for three generalized cases, namelpp-k

matchesunlabeled queriesandlabeled edges

Top-k Matches. In many applications, the query graph is not subgraph isphiotto the target
network; and hence, we are interested in identifying thektapatches rather than only the
best match. Given the target netwatkand the query graplp, thetop-k subgraph matching

problem is to identify the tog-matches for @elected query nodec V.
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The algorithmNemalnfer can be readily adapted for this problem. (1) The algorithm
computes the inference costs and terminates at line 12. ¢2)#&¥tify the topk most probable
matches ofv (Eq. 2.11). (3) For each of these tépmost probable matches of we apply
the recursive memoizing technique (Eq. 2.12) to deterntieecbrresponding most probable

matches for other query nodes.

Matching Query with Unlabeled Nodes. A query graph may have nodes with unknown la-
bels, e.g., query graphs constructed from RDF queie$4a can be adapted to evaluate such
gueries. First, we identify all the nodes from the targetvoek that can be matched with some
labeled query node based on label similarity. Next, we firdghbgraph induced by all those
matched nodes from the target network along with their rimgh within ~-hops. All nodes

in this subgraph are considered as the candidates for tladeled query nodes. The algo-
rithm Nemalnfer is then invoked to identify the matches. In addition, if thdaleled query

nodes contain type information, the candidate sets cahdulte refined.

NeMa with Edge Labels. The NeMa cost function can be adapted to consider the edge labels.
Specifically, we concatenate the edge labels along theestigrath between a pair of nodes,

and then update the neighborhood matching cost (Equat®)rag follows.

Ny(v,u)
Z [A-i- (PQ(U7 v/)7 Pq (u’ u/))) + AL(S(U7 v/)’ S(U” u/)))]

v’ €N(v)
> [Po(v,v') +1]
v’'eN(v)
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Here,u = ¢(v), v’ = ¢(v’), ands(v, ") concatenates the edge labels along the shortest path
betweenv andv’. Since, we consider the edge labels along the shortest patleén a pair of

nodes, the asymptotical time complexityléMalnfer remains the same.

2.6 Indexing and Optimization

In this section, we discuss indexing and optimization ténples to improve the effi-

ciency of our network matching algorithm.

2.6.1 Candidate Selection

The candidate set of a query node is defined in terms of thé apdarity func-
tion (see Section 2.3), which may include candidate nodasdb not match the query node
due to neighborhood mismatch. We introduce optimizatichri@ues to efficiently filter such
candidate nodes as much as possible, and thereby imprdwangetformance of our inference

algorithmNemalnfer. We first introduce the notion dfolated candidates

Isolated Candidates Given a query node and its candidate s@(v), a nodex € M(v) is an

isolated candidat®f v, if

{ ' e M(0'),v e Nw)}n{u" :u" € N(u)} =0 (2.15)

Intuitively, the nodeu is an isolated candidate of a query nad# none of the can-
didates withinh-hop neighbors of) are in theh-hop neighborhood ofi; otherwise, it is a

non-isolated candidate of Thus, an isolated candidateof v can not be matched with
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To efficiently find the non-isolated candidates, we propasegimization problem,

based orverification costandcandidate cover

Verification Cost. The verification cost associated with a query nods defined as the time
complexity to verify all nodes in its candidate $éiv), whether they are non-isolated candi-
dates. Note that the complexity of verifying whether somdew € M(v) is a non-isolated
candidate i) (|N(u)] + 3=, e M (V)]).
Candidate Cover. There exists dependencies between two non-isolated caedidifu is a
non-isolated candidate of, then there must exist a nodé € N(u), such thaty’ € M(v')
for somev’ € N(v). Clearly,u’ is a non-isolated candidate of. If we verified all candidates
{v' : v € M(v'),v" € N(v)}, there is no need to verify the candidatesVifv) again. Thus,
one may reduce redundant verifications using a notion ofidatelcover.

We definecandidate covefC(Q) as a set of query nodes such that, for alt’ € Vo,

eitherv’ € C(Q), orv’ € N(v).

C(Q) ={v: V' (v € C(Q) Vv € N(v))} (2.16)

All non-isolated candidate nodes can be identified by vexifpnly the query nodes
in C(Q). We define the verification cost of a candidate cover as theoduihe verification costs

of its constituent query nodes. Next, we introduce the aatdicover problem.

Problem 2.2. Candidate Cover. Given a query graphQ, find the candidate cover with the

minimum verification cost.
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The following result shows that the candidate cover probignmtractable, but ap-

proximable within a facto® in polynomial time.

Theorem 2.4. The candidate cover problem is (P-hard, and (2)2-approximable.

Proof We show that this problem NP-hard by reduction fronNP-complete weighted min-
imum vertex cover problem [43]. Given a decision versionha weighted minimum vertex
cover problem, we construct an instance of the candidatercoroblem, where the vertex
weights are considered as the corresponding verificatists cOAssumingh = 1, the mini-

mum weighted vertex cover will be our candidate cover. Omeagaply linear programming to

solve this problem witl2-approximation [43]. O

2.6.2 Indexing

We introduce indexing technique to improve the efficiencthefinference algorithm.
(1) During the off-line indexing phase, it computes the hbigrhood vector®(«) for all nodes
u in the target networkz, and stores the vectors in the index. (2) During the on-liesvork
matching technique, it is selected as a candidatewgfit applies Eq. 2.15 to verify whether
is an isolated candidate of If so, v is eliminated from the candidate setwof

Our index structure has space and time complesity.d’ ), where|V| = n, dg =
average node degree %, andh =depth of vectorization. FdleMa with edge labels (Sec-
tion 2.5.2), the asymptotical time and space complexityydéking remains the same, since we

consider edge labels along the shortest paths.

36



Chapter 2. Heterogeneous Networks Search

Dynamic maintenance of the index.Our indexing methods can efficiently accommodate dy-
namic updates in the target network. If a nadéand the edges attached to it) is added or
deleted, only the indexes afs h-hop neighbors need to be updated. If a single gdge’) is
added or deleted, only tHe— 1 hop neighbors of both and«’ are updated, thus reducing the

redundant computation.

2.6.3 Optimization for Top-£ Matching

The inference algorithmlemalnfer can be adapted to identify the tédpmatches. For
small values of, it is possible to prune candidate nodes by setting a cossliiotd. The cost
thresholde, is initially set to a small valuey. If U;(v,u) > €. for someu € M(v) at iteration:
of the inference algorithm, thenis eliminated from the candidate $¥ft(v) for the subsequent
iterations. After termination, if the top-matches cannot be identified, we increasky a small

value, and repeat the steps above. The correctness of tthisanie ensured by Theorem 2.5.

Theorem 2.5. If U;(v,u) > e. at thei-th round of inference algorithm, then for ajl > 1,

Uj(v,u) > €. at thej-th round of inference algorithm.

Proof It follows directly from Eq. 2.9 and the fact th&t (v, «) > 0 for all i > 0, over all pairs

v, u, Whereu € M(v). O

Hence, we can eliminate from M(v), whenevetU; (v, u) > ¢. occurs for the first

time at some iteratiot of Nemalnfer.
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2.7 Experimental Results

We present three sets of empirical results over three ifeatldtasets to evaluate (1)
the effectiveness and efficiency (Section 2.7.2), (2) &dlétha(Section 2.7.3), and (3) optimiza-

tion techniques (Section 2.7.4) underlying theMa framework.

2.7.1 Experimental Setup

Graph Data Sets We used the following three real life datasets, each reptesa target graph.
(1) IMDB Network. [83] The Internet Movie Database (IMDBgonsists of the entities of
movies, TV series, actors, directors, producers, amongrsttas well as their relationships.
(2) YAGOENtity Relationship Graph. [157] YAGOis a knowledge base with information har-
vested from the Wikipedia, WordNet and GeoNames. It coatabout20 million RDF triples.
(3) DBpediaknowledge Base[48] DBpediaextracts information from the Wikipedia. We con-

sidered22 million RDF triples fromDBpediaarticle categories, infobox properties, and person

data.
IMDB —&— INDEX ——
YAGO -t MATCH (TOP-1) E=——
1| DBpedia «aw MATCH (TOP-3) mmmmm

MATCH (TOP-5)
09¢

0.8 @

F1-MEASURE

TIME (SEC)

0.7

0.6 0
0 03 05 07 1 :

A IMDB YAGO DBpedia
(a) Effectiveness (b) Efficiency

Figure 2.5: NeMa: Query Performance
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Figure 2.6: NeMa: Performance against Label Noise

| Dataset| #Nodes | #Edges |
IMDB 2,932,657 | 11,040,263
YAGO | 12,811,149 18,282,215
DBpedia| 5,177,018 | 20,835,327

Table 2.3: NeMa: Dataset Sizes
The nodes iy AGOandDBpediaare annotated with labels, while the nodes\tibB

are annotated with both types and labels. Hence, we usegdéeriformation associated with

the nodes, in addition to their labels, while querying iid®B network.
Query graphs. We generated the query graphs by extracting subgraphstifretarget graphs,
and then introducedoiseto each query graph. Specifically, the query generation wasalled
by:

¢ node number and diameter, denoted|By| and D, respectively, where thguery di-

ameteris the maximum distance between any two nodes in the quephgpa

e structural noise the ratio of the number of edge updates (random insertidrdatetion

of edges) inQ) to the number of edges in the extracted subgraph; and
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e label noise measured by the Jaccard similarity between the labels désin the ex-
tracted subgraph and their updated counterpart§,invhere the updated labels were

obtained by inserting randomly generated words to the guedg labels.

We used Jaccard similarity as the label similarity measspecifically, given a query

|wyNwe, |
[wyUtwey, | ?

nodev and a target node, the label difference\;, (L (v), L(u)) is defined ad —

wherew, andw,, are the set of words in their labély(v) and L(u), respectively. Recall that
we allowed some noise in the node labels by varying the lala¢tining cost thresholdin our
matching algorithm (Problem Statement 2.1). A nade the target network is considered a
candidate to match with a query nodéf their label differenceA, (Lo (v), L(u)) is less than

the predefined cost threshaldreferred to as thiabel noise threshold

Evaluation metrics. Since the query graphs were extracted from target graplesaloeady has
the correct node matches. Now, the effectivenesabfla is measured as followsPrecision
(P) is the ratio of the correctly discovered node matches allediscovered node matches.
Recall(R) is the ratio of the correctly discovered node matches alleorrect node matches.

F1-Measurecombines the results of precision and recall, i.e.,

2
Fl1= TRITD (2.17)

We considered the topimatch to evaluate precision, recall, and F1-measure. Thus,
we obtained the same values for them. However, precisionrecall will be useful while

analyzingNESS.
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Comparing Methods. We comparedNeMa with keyword searchELINKS [76]) and various

graph querying method$S:AGA [142], IsoRank [138], NESS [95], andNeMag, - a variation of

NeMa following gStore [171]. All these methods were implemented in C++.

In our experiments, (1) propagation factoand depth of vectorizatioh (Section 2.3)

were set af.5 and2, respectively [95], (2) the optimal values of the proporttity constant\

(Eq. 2.4) for different datasets were obtained empiricéifligure 2.5(a)), (3) the indexes were

stored in the hard disk. All the experiments were run usingngle core in al00GB, 2.5GHz

Xeon server.
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2.7.2 Effectiveness and Efficiency

Performance over Real-life Data Sets

In these experiments, we evaluated the performance Ne&bfa over three real-life
graphs, averaged oveéb0 queries (Figure 2.5). For each target graph, we randomlgrgésd
100 query graphs withVg| = 7 and D¢ = 3. We fixed the structural noise 8%, label noise

as50%, and label noise threshold 58%.
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Figure 2.11: NeMa: Effectiveness with Unlabeled Query Nodes
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Figure 2.12: NeMa: Performance with Edge Labels (IMDB)

Figure 2.5(a) shows the effectivenessNafMa over various datasets, and with dif-
ferent values of the proportionality constantFor all the three datasets, our algoritlaiways
correctly identifies more than6% of the query nodes. Specifically, the F1-measure.jgd

for IMDB, with A = 0.3, even when we introducegD% structural noise and0% label noise.
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The effectiveness is higher ovivDB due to the type constraint posed with the query nodes.
Besides, the optimal value oflies betweer.3 ~ 0.5 in these datasets.

Figure 2.5(b) reports the efficiency BEMa using the same setting as in Figure 2.5(a),
including the running time of off-line index constructiotNDEX) and online query evaluation
(MATCH We observed the following. (dYeMa identifies the best match in less thar
seconds, over all three datasktgb) The topk match finding time does not vary significantly,
over differentk, since our inferencing method is always executed once. l{e)time required
for indexing is modest (e.g9862 sec for theYAGOdataset withl3M nodes and 8M edges).

(d) The indexing and querying times are longer DB, due to its higher density.

Performance against Noise

In this set of experiments, we investigated the impact ofingrnoises on the perfor-
mance ofNeMa. Three sets of query graphs were generated by settiny(|)= 3, Do = 1,
(i) [Vo| =5, Do = 2, and (iii) |Vg| = 7, Dg = 3. Under each query set)0 query graphs

were generated.

Varying label noise Fixing the structural noise &9%, we varied the label noise froff%

to 50%, and investigated the effectiveness¥Ma, when the label noise threshold was set
as35% and50%, respectively. As shown in Figure 2.6(a) o\Bpedia (1) the F1-measure
decreases as the label noise increases, since the cargbtlafeeach query node may contain

more candidates that are not true matches, which in turrcesdihe effectiveness, (2) the F1-

Sour indexing and matching algorithm can be parallelizecsf@ry node. Hence, one may implemékiMa in
a PREGEL [115] platform, for larger graphs.
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measure is higher when the label noise threshold is highvare she candidate sets are more
likely to include the correct matches. Observe that the [Easure is always aboves0.

Figure 2.6(b) shows thdleMa efficiency is insensitive to label noise, but more sen-
sitive to label noise threshold. This is because it takella more time to process the larger

candidate sets for the query graph as the label noise tHdesltoeases.

Varying structural noise. Fixing the label noise threshold a5% and label noise a35%, we
varied the structural noise frof¥% to 40% in Figure 2.7(a) and 2.7(b). It can be observed that
(a) both effectiveness and efficiency decrease as we ircthasstructural noise, and (b) with
the increase of the query size, both effectiveness andeafigiincrease. The reason is that
(1) larger queries have more constraints in the neighbatted@ query node, which benefit the

identification of correct matches, and (2) it takes longeetforNeMa to compare the matching
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cost for larger queries. Moreover, the F1-measure is alebygse0.93, and the running time is

always less thafl.1 seconds, even with0% structural noise.

Varying label noise threshold Fixing the structural noise &% and the label noise &%,
we investigated the effect of varying the label noise thoéslon the query performance.

The effectiveness and efficiency M&éMa overIMDB are illustrated in Figures 2.7(c)
and 2.7(d), respectively. We observed the following. (1 Hi-measure initially increases
while we increase the label noise threshold. This is bectiesquery node labels are updated
by adding random words. Hence, the higher is the label nhisshold, there is more chance
that the correct match of a query node will be selected indatlidate set. (2) When the label
noise threshold is more tha%%, the F1-measure does not improve significantly. Therefore,
the optimal value of the label noise threshold can be detethémpirically based on the query
and target graphs. On the other hand, the running timi¢ebfa increases with the increase of
the label noise threshold. This is because (a) the candidatehes per query node increases
(see Figure 2.9), and (b) the number of iterations requioedhfie convergence of our network
matching algorithm also increases (see Figure 2.10). Hentakes more time foNeMa to

find the matches.

Effectiveness with Unlabeled Query Node

We next verified the effectiveness bieMa in the presence ofinlabeled nodein
guery graphs. These experiments simulate RDF query amsyvgsge Section 2.5.2). For these

experiments, we randomly selected two setd@f query graphs each, where (fp| = 7,
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Dqg = 3, and (i) |Vg| = 5, Dg = 2, respectively. Fixing the structural noise 3¥%, label
noise as35%, and label noise threshold 85%, we varied the number of unlabeled query
nodes from0 to 2. As shown in Figure 2.11, (1) the F1-measure decreases ottedatasets
while the number of the unlabeled nodes increases, bedaeise@ltabeled nodes introduce more
candidates, which in turn reduces the effectiveness, @pffectiveness is higher oviviDB

due to the type constraints, and (3) over all the cases, thaddakure is always aboes0.

Performance with Propagation Depth

In these experiments, we analyzed the effect of propagdtpth/ in our query per-
formance. We randomly selectad0 query graphs fromYAGQ with |Vy| = 7, Dg = 3,
structural noise&0%, label noise50% and label noise thresholi%. Table 2.4 shows that the
efficiency of NeMa decreases with increasirlg especially the index time increases exponen-

tially with . However, forh = 2, we obtained an acceptable F1-measure.&8.

| [i=t[h=2]h=3]
Index Time (sec)|| 265 | 9862 | 236553

Match Time (sec)| 0.58 | 0.92 2.76
F1-Measure 0.61 | 0.86 0.87

Table 2.4: NeMa: Query Performance with Varyirig(YAGO)

Performance with Edge Labels

We verified the query performance in the presence of edgésléBection 2.5.2). We
randomly selected00 query graphs fromMDB, with with [Vy| = 7, Dg = 3, label noise

50% and label noise thresholi)%. We varied the structural noise frobfs to 40%. The labels
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of the newly inserted edges in the query graphs were assignegnerating random strings.
Figure 2.12 shows that, (1) when no structural noise is adihedF1-measure remains same
for both the cases of labeled and unlabeled edges. (2) Howeitk the addition of structural
noise, the F1-measure decreases slightly for the case elethledges, since there are more
noises in the query graphs due to the labels of newly insextigés. (3) The running time is
higher for the case of labeled edges because additionaliginegjuired to measure edge label

similarities.

Comparison with Existing Algorithms

We compared the performance BEMa with IsoRank [138], SAGA [142], NESS
[95], gStore [171], andBLINKS [76]. (1) IsoRank andSAGA find optimal graph matches in
smaller biological networks considering structure andentadbel similarities. (2NESS finds
the top% graph matches from a large network, but with strict nodellabeality. Hence, we
modified NESS by allowing two nodes to be matched if their label differerigevithin the
label noise threshold. (3) We considered a variatiohefla, namely,NeMag, which allows
label difference but resorts to strict isomorphic matchifigus,NeMags essentially follows the
same principle agStore, which is a subgraph isomorphism-based SPARQL query eNafua
method with node label differences. BLINKS [76], a keyword search method, supports only
structural mismatches. Hence, we also modis@dNKS by allowing node label differences

within the label noise threshold.
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All these methods, exceMESS, find the topi graph match directly. Hence, we
considered the top-match corresponding to each query node to evaluate precisaall,
and F1-measure; and thereby obtained the same score for timnecontrast,NESS employs
afiltering-and-verificationapproach, where its filtering phase reports a set of higlitgdaal
candidate nodes for each query node. Then, it verifies allipesgraph matches formed by
these final candidate nodes, in order to find the tapaph match. Therefore, we report pre-
cision, recall and F1-measure of its filtering phase, whicthé most important step MESS.
For fairness, we reported only the running time of its filigrphase in Figure 2.13(c).

For these experiments, we randomly seledte@ query graphs, wherg/p| = 7 and
Dg =3, using theMDB dataset. In each query graph, one node wdabeledand the labels of
the remaining nodes were updated by randomly inserting nesdsv We varied structural noise
in Figure 2.13(a), and fixed both label noise and label ndiseshold a$0%. Observe that,
with no structural noise\eMa andNeMag, have F1-measure abowd4; but with the increase
in structural noiseNeMa (F1-measur®.9) outperforms the other methods (F1-meaduie~
0.7)

We varied label noise and label noise threshold in Figurds3(B) and 2.13(c), and
fixed structural noise a80%. The label noise threshold had the same value as label noise
in these figures. With no label noisBeMa has F1-measur@.93, whereas\NESS, IsoRank,
SAGA, andBLINKS have F1-measures abdug. However, as we increase label noilkeMa

(F1-measur®.9) outperforms the other methods (F1-meadute~ 0.7) by a large margin.
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NeMa finds the best match in less tharsec, whilelsoRank takes5000 sec. SAGA

requiresl5 sec and>46 sec, with label nois60% and80%, respectively.

2.7.3 Scalability
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Figure 2.14: NeMa: Scalability

In this section, we analyzed the scalabilityddMa by varying the number of nodes
in the YAGOandIMDB networks. We used00 randomly selected query graphs, wherg| =
7, dg = 3, and fixed the structural noise 38%, label noise a85%, and label noise threshold as
35%. Figure 2.14 shows thddeMa scales well with the size of the target graphs. Specifically,
the off-line indexing time increases polynomially, and tmdine query evaluation time linearly

with the increase of the size of the target networks.

2.7.4 Optimization Techniques

In these experiments, we investigated the performancesajptimization techniques
of NeMa. We randomly selecteti00 query graphs, wherg/p| = 7 andDg = 3, and fixed the
structural noise a80% and both label noise and label noise threshol@%. In each query

graph, the number afnlabeledquery nodes is varied fromto 2. Figure 2.15(a) shows that the
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indexing and optimization techniques significantly imprdlie efficiency oNeMa, specifically
by a factor of15 in the presence df unlabeled query nodes.

We also compared the index construction time wdgimamic updat@gainst the cost
of rebuilding the whole index. In these experiments, we ittared only deletion of nodes
(and thereby, deletion of the incident edges) from the pailghetwork as a method of dynamic
updates. Figure 2.15(b) shows that, for a wide range of egdatthe target graph, it is more

efficient to update the index structure rather than re-iimdethe graph.
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Figure 2.15: NeMa: Index Performance

2.8 Summary

In this chapter, we have introducéteMa, a novel graph querying framework via
subgraph matching that allows for ambiguity in both struetand node labels. We convert
the neighborhood of each node into a multi-dimensionaloreeind then apply an inference
algorithm to identify the optimal graph matches. We furtimestigate howNeMa can be ex-
tended to various graph query-processing applications) as RDF query answering, graph
matching with edge labels, and finding témpproximate matches. Our experimental results

over real-life datasets show thideMa efficiently finds high-quality matches, as compared to
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state-of-the-art graph querying methods. In future worle may consider approximate sub-
graph matching over graph streams, and also more soplestitzbel similarity metrics, e.g.,

ontology and semantic similarity.
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Chapter 3

Reliability in Uncertain Graphs

“ ... as far as the propositions of mathematics refer to rgalihey are not certain;
and as far as they are certain, they do not refer to reality.

Albert Einstein

Due to noisy measurements, inference errors, and otheegaimsmany emerging application
domains data are represented in the form of uncertain grdpasis graphs whose arcs are
associated with a probability of existence. A fundamentabjem on such graphs is to com-
pute thereliable setRS(S,n)—the set of all nodes that are reachable from a query set @asod
S with probability no less than a given threshajd Reliable set computation is a generaliza-
tion of the source-to-target reliability problem, whichkisown to be#P-complete. Traditional
techniques for computing source-to-target reliabilityplgpsampling methods, which are not
efficient enough for the generalized version of the problem.

In this chapter, we proposBQ-tree, a novel index for efficiently estimating the

reliable set, which is based on a hierarchical clusteringhefnodes in the graph, and fur-
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ther optimized using balanced minimum cut techniques. ®aseRQ-tree, we define a
fast filtering-and-verification online query evaluationageégy that relies on a maximum-flow-
based candidate-generation phase, followed by a verditatiase consisting of either a lower-
bounding method or a sampling technique. The first verificathethod does not return any
incorrect node, thus guaranteeing perfect precision, tetelp avoids sampling, and is more
efficient. The second verification method ensures instetdriyecall.

Extensive experiments on real-world uncertain graphs adduseveral settings show
that our approach is very efficient—speed-up over sampliathous up to six orders of mag-

nitude, as well as accurate—recall typically in fher5, 0.98] range.

3.1 Introduction

Recent advances in social and information science haverslhioat linked data is
pervasive in our society and the natural world around usréfbee, graphs have become ubig-
uitous models to represent such complex structured dataetd, in many novel applications,
uncertainty is inherent in the data due to a variety of reassuch as noisy measurements [9], in-
ference and prediction models [5,103], or explicit mardggioh, e.g., for privacy purposes [26].
In these cases, data can be represented as@artain graph also called probabilistic graph,
i.e., a graph whose arcs are labeled with a probability cfterice.

A fundamental primitive on uncertain graphs is givenrbijability queries whose
main goal, generally speaking, is computing the probagbiliat any two (sets of) nodes are

reachable. Most attention has been so far devoted to thelesitmgersion of such queries,
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Figure 3.1: Run-Through Example: An Uncertain Graph.

that issource-to-target reliability where one is asked to compute the probability thaingle
target node is reachable fronsenglesource node. Source-to-target reliability is a prototgpic
#P-complete problem [20, 148], thus the focus in this regarsiiieen on developing effective
approximation methods. Most of the work has concerned M@ado sampling methods [61,
92, 131], which have a major efficiency shortcoming due tddhge number of samples that is
typically needed to obtain satisfactory accuracy. To &kevthis issue, some smarter sampling
methods have been proposed recently [87,170].

In this chapter, we study a more general reliability prohlamich we callreliable set
computation Instead of focusing on the reliability between any two EBngpdes, we shift the
attention orsets of nodeggiven a probability thresholg € (0, 1) and asetof source nodes,
computeall nodes that are reachable fradrwith probability no less than. The generalization
with respect to source-to-target reliability is twofold:evallow multiple sourcenodes, while
also asking forll target nodes that satisfy the query. To the best of our krdiyeethis is the

first work focusing on such a generalized reliability prable

Example 3.1 (Reliable Set Computation)Consider the uncertain graph in Figure 3.1, and

suppose one wants to compute all nodes that are reachabte{f¢ with probability greater
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than0.5. We denote this query &S({s},0.5). Itis easy to verify thatv is part of the solution
due to a direct arc frons with probability greater than the query threshold. Additgdly, u
can be reached frors directly, or viaw. Thus, the probability thati is reachable from{s}
is equal to the probability that at least one among the dingath and the path througkv
exists. Assuming independence among the existence otthimdhe graph, this probability is

1-(1-0.5) x(1—-0.6 x0.5) =0.65. Henceu also belongs to the solution set.

Nodev is reachable if at least one of the following events hold9:tie arcs(s,u),
(u,v) exist; (2) the arcqs,w), (w,v) exist; (3) the arcgs,w), (w,u), (u,v) exist. However, the
three events are not independent. Hence, to properly dodgh®atation, one has to consider
all possible instances of this subgraph consisting afcs, which are2’> = 32. Note that even
for such a small graph, it is non-trivial to determine the pability thatv is reachable frons.
For t, the computation becomes even more convoluted. Congidelipossible instances of

the uncertain graph, one may verify that the answer to ouryige RS({s},0.5) = {s,u,w}.

Applications. The reliable set computation problem naturally arises iar&ty of scenarios. In
the problem known amfluence maximizatigrwhose main application ig&ral marketing[92],
the probability of an ar¢u, v) represents the influence thatexerts onw, i.e., the likelihood
that some action ai will be adopted by, or the likelihood that information propagates fram
to . Animportant, as well as the most computationally expenstep common to the state-of-
the-art techniques is to determiak nodes that can be influenced by a gisatof seed nodes:
in Section 3.7.6, we show how this can be approximated dffiigidoy means of reliable-set-

computation queries.
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In protein-protein interaction networks [100], nodes em@nt proteins and arcs rep-
resentinteractionsamong them. Interactions are established for a limited rnpioteins,
through noisy and error-prone experiments. Thereford) aecis associated with a probability
accounting for supporting evidence on the existence ofrttezaction. In this context, predict-
ing co-complex memberships [17, 100], and new interactj®84, 136] require to compute all
proteins that are evidently (i.e., with high probabilitydachable from a core (source) set of
proteins.

In mobile ad-hoc networks, the connectivity between nodessiimated using noisy
measurements, and the notion of “delivery probability” banused to quantify the probability
that a given node can deliver a packet to another node [68hila&ly, road networks can be
modeled as uncertain graphs due to unexpected traffic ja@js [8 such types of networks,
reachability from a set of alternative source locations teetof affordable target locations
should be interpreted in a probabilistic way, by means, éfereliable-set-computation queries.

In all applications such as those listed above, the rateliabte set computations to
be performed is usually very high. Thus, a fundamental requént is to perform any single
reliable set computation very quickly. This makes Montel€aampling not suitable: such
methods need in fact to (entirely) visit multiple graph arates sampled from the input uncer-
tain graph, and the number of such samples is typically larggder to guarantee reasonable
accuracy. Moreover, the generalizations of our problementla& smarter sampling methods by
Jin et al. [87] and by Zhu et al. [170] not well-suited eithbrdeed, one needs to apply those

methods once for every other node in the input graph to finduiale reliable set, which is
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Table 3.1: Time Complexity of Reliable Set Computation

RQ-tree vs. existing source-to-target reliability methods wheplieggl as baselines for reliable
set computation.n andm are the number of nodes and arcs of the input uncertain ggaph
d is the diameter ofj, K is the number of deterministic graphs sampled frgnt' is the set

of query source nodes: andm (n < n, m < m) are the number of nodes and arcs of the

subgraph of; thatRQ-tree needs to visit.

MC-Sampling | RHT-Sampling|| RQ-tree-LB RQ-tree-MC
[61] [87] (this work) (this work)
single-source || O(K (m + n)) O(n?d) O(nrn) O + K (m + 7))
queries
multiple-source|| O(K (m + n)) O(n?d) O(|S|am) | O(|S|am + K (i + 7))
queries

very inefficient in large graphs (Table 3.1). It is apparémerefore, that the generalizations we
introduce in this work are non-trivial and make the relidpiproblem much harder.

Within this view, we address the problem of fast online eation of reliable set
queries by pre-computing offline information that can befiably exploited to speed-up on-
line query processing. We introduce a novel index, caRé&tree, which allows to process
our queries very efficiently—up to six orders of magnitudstda than sampling methods. Our
offline indexing technique is based omigrarchical clusteringof the nodes in the input graph,
and further optimized with balanced-minimum-cut techeguQuery evaluation consists of a
maximum-flow-based candidate generation (filtering) stapaverification step that relies on
either (a) an efficient lower bound based on the notion of fikaly path, or (b) a sampling

technique applied to the candidate set only. The formefigation method guarantees perfect
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precision as it returns no incorrect (false positive) nodes (whiledanegatives can arise); it
also avoids sampling at all, resulting in very high efficienén the sampling-based verifica-
tion method, oulRQ-tree forms the basis to speed-up any sampling method for reliséte

computation, as it allows for significantly reducing theesif the subgraph to be sampled.

Sampling-based verification guarantees in general betteracy in terms of recall.
Summary of contributions and roadmap. We achieve the following contributions:

e We define the fundamental problem of computing the reliablénsuncertain graphs (Sec-

tion 3.3).

e For retrieving the reliable set, we develop an efficient ipd=alled RQ-tree, which is

based on a hierarchical clustering of the nodes in the grapttion 3.4).

e Based onRQ-tree, we develop a fast filtering-and-verification strategy. Végice an
upper bound for the probability of a set of nodes contained gluster to reach nodes
outside the cluster (Section 3.5.1), and a lower bound fptiobability of reaching any
other node (Section 3.5.2). The first bound is used in theidatelgeneration (filtering)

phase, while the second bound is used for verification.

e We propose a balanced-minimum-cut-based partitionindhotkto build theRQ-tree in-
dex (Section 3.6).

e We conduct a thorough experimental evaluation by involvdéegeral real-world uncer-
tain graphs and comparirigQ-tree with a couple of baselines: a Monte-Carlo-sampling

technique [61] and the sampling method by Jin et al. [87]giexd for source-to-target re-
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liability (Section 3.7). Results attest the high efficierand accuracy oRQ-tree, as well

as its superiority with respect to the baselines.

e We show application oRQ-tree in the influence-maximization problem [92], which re-
quires to find a set of influential users that maximize theagbad an information in social

networks (Section 3.7.6).

3.2 Related Work

Probabilistic Reachability Queries. In many application domains, such as social, biologi-
cal, and mobile networks, uncertain graphs have receivagat geal of attention in the last
years. Traditional approaches to probabilistic reachghijueries over uncertain graphs rely
on Monte-Carlo sampling methods [61]. Zhu et al. [170] foonghreshold-based probabilistic
reachability and derive an upper bound for reachability tha be used as a pruning rule. When
such a rule cannot be applied, a dynamic Monte-Carlo samgdichnique is employed. Jin et
al. [87] deal with distance-constrained reachability ¢ggergiven two nodes andt¢, what is
the probability that the distance fromto ¢ is less than or equal to a user-defined threshold?
We remark that both these works [87, 170] consider readhalibm a single sourcenode to
asingle targetnode, while we generalize the problem allowing multiplerseuand target. As
shown in our experiments, source-to-target approachasoakeell-suited for reliability queries
over large graphs, as they need to be executed from scratelvdoy node as a target node in

the input graph to build the whole reliable set desired.
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Influence Maximization. Influence maximization aims at finding a set of seed nodes that
generate the largest expected information cascade: thertaimty in the graph represents
the influence. Domingos and Richardson [52] have formulabéidence maximization as
an optimization problem, while [92] defines approximatidgoaithms with provable perfor-
mance guarantees. Several heuristics have been also edojmoisnprove the efficiency of that
method [37, 38, 71, 108]: some of these can easily be couplbdawRQ-tree index to further
improve their speed-up.

Indexing for Reachability Queries. Reachability queries between a source and a target node
in deterministic graphs have been widely studied. Sevadaxing methods are also proposed,
e.g., interval labeling [10, 145, 163], transitive clositd, 88], 2-hop indexing [42, 134], and
other compression based methods [56, 57, 149]. To the bestiroknowledge, ours is the
first work that proposes an indexing method for the generdlizliability queries over large

uncertain graphs.

3.3 Problem Statement

An uncertain graphg is a triple(V, A, p), whereN is a set ofn nodes, A C N x N
is a set ofn directed arcs, and: A — (0, 1] is a probability function that assigns a probability
of existence to each arc i.

Almost all works on uncertain graphs assume the probaslitf existence of the
arcs in the graph independent from one another [87, 131, 1Patticularly, the well-known

possible-world semantids usually adopted: an uncertain graghwith m arcs yield2™ pos-
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sible deterministic graphs, which are derived by samplimependently each arce A with
probability p(a). More precisely, a possible graghC G is a pair(N, Ag), whereAg C A,

and its sampling probability is:

Pr(@) = [] pla) I (1-p(a)). (3.1)

a€Ag acA\Ag

For any possible deterministic graph (wortd)we define an indicator functioRg (.S, t)
to be 1 if there exists a path @& from a set of source nodésC A to a target node € A, and
0 otherwise. Here, we say that a path from the set of nédisa target node exists if there
exists a path fronat leastone nodes € S to t. The probability that is reachable fron%' in the

uncertain grapl¢, denoted byR(S, ¢), can be computed as:

R(S,t) = ) Pa(S,t) Pr(G). (3.2)
GEG

The number of possible worlds C G is exponential in the number of arcs, which makes the
exact computation oR(S, t) infeasible even for moderately-sized graphs.

The problem we address in this work is the following.

Problem 3.1 (Reliable Set Computation)Given an uncertain graply = (N, A, p), a prob-
ability thresholdn € (0,1), and a set of source nodés C N, find all nodes inN that are
reachable fromS with probability greater than or equal tg, that is, RS(S,n) = {t | t €

N,R(S,t) > n}.

Our problem generalizes the source-to-target relialyiigblem, which asks to com-
pute the probability that a path from a source nede a target node exists. The source-to-

target reliability problem is a prototypic#P-complete problem [20, 148]. It is easy to verify
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that one can obtain a reduction from the source-to-tardihility problem to Problem 3.1.
The idea of the reduction is to perform a binary search onhresshold probability; in order to
estimate the answer to a given instance of the sourcegettaeliability problem. As a result,

Problem 3.1 is hard as well.

3.4 The RQ-Tree index: Overview

The reliable set computation problem generalizes sourdarget reliability by shift-
ing the focus from single nodes to sets of nodes. For thisgaarpit is natural for any index
structure dealing with such a generalized version of thélpro to pre-compute and store in-
formation in terms of sets of nodes. This way, during queluation, one can retrieve and
further process the appropriate node set only, insteadeoivtiole graph. To achieve this goal,
our intuition is to define the propos&Q-tree index based on hierarchical clusteringof the
nodes in the input uncertain graph. TR®-tree, hereinafter denoted by, is a tree, where
the root contains the complete set of nodésand the leaves correspond to individual nodes
of N. All clusters at any level form a partition of N. A cluster at level is partitioned into
a number of children clusters at leviek- 1. As a result, there exists a unique path7irthat
connects each nodec N to the root. Such a path is composed of clusters that are stibdie
into each other. An example &Q-tree index for the uncertain graph of Figure 3.1 is shown
in Figure 3.2, together with some bounds that will be cladifiethe next section.

Our query-processing strategy is based on two phases:
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( S,UWV,T )
U,,({S}{SUW}) = 0.496

S,UW VT
U,.({S}{SW}) = 0.80
S,W

U,..({S}h{S}) = 0.80

Figure 3.2: An RQ-tree Index for the Uncertain Graph in Figure 3.1

1. Candidate generatignwhere acandidateset of nodes is built based on the information
stored into the pre-computdRiQ-tree index. All nodes not belonging to the candidate
set are discarded. A nice feature of this step is to guardh&@o true positivenode is

discarded from the candidate set.

2. Verification where a screening is applied to the candidate set in ordéteioout nodes

that should not be part of the answer.

The specific way of defining thRQ-tree hierarchical clustering mainly depends on
the proposedRQ-tree-based query processing, as a major desideratum of thisisiwlachieve
high query processing performance in terms of both effigieared accuracy. For the sake of
clarity, hence, in the following we first discuss the detaifsour query-processing strategy
assuming aRQ-tree given (Section 3.5). Then, in Section 3.6, we describe hotawuital the

RQ-tree index in order to obtain fast and effective query processing
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3.5 Query Processing

3.5.1 Candidate Generation

Here we describe the candidate-generation step of oureordirable-set computation
strategy. We start by presenting the main theoretical te#ht form the basis of the proposed
method (Section 3.5.1). Then, we describe the method inlstefar the sake of clarity, we
first discuss the case in which the source set is a singletecti(® 3.5.1), then we discuss the

general case where the source set has cardinality largeotie(Section 3.5.1).

Upper bound on outreach probability

A key concept in our candidate-generation algorithm is thi@n of outreach proba-
bility, which is the probability that a subset of nodewithin a clusterC' in the RQ-tree index

is connected to nodes outsidg i.e., withinC = N \ C.

Definition 3.1 (outreach probability) Given a set of nodes (cluste€) C N and a subset
S C C, theoutreach probabilityR,,.(S, C) from S to outsideC is defined as the probability

that S reaches the nodes not belonging(oi.e.,

Rout(5,C) = ) P(5,C) Pr(G) (3.3)
GLg

whereP; (S, C) = 1if there exists at least a nodec C such thatP;(S,t) = 1, P(S,C) = 0

otherwise.
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A straightforward feature of outreach probability is thdldwing: if the outreach
probability of S in C' is smaller than a certain valug then the probability of reachingvery

nodet outsideC' is also smaller than.

Theorem 3.1. For a clusterC' C N and its subseb C C the following holds:R,,:(S,C) <

n= R(S,t) <n,forallteC.

Proof By definition, R,.(S, C) is the probability that at least one node= S can reachat
least onenodet € C. Clearly, this probability is greater than or equal to thegability that at
least one node € S can reachany specific singl@odet € C. In other words,R,.:(S,C) >

R(S,t), for allt € C, which implies the theorem. O

Our query processing relies on Theorem 3.1, as well as ondketimeorem, which

relates the outreach probabilities of any two clustersahanested into each other.

Theorem 3.2. Given any two clusterg’;, C; such thatC; € €, and a set of source nodes

S C C;, it holds thatRyu (S, C;) > Reu(S, C;).

Proof If C; C Cj, thenC; O Cj. Therefore, in all possible world§ = G in which a path
from S to C; exists, there also exists a path frdfrto C;. The theorem follows trivially from

the definition ofR,,:(S, C). O

Theorems 3.1 and 3.2 create the basis for retrieving a valididate set from aRQ-
tree 7. Specifically, given a querRRS(S,n), consider all cluster€’ in 7, such that,S C C
and R,:(S,C) < n. Theorem 3.1 guarantees that all nodes outside each of thasters

violate the reliability condition, therefore they can béebadiscarded. Clearly, one wants to
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consider only the smallest among those clusters in orderaximize the number of pruned
nodes. Theorem 3.2 ensures that one only needs to focus @tugterC' having the largest
value R, (S, C) that is smaller than.

A candidate-generation strategy based on the above regsaniuld require to com-
pute outreach probabilities exactly, which is infeasildé avould need to enumerate all possible
worlds. A possible solution is to approximafg,,; values by means of sampling. Unfortunately,
besides the well-known efficiency issues, this samplirgetiaolution would not guarantee that
the results stated in Theorems 3.1-3.2 carry over. For tirisgse, we derive an upper bound
for R, which can be efficiently computed without sampling for anjpset of nodes C C.
The proposed upper bound, denotedlhy;, is based on the min-cut/max-flow principle. We

start by defining the notion ahost-likely cubetween two disjoint sets of nodes.

Definition 3.2 (most-likely cut) Consider a deterministic grapff = (IV, A) and two disjoint
setsof nodeX,Y C N. We define acui(X, V) between the sefs andY to be a set of arcs in

A whose removal disconnecl andY . Consider now an uncertain gragh= (N, A, p) and
two disjoint sets of nodeX,Y C N. We define the most-likely ofit(X,Y") to be a set of arcs
such that: (1) itis a cut betweex andY’, as defined on the deterministic graph that contains all
the arcs ofG; (2) among all cuts betweel andY, it is the one that maximizes the probability

of having all its arcs non-present, i.€(X,Y) = argmaxc(x,v) [[sec(x,v) (1 — p(a)).

As stated in the following theorem, the most-likely cut po®s us a way to express

the desired upper bourid,,;.
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Theorem 3.3. Given a clustelC € N and a subsef C C, it holds that:

Rout(8,C) < Uput(S,C) =1— max  [[ (1-p(a)).
c(S,0) _
acC(S,0)

Proof Consider any cuf(S, C). From the independence assumption, the probability that no
of the arcs irC(S, C) exists is equal tfﬂaeqs o) (1—p(a)). Now, consider the event that none
of the nodes inS can reach any node outsidé The probability of such an event is equal to

1 — Rou(S,C), and is clearly lower-bounded by the probability that noiar€ (S, C) exists.

Based on this reasoning, it holds that:

1- Rout(S,C) > [ (1-p(a)), foralic(s, o),
aeC(S,0)

or equivalently,

The theorem follows. O

The upper bound/,,; defined in Theorem 3.3 can be computed by executing a max-
flow algorithm on a capacitated graph appropriately derfveah G. Specifically, our algorithm
works as follows (see pseudocode in Algorithm 1). First, westruct a capacitated graﬁ]
which has the same sets of nodes and arc§.aEach arcz in G has a capacity:(a) equal
to —log(1 — p(a)). Then, we compute the max-floy* from S to C' on G. Note that the
algorithm exploits the following observation: the max flowrh S to C is equivalent to the
max flow from S to the seiC’ C C of all nodes inC having an incident arc outgoing fro$,

e, thesel' ={veC|3uesS : (uv) € A}. Thanks to this observation, the max-flow

computation can be significantly speeded-up, as typidally< |C|.
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Algorithm 1 Compute outreach probability bound
Input: an uncertain grapf = (N, A, p); a clusterC' C N; a set of source nodes C C

Output: Uy (S, C)
1 U/<—{UGU|E|uGS : (u,v) € A}
2: foralla € A, sete(a) = —log(1 — p(a))
3: build G = (N, 4, ¢)
4 f* « MaxFlow(G, S,C")

5 Uyt (S, C) < 1 — exp(—f*)

Moreover, recall that the max-flow problem is defined betwasingle source and a
single sink node. In our case, we ask for the max-flow betwesst af source nodeS and a
set of sink node€’. This generalized variant can be easily mapped to the baseotaingle-
source single-sink: the idea is to create a dummy sosgcand a dummy sinky, and then
connect the dummy soureg with all nodes inS and all nodes ilC’ with the dummy sink.
The capacities of all arcs outgoing frasm and all arcs incident té, are set to infinity.

As the following theorem states, the desired upper bdung(S, C') can eventually

be computed as — exp(—f*).

Theorem 3.4. Given an uncertain graply = (N, A, p), letG = (N, A, c) be a capacitated
graph derived fron@ by assigning a capacity(a) = — log(1 — p(a)) to each araz € A. Also,
given a clusteiC C N and a set of source nodésC C, let f* denote the maximum flow from

S to C on the graphG. It holds thatlU,,; (S, C) = 1 — exp(— f*).

69



Chapter 3. Reliability in Uncertain Graphs

Proof From the max-flow/min-cut equivalence, it follows that ttedue f* of the max-flow is

equal to the value* of the min-cut. We have

f* — C*

= —log(1 - Upu(S,0C)), (from Theorem 3.3)
which proves the theorem. O
Example 3.2. Consider the running example in Figures 3.1 and 3.2. The uppend for the
outreach probability fror{s} to outside clustefs,w} is 0.80, due to arcg{s,w), (s,u). It means
that the probability thaf{s} reaches any node not belonging {s,w} is lower than or equal
to 0.80. Similarly, the upper bound for the outreach probabilitprfr {s} to outside cluster

{s,w,u} is 0.496, due arcs(u,t), (u,v), (w,v). As the probability thresholg = 0.5, all nodes

outside clusteqs,w,u} can be pruned.

Finally, it is easy to verify that the properties derived imebrems 3.1 and 3.2 for out-

reach probability hold also for the upper bouligl,;. This result is formulated in Theorem 3.5.

Theorem 3.5. Given a clusteiC’ C N and a subsef C C, the following results hold:
Uout(S,C) <n = R(S,t) <n, forallt € C, (3.4)
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Uout(S, CZ) > Uout(S, Cj), forall S C C; C Cj. (35)

Proof Equation (3.4) follows directly from Theorem 3.1, sifiég:(S,C) < n = Ry (S,C) <
n = R(S,t) < n, forallt € C. Regarding Equation (3.5), we first note tha}, C C; =
C; 2 Cj, and, therefore, all cuts frotfi to C; are also cuts fron$ to C;. This implies that

max  [[ (1-p(@) < max ] (1-p(a)),

C(5,C; _ C(5,C; -
( )aGC(S,Ci) ( ])aGC(S,Cj)

or equivalently,

1— max H (I1-p(a)) >1— max H (1—p(a))

(5.6 a€C(S,Cy) €(8,¢) a€C(8,C;)

Uout (S,C5) Uout(S,Cj)

The theorem follows. O

Single-Source Queries

We next describe how to perform candidate generation whequlery set of source
nodes is a singleton, i.e., queries are formulate®8§{s}, 7).

Given a query nods, there exists a single path in tR€Q-tree index7 from the leaf
cluster{s} to the root of7. Our candidate-generation strategy traverses all ckisieng this
path in a bottom-up fashion i.e., starting from the leaf ®usnd going towards the root. The
traversal of the path stops as soon as it encounteasmdidate clusteC*, whose upper bound

Usut({s}, C*) on outreach probability is smaller thgn More formally:

C*({s},n) = argmax Uyu({s},C).
Uout({s},C)<n
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Theorem 3.5 ensures tha) C* is the smallest “valid” candidate cluster, i.e., it is thaster
that guarantees that the discarded(Sets as large as possible; and)(all nodest ¢ C* have
R({s},t) <mn,i.e., no true positive is discarded.

Note that, during our bottom-up traversal Bf the upper-bound valuds,,:({s}, -)
are computed in a lazy fashion according to the strategynewdtlin Algorithm 1. In order to
further speed-up query processing, one may consider pngnaiing the upper-bound values
Uout({s},C), for all clustersC' € T and all nodess € C. However, such a pre-computation
would lead to increasing the index storage space and, mamariamtly, the index building time,

which could even become unaffordable for large graphs.

Running time. Our candidate generation consists of two steps: the botjertnaversal of the
tree 7, and the computation of the upper-bound valigg; during that traversal. The first
step is linear in the height of the tree7. The second step requires performing a max-flow
computation for each cluster visited during the traverga.a result, the overall running time
of computing the upper-bound valugs,; is expressed as max-flow computations. Accord-
ing to Algorithm 1, the max-flow computation depends only ba humber of source nodes
and the number of arcs outgoing from the source nodes todeutlse cluster. Thus, one can
upper bound the running time of each max-flow instance bygufia size of the subgraph in
the last cluster encountered during the traversal.7L&bdn denote the number of nodes and
arcs in that subgraph. One of the fastest existing max-flgarghms is the algorithm of Gold-

berg and Tarjan [69], whose running timed@7m), where the® notation hides logarithmic
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factors. Assuming that the tréE is balanced (see Section 3.6), and therefare; O(logn),

the overall time complexity of the candidate-generatioagghis still@(ﬁm).

Multiple-Source Queries

In case of queries containing multiple source nodes, oné&dollow exactly the
same candidate-generation strategy as in the singlees@mase: retrieve the smallest cluster
in the index tree that contains all nodes of the query souet&.s However, such a strategy
may not be very effective in the multiple-source case. Thsag is that the cluster enclosing
all nodes inS might be a large cluster placed very close to the root ofRetree 7. This
would affect the efficiency of query processing, as a largetign of 7 would be visited before
encountering the desired candidate set, and thus a largeenwohcandidate nodes would need
to be verified. Therefore, we discuss next how to selesgtaf clusters (rather than a single

cluster common to all source nodes) which may achieve bettering.

Multiple-source candidate clusters.Our goal is to derive a set of clustef§; }+_, of 7 whose
union setC, = | J, C; meets the following requirements) &ll source nodes belong @ ; (ii)
the property of having no false negatives discarded still$iothat is no false negatives are
present among the nodes outsidg; and {ii) the size ofC is minimum, so to guarantee
maximum pruning.

Let us translate the above requirements into an optimizgiroblem. To this end,

requirementsi} and {ii) are straightforward to formulate, while for requiremein} e first
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need to derive some theoretical results, which are fornsiifed in Lemma 3.1 and Theorem

3.6.

Lemma 3.1. Let{C},--- ,C}} be a set of clusters iffi and {S1,--- ,S;} be a set of source
node sets, wher§; C C;, for all 7, andS; N S; = (), forall : # j. Let alsoCy, = U, C;i and

Sy =, S;. It holds thatl,,(Su, CL) < 1 — [1,(1 — Unut(Si, Cy)).

Proof Given any two (disjoint) sets of nodeé§, Y C N, letC*(X,Y’) denote the most-likely
cut from X to Y (as defined in Definition 3.2). Let aldor(—~C*(X,Y)) = [,ec(x,v)(1 —
p(a)) be the probability that*(X,Y) does not exist. First, we note that, by definition, the
probability Pr(—C*(X,Y")) cannot be smaller than the probability that any single valit
from X to Y does not exist. Given any superdét> Y (such thatX N Y’ = () it easy to see

thatC*(X,Y”) is a valid cut fromX to Y too. Thus the following holds:
Pr(=C*(X,Y)) > Pr(~C*(X,Y"),
forall Y DY, X NY’ = (), which implies that

Pr(—=C*(S;,Cu)) > Pr(—=C*(S;,Cy)),

as, clearlyC; 2 Cy (andS; N Cy = (). Furthermore, notice that), C*(S;,Cy) is a valid cut

from S to C_. Hence, based on the same argumentation as above, theifglbwids:
Pr(=C*(Su, Cu)) = Pr(=U; C*(Si, CL)).-

Finally, it is easy to see that the probability that none ef éincs in the union of multiple cuts

exists is lower-bounded by the product of the probabilitgt thny single arc in the union cut
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does not exist, that is:

Pr(=J; €*(Si, Cu)) = HPT(_‘C*(SDC_U))-
In summary, based on the above results, we have:

Pr(-C*(Sy,Cu)) = Pr(=U;C*(S;, CL))

l_Uout(SU7CU)

Y

HPT(_‘C*(SuC_U))

v

HPT(ﬁC*(Sua')),

b 1—Uout(S5,Ch)

which implies that

Uout(SU> CU) < 1- H(l - Uout(5i7 Cz))

)
The lemma follows. O
Based on the above lemma, we can now provide the ultimatet@mtb be ensured
for having no false negatives outsidg,. As formally stated in Theorem 3.6, such a condition

is expressed as— [ ;e 4 (1 — Uout(Ci N S, C3)) <.

Theorem 3.6. Let S be a set of source nodes afid', - - - ,Cy} be a set of clusters iff such
thatC; N S # 0, for all 4, and{C; N S}i?:l forms a partition ofS. Let alsoC, denote the union

setl J; C;. It holds that:

1- [ = Uout(Ci N S,Ci)) < = R(S,t) <,

)

forall t € C_.

Proof For each node € C_, we have
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R(S>t) S Rout(57 CU) § Uout(sa CU) S

1— H(l — Uput(C; N S,Cy)) <n.  (from Lemma 3.1) O

The optimization problem we are interested in can now beiggiccharacterized.

Problem 3.2 (Multiple-source Candidate Generatioriven anRQ-tree index7 and a set
of source nodes, select a set of clustefe’y,...,Cy} of T so that, for the union set, =

U~ ¢y, the following holds:

(i) SccCu;

(i) 1-TLA = Unut(Ci NS, Cy)) <m;
(i) |Cy|is minimum.

To solve the above problem, we first discuss a polynomiad-taigorithm that pro-

vides exact solutions but is not scalable. Then, we deriver mfficient heuristic.

Exact multiple-source candidate generationThe exact solution for Problem 3.2 relies on the
dynamic-programming paradigm. Léf",...,C;} be a set of clusters in thRQ-tree 7 so

that no two clusters in that set are in ancestor—descendkation. Let also define

F{Cr,...,C}) = Ui Cil, and
t

US{Ch,...,CiY)=1- ] - Uou(Ci N S,C)).

=1
For simplicity, assume th&f is binary, and every non-leaf clustérhas two children,
right »(C) and left/(C'). The reasoning can easily be extended to more general trees.

For any clustelC of 7" and any integek, we defineT'(C, S, k) to be theminimum

scoreld(S,{C1,...,C:}) for a set of cluster§C, ..., C;} such that
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(?) C1,...,C; are all descendant of C;
(23) notwo clusters i{C1, ..., C;} are in ancestor—descendant relation;
(i73) for everys € SN C,there is (exactly) one cluster {y, ..., C;} betweens andC’; and

() f({C1,....Ci}) <k
The minimum in the definition of (C, S, k) is taken over all set$C1,...,C;} that satisfy
conditions ¢)—(iv).

Now, given a query source s8t for every cluster i/ and everyk = 0,...,n, we
compute the scorés(C, S, k) in a bottom-up fashion using the following dynamic-prograimg
equation

NG S k)= min 1 —(1-Tr(C), S k)1 = TU(C), 5 ke)).

:kr-i-kgg
The solution to Problem 3.2 is then given by the smallestevafi: for whichT'(root S, k) < 7.
This way, only the score of the optimal solution is providé€he can also obtain the solution
itself by keeping pointers to the optimal splits+ &, < k for eachC and eaclk.

It is easy to verify that computing the above exact solutiequiresO(|S|nlogn)
max-flow computations. Therefore, the exact dynamic-magning algorithm for multiple-
source candidate generation may be slow in practice. Fsrphipose, we introduce next a

more efficient greedy heuristic.

Heuristic multiple-source candidate generation. The idea of our heuristic is to perform a
number of bottom-up traversals fin parallel, one for each € S. Similar to the single-source
case, each traversal proceeds along the path that conhectsdes to the root of7". Traversals

are performed in a round-robin way and they terminate wheridlowing stopping condition
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is met. LetC; denote the current cluster if that encloses node at a certain point of the
traversals, for als; € S (note that any two nodes, s; € S can be enclosed by the same cluster
C; = Cj). Our procedure stops when it reachestieimum-sizedinion setCy, = | J, C; for
which condition ¢i) of Problem 3.2 is satisfied, i.el,— [[,(1 — Upu(Ci N'S,C;)) < n. The
final candidate set corresponds to the union‘sebf the last clusters reached by the traversal.
Running time. The running time analysis of the (heuristic) multiple-smucandidate genera-
tion roughly follows the analysis of the single-source cadée need to perforn®(|S|logn)
max-flow computations—contrast to tti¥|.S|n log n) max-flow computations required by the
exact method, an@(|S|log n) computations ot/,,;. The overall time complexity is therefore

O(|S|mm).

3.5.2 \Verification

Though guaranteed not to discard any true positive, theidargdsetC* generated ac-
cording to our candidate-generation strategies may stiitain false positive nodes, i.e., nodes
t for which R(S,t) < n. To filter as many of such false positives as possible out"gfwe
propose two alternative verification methods, which aredesd next. Both verifications take
in input the candidate set eventually generated by carelgiateration. As a result, there is no

difference between single-source verification and mtgurce verification.
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Verificationbased onalowerboundonreliability

The first verification method we propose is based on a lowendvdor R(S,¢), for
any source node sétand a node ¢ S. We denote this lower bound by (S,t). The idea
is that if we find thatL (.S, t) > n, for some query set and some nodg then we can safely
conclude that belongs to the solution set.

The lower bound we derive is based on the conceptast-likely pathifrom S to ¢.

Definition 3.3 (most-likely path) Given a set of nodeS and a nodef ¢ S, the most-likely

pathP*(S,t) from S to t is defined as

P*(S,t) = arg max | | p(a), (3.6)
Pep(gvt)v acP
se

whereP (s, t) denotes the set of all paths frosrio ¢.

The following theorem states that the desired lower balupgimply corresponds to
the probability of the most-likely path. This probabilitare be computed by a shortest-path

computation on a weighted graph derived fréghby assigning to each arc € A a weight

—log(p(a)).

Theorem 3.7. Given a set of source nodes and a nodet ¢ S, it holds thatR(S,t) >

LR(S7 t) = HaeP*(S,t) p(a)'

Proof By definition, R(S,t) is the probability thatt least one patlirom a nodes € S tot

exists. HenceR(S,t) is larger than or equal to the probability treaty single pattfrom some
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s € Stot exists, that is,

R(S,t) > [ pla), forall s € Sand allP € P(s,t).

acP
Therefore, we have
R(S,t) > =
(5.9 2 mex, 1 oo v
sES a epP a€P*(S,t
which proves the theorem. O

Based on the lower bounHg, the verification step simply consists in keeping only
those nodes € C* such thatLr(S,t) > n. This way, the output solution set is guaranteed not
to contain any false positive.

An interesting point in this regard would be analyzing th@eachieved by the above
lower bound. However, such a problem is non-trivial and vesréeit for future work. Indeed,
one can notice that some extreme cases may arise, that dgmealee the error bound analysis
hard. One case is given by complete graphs with high prababibn the arcs, on which large
candidate sets tend to be produced, and where our lowedbwibased verification may be
therefore less effective. On the other hand, however, faplgs with small dense substructures
that are very commonly encountered in real-world scenati@scandidate set obtained is typi-
cally much smaller. In these cases, as empirically valdlateSection 3.7 on several real-world

datasets, the lower-bounding-based verification is idlsteay accurate.

Sampling-based Verification

The above lower-bounding verification guarantees twafalse positivebelongs to

the final solution. On the other hand, some false negativeslmantroduced. Even though

80



Chapter 3. Reliability in Uncertain Graphs

experimental evidence (Section 3.7) has shown that thdl reicaur lower-bounding-based
verification is always high (withif0.75, 0.85]), the accuracy can be further improved.

The idea is to perform sampling (e.g., Monte Carlo) to esknthe reliability of the
candidate nodes more accurately than the lower-boundisgéebverification. Note that, unlike
existing sampling methods discussed in the Introductidn §8], sampling here is performed
on a small subgraph of the input uncertain graph, that isubgraph induced by the candidate
nodes only. As a result, even though less efficient than tiverlbounding-based verification,
this sampling-based verification is still very fast and eufprms the baselines in efficiency, as
empirically observed in Section 3.7. One may note that whersample over the subgraph
induced only by the candidate set, we ignore the contributibthe paths passing through
nodes not in the candidate set. Since all non-candidatesnuae reliability from the source
set less tham, a path from source set to a candidate node that goes thongtamalidate nodes
also have very small reliability as comparedntoand thereby does not significantly affect the
reliability values of candidate nodes. Indeed, the redatiln sampling-based verification is
always in the[0.95,1.00] range. In addition, the number of samples can be used as aténob

tradeoff between efficiency and accuracy.

Running time

For the lower-bound-based verification strategy, one oebids to focus on the sub-
graphgG of G induced by the candidate sét. This is because our candidate-generation step

ensures that all nodes outside the candidate set haveiliglilom the query source sef less
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thann. Therefore, all paths passing through nodes not in the dateliset are guaranteed to
have reliability less than too: this way all nodes (and corresponding arcs) natircan safely
be discarded.

According to the reasoning reported in Section 3.5.1, thebr of nodes and arcs of
G are upper-bounded byandr, respectively. The lower-bounding-based verificatioatstgy
requires to compute the probability of the most-likely pitim the source node sétto each
node in the candidate set. This can be accomplished withréesktpath distance computation
in G from the source sef, which leads to a time complexity @?(1m + 7).

The sampling-based verification, on the other hand, reguoecompute all nodes
that are reachable from the source Sein every deterministic graph sampled fragh This
can be accomplished with a visit of each sampled graph. Tiaé ianning time is therefore
O(K(m + n)), whereK denotes the number of samples.

It can be noted that, overall, our query processing ranges € (7/m) time (single-
source, lower-bounding-based verification) Q¢ S|im + K (m + 7)) time (multiple-source,
sampling-based verification). In all cases, however, asdm are very small in practice (see

Section 3.7), the efficiency of our query processing is végih

3.6 Building the RQ-tree Index

In this section, we provide the guidelines for building tlerarchical structure of the

proposeRQ-tree index 7. In this regard, we note that:
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1. The smaller the height of, the smaller the size (and therefore the storage spacg) of
A small height of7 is achieved when its clusters are partitioned inédancedchildren,

i.e., children having roughly the same size.

2. Onthe other hand, a very small heightjofs also not desirable, as the smaller the height
of T, the narrow the range of values that can be profitably assisted byR@-tree
index. As an example, think about the extreme case wheredighathof 7 is 1 (which
arises when the branching factor ®f is n): such anRQ-tree would be completely
useless for our query processing strategy. Within this vieevkeep the height of of

reasonable size by fixing the branching factoffafo a small number, i.e2.

3. Finally, for each cluste€' in 7, and for each node € C, we require forR,,:({s},C)
to be as small as possible, since this would reduce the si#teeafet produced during
candidate generation. As already explained in Sectiod 3#&is improves both efficiency

and accuracy of our query processing strategies.

Based on the above requirements, we develop the followintpadefor building an
RQ-tree index7T . First, according to requirements 1) and 2), we performeugsve)balanced
bi-partition of each non-leaf cluster ifi. Requirement 3), instead, provides the basis for the
specific criterion to employ for defining each bi-partitidParticularly, for any cluste€ in 7,
the ideal desideratum would be to minimize the single ootrgarobabilities of each subset
S C C, which is clearly unaffordable. Within this view, we firstrde an upper bound that is
general for the outreach probabilities of all subsets ofesdd a specific cluster, and then we

search for the balanced bi-partition that minimizes thisargpound. Note that the upper bound
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provided here differs from th&,,; upper bound derived in Theorem 3.3, because the latter is
instead specific for a given set of source nodes. The expres$ithis general upper bound,

denoted byA,,:, is formalized in the next theorem.

Theorem 3.8. Given a clustelC, for all sets of source nodes C C, it holds thatR,,. (S, C') <

Uout(C) =1 = [ wyuecwge (X — p((u,0))).

Proof By definition, 1 — R, (S, C) corresponds to the probability that no nodes S can
reach any node outsideC. In this respect, consider all outgoing arcs(fi.e., those arcs
that connect a node i with a node outside”. Clearly, the condition that none of these
outgoing arcs exists is sufficient to guarantee that r® C' can get to outsid€’. Thus, the
probability that no outgoing arc @ exists is a lower-bound for — R,,:(S,C). As a result,
it holds thatl — Rou: (S, C) > [Ty uecgo(l — p((u,v))), or, equivalently,Ru (S, C) <
1= TTwpuecvgc(l = p((u,v))). O
Based on the above reasoning, we can now formalize the @gatiion problem to be
recursively solved for generating the bi-partition of tregigus clusters ir¥”. The objective
is to partition any given clustef’ € 7 into two clustersC; and Cy such that {) U,,:(C1)
andi,,:(Cs) are simultaneously minimized, ané)(C;, and Cs have roughly the same size.
Noticing that minimizing!4,..(-) is clearly equivalent to maximizing — U,..(-), it is easy to

see that these requirements are fully captured by the fislipaptimization problem.
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Problem 3.3(BUILD-RQ-TREE). Given a clusteiC € T, partition C' into two clusters’, Cy

such that

(1 _uout(cl))(l_uout(c2)) + (1 _uout(cl))(l_uout(c2))
|C1] |Cs|

is maximized.

As shown in Theorem 3.9, Problem 3.3 is equivalenit® -RATIO-CUT [155]. As a

result, Problem 3.3 iblP-hard.

Theorem 3.9. Problem 3.3 iNP-hard.

Proof We prove the theorem by a reduction framN-RATIO-CUT. We construct a weighted
(deterministic) grapr@ containing the same set of nodes and arcg.asVe assign to each
arcain G a weightw(a) = —log(1 — p(a)), and we make? undirected by simply ignoring
the directness of each arc. Given any two node 8&tsV; C N, let A(N;, N;) denote the
set of all arcs inG betweenN; to N;. Solving MIN-RATIO-CUT on G finds a bi-partition

{N1, N2} of the node seiV that minimizesx— 3=, 4 (v, v,) (@) + g7 Caca(v,ng) @),

or, equivalently, that maximizeg— TT,cav, vy (1 = 2(a)) + g1 o agn vy (1 — p(a) =

a7 (1= Uout (N1)) (1 = Uout (N2)) + 157 (1 = Uout (N1)) (1 — Uout (N2)). The theorem follows.

O

The similarity withMIN-RATIO-cUT implicitly provides us with a well-founded ap-
proach for heuristically solving owBUILD-RQ-TREE problem. Indeed, one can resort to one

of the various well-established heuristics fom -RATIO-cUT defined in the literature. Specifi-
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Algorithm 2 BuildRQtree
Input: an uncertain grapg = (N, A4, p)

Output: anRQ-tree index T
1: C«+ {N}, T+ {C}
2: repeat
33 C 10
4. forall C € Cs.t.|C|>1do
5: build G = (N, A, w), whereN = C, A = {(u,v) | (u,v) € A,u € C,v € C}, and
w(a) = —log(1 —p(a)), foralla € A
6: {C1,Co} + METIS (G)
7: C' + C'uU{C,Cy}
8: end for
99 C«C, T«TU{C}

10: until C =0

cally, in our framework, we use thdETIS algorithm [90], as a good trade-off between accuracy
and efficiency.

All steps of our strategy for building a@RQ-tree are summarized in Algorithm 2.

Index building time. Given a clusteC' in 7T, letnc andm¢ denote the number of nodes and
arcs in the subgraph of the input uncertain grgpidentified by the nodes if’, respectively.
Computing a bi-partition of” by means of theMETIS algorithm takesO(ng + m¢) time.

Running METIS on all clusters of any single level of takesO(> - (nc + m¢)). As all
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clusters in any single level of forms a partition of the whole set of nodesdn the latter is
equivalent taD(n +m). The number of levels (height) 6f is O(log n), as ourRQ-tree index
building strategy guarantees fprto be a balanced tree. As a result, the overall time complexit
of building anRQ-tree index isO((n + m) logn).

Index storage spaceAs explained above, the height®fis O(log n). Each level off contains

a partition of the whole set of nodes ¢h thus each node ig is stored exactly one time for

each level. Hence, the overall storage space required Ratree index isO(nlogn).

3.7 Experimental Results

In this section, we present our empirical analysis. We armljnaimed at assess-
ing:

e Efficiency and effectiveness of the propose@-tree index in terms of recall, query-
processing time, index-building time, and index size (BecB8.7.2); we also compare
our approach with two baselines, namely Monte-Carlo sarggC-sampling [61]), and
an alternative sampling technique designed for sourdarget reliability RHT-sampling
[87)).

e Effectiveness of our approach by breaking-down the armlsithe two phases of our

qguery processing, i.e., candidate generation and veridicébection 3.7.3).

e Performance with varying the size of the query source satti@e3.7.4).
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e Scalability of the proposed method with respect to querg@ssing, index building time,

and index size (Section 3.7.5).

Furthermore, as an example of application, we show in Se&id.6 how ouRQ-
tree index can help speeding-up the iterative hill-climbingagte algorithm [92] for thénfluence-
maximizatiorproblem.

All the code is implemented in C++ and experiments are peréal on a single core

of a100GB, 2.50GHz Xeon server.

3.7.1 Experiments Settings

Datasets.We involve six real-world datasets, each representingectdid uncertain graph.

DBLP [47]. We consider the usual co-authorship graph where arc@mnoects two authors
if they co-authored at least once. We make the graph dirdayeconsidering arcs in both
directions. We derive arc probabilities as described in [31]: we consider an exponential
cdf of meany to the number of collaborations; hence, if two authors twtatedc times,
we compute the corresponding probabilitylas exp~¢/#. We conside: € {2,5,10} in our
experiments. Keeping fixed the collaborations, highereslf;, generate smaller probabilities
(see Figure 3.3).

Flickr [62]. Flickr is a popular online community, where users shghotos, participate in
common-interest groups, and form friendships. We createaphgfrom a recent snapshot of
Flickr, by linking two users if they belong to at least one eoam interest group. Like DBLP, the

undirected graph is made directed by simply consideringathe in both directions. Following
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Table 3.2: Reliability Queries: Dataset Characteristics.

Dataset \ # Nodes # Arcs
DBLP 684,911 4,569, 982
Flickr 78,322 20,343,018

BioMine | 1,008,201 13,445,048
WebGraph| 10,000,000 174,918,788

Last.FM 6,899 24,144
NetHEPT | 15,235 62,776

[131], we assign probability to an arc by computing the Jatcaefficient of the groups that

the two users belong to.

BioMine This is a recent snapshot of database of the BIOMINE prdjE®8], which is a
collection of biological interactions. The graph is diett and with probability associated to

the arcs [136].

WebGraph154]. This is theuk-2007-05 web graph data [27]. For our experiments, we use a
subset containingOM pages and 75M hyperlinks. For a directed afa:, v), the probability is
computed a%, whered(u) is the out-degree of node[71].

Last.FM[105]. Last.FM is a music web site, where users listen tortfaiorite tracks, and
communicate with each other based on their music prefesefige crawled a local network of
Last.FM, and formed a directed graph by connecting two uséngy communicated at least

once. Like WebGraph, the probability of a directed @rcv) is ﬁ.

NetHEPT[122]. This graph is created from the “High Energy Physicshedry” section of
the e-print arXiv with papers from991 to 2003. Like DBLP, two authors are connected by
directed arcs if they co-authored at least once. In thishgraye follow [38] and assign constant

arc probabilities @.5).
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Figure 3.3: Reliability Queries: Cumulative Distribution of Arc Prdtifities.

Table 3.3: Comparison betweeRQ-tree and Baselines: Recall.

Last.FM NetHEPT
n RHT RQ-tree-MC RQ-tree-LB|MC RHT RQ-tree-MCRQ-tree-LB
0.4|0.97 1 0.95 1 0.95 0.98 0.78
0.6/0.98 1 0.97 1 0.96 0.98 0.82
0.8/0.98 1 0.97 1 0.96 1 0.88

The main characteristics of the selected datasets areedparTable 3.2 (sizes) and
Figure 3.3 (cumulative distribution of arc probabilitiesyVe use the first three datasets for
assessing index performance, whilebGrapHhthe largest one) is used for assessing scalability.
The last (smaller) two datasets are used for comparison tvittbaselines, both in terms of
general performance and in the influence-maximizationieggbn. Involving smaller datasets

for these comparisons is needed to allow the various basdlinterminate in reasonable time.

Query workload. For single-source queries, we select a node uniformly adaem For

multiple-source queries, we select uniformly at randomtaosaodes from a subgraph of the
original graph. We vary the cardinality of the query set franto 20, and the diameter of
the subgraph fron2 to 6. Results are averaged ovEl0 sets of nodes, while the probability

thresholdn is varied from0.4 to 0.8.
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Table 3.4: Comparison betweeRQ-tree and Baselines: Query-Processing Time (sec).

Last.FM NetHEPT
n MC RHT RQ-tree-MC RQ—tree—LB| MC RHT RQ-tree-MCRQ-tree-LB
0.4/16.5 6.21 0.1 0.008 |27.23 2353 15.97 0.010
0.6/16.5 6.21 0.08 0.007 |27.23 2353 15.96 0.008
0.8/16.5 6.21 0.08 0.006 |27.23 2353 15.64 0.006

Competing methods. We evaluate the performance of oRQ-tree by focusing on both
the verification strategies proposed in Section 3.5.2. idedatly, we hereinafter denote by
RQ-tree-LB the variant involving lower-bounding-based verificatiand byRQ-tree-MC the
variant involving (Monte-Carlo-)sampling-based verifioa. We compare botiRQ-tree-LB

andRQ-tree-MC with the following baselines:

MC-Sampling. We consider a basic Monte-Carlo-sampling method [61] ingon the whole
graph. We derivd( deterministic graphs by sampling the given uncertain geaqaiording to the
arc probabilities. Then, we compute the set of all nodedhadale from the query node(s) in each
sampled graph. Eventually, all nodes that are reachahte tihe query in at leasiK sampled

graphs form the reliable set. Such a baseline method hastimelexityO (K (m + n)).

RHT-Sampling. This is a method proposed in [87] as a fast alternative totst@arlo sampling
for the source-to-target reliability problem. The methedesigned for reliability between a
single pair of nodes; thus, in order to compute the wholelpidi set, it needs to be run
times, every time using a different node in the graph as targée. As stated in [87], the time
complexity of a single execution &&HT-Sampling is O(nd) (whered is the diameter of the

graph), hence for reliable set computation the complextyomes?O(n2d). For this purpose,
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even being faster than Monte-Carlo sampling for sourcedtget reliability, we do not expect

high efficiency for this baseline in solving our generalizgdblem.

For all sampling-based methods, i.e., the two baselinesoantRQ-tree-MC, we
have observed accuracy convergence on all datasets withlaemwf sampled aroundi, 000.
This is roughly the same number observed in [87, 131]. HemeesetK = 1,000 for all

sampling-based methods, in all experiments.

Table 3.5: RQ-tree: Recall over Various Datasets (Single-Source Queries).
RQ-tree-MC RQ-tree-LB
n=047=0.6n=08n=04n=0.6n=038
099 099 100f 075 0.87 0.91
098 099 099 076 0.79 0.83
097 098 098] 0.77 081 0.85

DBLP
Flickr
BioMine

Table 3.6: RQ-tree: Query-Processing Time (sec) over Various Datasets (&iglrce).
RQ-tree-MC RQ-tree-LB MC
n=04n=067=08n=047n=0.67=08 ally

DBLP | 43.01 40.48 36.83 1.50 0.60 0.60/3081.85
Flickr | 60.23 58.60 54.73 0.21 0.20 0.17|5058.55
BioMing6061.90 5416.84 4974.091.00 0.50 0.50(25608.40

Table 3.7: RQ-tree: Recall w/ Varying Arc Probabilities (DBLP, Single-SourQaieries).

RQ-tree-MC RQ-tree-LB
n=04n=067=08n=04n=0.6n=0.8
u=2| 095 096 098] 052 0.75 0.76
w=>5| 096 097 098 0.75 0.87 0.91
pw=10 0.97 097 0.99| 0.89 091 0.96
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Table 3.8: RQ-tree: Query Processing Time (sec) w/ Varying Arc ProbabilitB8[P, Single-
Source Queries).
RQ-tree-MC RQ-tree-LB MC
n=04n=067=08n=04n=06n=08 allp
uw=2{152.94 145.72 141.802.50 0.82 0.68| 11476.60
uw=>5|43.01 40.48 36.83 1.50 0.60 0.57| 3081.85
w=10[ 38.70 36.15 33.10 1.40 0.57 0.57| 2257.55

3.7.2 General Performance

Comparison with baselines.We compare ouRQ-tree-LB andRQ-tree-MC with MC-Sampling
andRHT-Sampling baselines. As said, for this comparison we focus on the twallendatasets
only (i.e.,Last.FMandNetHEPT) to allow the baselines to terminate in reasonable time.
Computing the exact reliable set is computationally uribdas For this purpose, to
measure accuracy, we use the reliable set returnéd@ygampling as a proxy. Particularly, we
are interested in assessing accuracy in termeazll. Denoting by the reliable set outputted

by any selected method and %Y the reliable set produced B C-Sampling, we define recall

|TNT™*|

as .t
[7%]

. This way, the recall oMC-sampling is clearlyalways 1 thus we avoid to report it.
Note thatprecisionprovides instead less interesting evidence of the accuwhoyr methods,
then we leave it out of the presentation. Indeed, RQ-tree-LB guarantees perfect precision
(no false positives), while, as far &0Q-tree-MC, even though it might return false positives,
its verification strategy is more accurate tHa@-tree-LB, and thus it guarantees very high
precision as well.
We report recall and query-processing time of the selectetthoas (with varying;)
in Table 3.3 and 3.4, respectively. Table 3.3 shows thaR@utree-MC achieves the best recall

results among all methods on bdthst.FMandNetHEPT being also more accurate than the
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RHT baseline on all datasets and for all Particularly, it achieveperfectrecall for alln on
Last.FMand forn = 0.8 onNetHEPT As far asRQ-tree-LC, it is in general less accurate than
RQ-tree-MC, as expected. However, its recall is very close to 1 (0.95)0and comparable to
RHT on Last.FM On theNetHEPTdataset, the recall d®Q-tree-LC decreases, even though
it is on average greater than 0.82. A possible justificatmmttiis is given by the higher arc
probabilities present oNetHEPTas compared to those bast.FM

Regarding efficiency (Table 3.4), oRQ-tree-LB andRQ-tree-MC drastically out-
perform the baselinesRQ-tree-MC is up to 2 and 3 order of magnitude faster tHaAT-
Sampling and MC-Sampling, respectively. RQ-tree-LB is even much better: it outperforms
RHT-Sampling and MC-Sampling up to 6 and 4 orders of magnitude, respectively. We also
note that, on the smalldrast.FMdatasetRHT is more efficient thatMC-Sampling, while on
NetHEPTthe opposite happens. This is expected, as, when the site afraph increases,
RHT becomes very expensive due to its time complexity quadiatibe number of nodes in
the graph. For instance, on larger graphs sucBiabline andFlickr, RHT could not finish in
one day. Therefore, in the remainder of this section, we @vethe efficiency of our methods
with MC-Sampling only.
Index building and query processing. We now shift the attention on larger datasets, i.e.,
DBLP, Flickr, andBioMine We first report the basic statistics about fRE-tree index in
Table 3.9, where it can be observed that the offline indexdimgltime is quite modest for all
datasets: for instance, building the indexRinMine (1M nodes and 3M arcs) takes aboui0

minutes. The space requirement is contained as weRioMineour index takes approximately
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Table 3.9: RQ-tree: Index Building Time, Index Size, Height of the Tree, and Naanof
Clusters.

Dataset | Time (sec) Size (MB) Height # Clusters

DBLP (1 = 5) 1,855 123 14 735,424
Flickr 1,649 118 11 80,726
BioMine 2,890 203 15 1,040,750

200 MB. In Section 3.7.5, we report a deeper analysis of halirbuilding time and space
requirements scale as the graph size grows.

In Table 3.5 and 3.6 we show recall and query-processing tifar RQ-tree-LB
andRQ-tree-MC, and theMC-Sampling baseline. The recall dRQ-tree-MC is always close
to 1 (never less than 0.97), while the recalRfD-tree-LB is reasonably high as well: it is 0.82
on average, up to 0.91, and never less than 0.75. In gereeakdall ofRQ-tree-LB increases
asn increases. This is due to the lower-bounding verificatiorthoed, which is based on the
most-likely path between source and target nodes: higludrapility thresholds leads to tighter
lower bounds.

As far as query-processing times (Table 3.6), both our nustlzme evidently much
efficient than theM C-Sampling baseline RQ-tree-MC is 1 order BioMine) or 2 orders DBLP
and Flickr) of magnitude faster than the baseline, while the speedehfeeed byRQ-tree-
LB is 3-5 orders of magnitude. We also note that the runtimeszdse ag) increases. This
is because a higher threshold leads to better chance ofghavamaller candidate set, which

reduces the time spent in verification.

Performance with varying arc probabilities. We next analyze the performance RQ-tree

with varying arc probability values, while keeping the stiure of the graph fixed. Table 3.7
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Figure 3.4: RQ-tree Candidate Generation: Results on DBLP, Flickr, Biomine
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Figure 3.5: RQ-tree Candidate Generation: Results on DBLP with Varying Arc Riilities

and 3.8 report query performance o@BLP, where the arc probabilities are assigned with
u = 2,5 and10, respectively (higher values pfgenerate smaller arc probabilities). The recall

of RQ-tree-MC is always greater thad.97 and it does not depend a lot on arc probabilities.
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The recall 0fRQ-tree-LB instead is clearly increasing as arc probabilities deere@kis is due
to the RQ-tree-LB verification method, which considers the most-likely patitween source
and target nodes as a lower bound, and the smaller the plitibalihe tighter the lower bound.
Both ourRQ-tree methods andC-Sampling have improved efficiency with smaller arc prob-
abilities. The efficiency oRQ-tree-MC andMC-Sampling improves because the smaller the
arc probabilities, the smaller the number of arcs in theowsrisampled graphs. However, also
RQ-tree-LB gets faster as the arc probabilities get smaller, becaissarthlies a smaller-sized

candidate set.

3.7.3 Insights into the Candidate-Generation Phase

We next focus on thRQ-treecandidate-generation phase, which is common to both

our RQ-tree-LB andRQ-tree-MC. We report the following measurements:

e Precision: defined aéT‘”TT‘, whereT is the set produced bRQ-tree candidate genera-

tion and7™ is theMC-Sampling reliable set;

e Height Ratio: defined as the ratio of the height of tR€-tree traversed during candidate

generation over the total height of tR&-tree;

e Candidate Ratio: defined as the ratio of thRQ-tree candidate-set size, over the total
number of nodes in the uncertain graph. This provides aatidin of the pruning power

of the RQ-tree candidate generation.

The above measurements are reported in Figure 3.4 foDBIeP (with ;1 = 5),

Flickr, andBioMine datasets, and in Figure 3.5 fDBLP with varying arc probabilities.
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As expected, both the height traversed in R@-tree and the size of the candidate
set returned by our candidate generation decrease witlethighSpecifically, inDBLP, for
n = 0.8, the height traversed i5/'4 of the entire index tree height, while the size of the carngida
set is only7% of the total nodes. The precision of the candidate genergti@se improves as
the probability threshold increases, e.g., precisiof.i for n» = 0.8 in DBLP. However, in
many cases the precision is around (or even below) 0.5, mgahat half of the candidates
are not part of the final solution, thus confirming the needvimification. We also observe
that the performance of our index improves with smaller aobabilities. This is because the
probability that a node can get to outside its cluster dag®gathus strengthening the pruning
power ofRQ-tree.

Figures 3.4 and 3.5 also report the candidate-generationing times, which are

decreasing with smaller arc probabilities and larger pdita thresholds.

3.7.4 Performance with Varying Source-Set Size

We next analyze the performance of RRE-tree index for multiple-source queries.
For the sake of brevity, here we focus only on R@-tree-LB variant. Table 3.10 reports
query-processing results @BLP with = 5 andn = 0.6. The table reports recall of our
overall query-processing method, precision of the candiganeration phase, height ratio, and
query-processing time. We vary both query set size5( 10, and20) and query diametet,

i.e., the diameter of the subgraph (of the original uncertmaph) from which the queries are
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Table 3.10: RQ-tree-LB Query-Processing Results on DBLR £ 5, n = 0.6), Varying the
Size of the Set of Query Nodes*( Column) and the Diameted) of the Subgraph from which
these Nodes were Picked.

Recall of the Overall Method, Precision of the Candidate ébation Phase, Height Ratio, and

Query-Evaluation Time.

# nodes recall precision height ratio \
d=2 d=4 d=6|d=2 d=4 d=6|d=2 d=4 d=6

2 0.85 0.86 0.82| 0.65 0.61 0.55| 0.40 0.41 0.44

5 0.82 0.85 0.82| 0.60 0.45 0.24] 0.40 0.57 0.81

10 082 081 081 055 037 0.17| 040 0.80 0.87
20 0.76 0.76 0.75| 055 0.17 0.13| 045 093 0.95

RQ-tree-LB runtime (sec) MC runtime (sec)

fnodes 50— T  d=6 [d=2 d=4 d=¢6
2 060 060 067 | 8502 8431 8130
5 061 0.87 250 | 10500 10500 11352

10 0.60 2.35 3.32 11200 11200 11200
20 0.71 341 4.20 13600 14900 15100

Table 3.11: Scalability Analysis using Single-Source Queries wijtk= 0.6 on the WebGraph
dataset.

# Nodes RQ-tree characteristics RQ-tree-LB runtime (sec)
and# Arcs Size Height # Clusters | Index building Query processing
1M, 15M 62MB 17 1,202,754 1,221 0.11
3M, 50M 177MB 18 3,410,221 7,312 0.13
5M, 81M 421MB 19 5,810,934 11,273 0.17
7™, 122M | 813MB 21 9,570,259 25,315 0.21
10M, 175M | 1,220MB 21 11,758,022 37,146 0.27

randomly selectedi(= 2, 4, and6). Note that, as the query diameter increases, itis morkylike
that the smallest cluster containing all the query nodebosedo the root of th&®Q-tree.
We observe the following. (1) The recall of our method is alsvan the range

[0.75,0.85], which confirms the high effectiveness of our verificationtimod. (2) The effi-
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ciency is clearly decreasing as the size of the source setases. However, the speed-up with

respect tdViC-Sampling is still very significant: at least 4 orders of magnitude.

3.7.5 Scalability

We analyze the scalability of olRQ-tree on theWebGraphdataset. For these ex-
periments, we consider subgraphs of the origivebGraphwith a number of node$M, 3M,
5M, 7M, and 10M, respectively. The corresponding index building spac# thme, as well as
the query processing time, are reported in Table 3.11. Werebghat the index time increases
polynomially with the number of nodes in the uncertain graphile the search time is linear

with respect to the graph size. The results assess the hatabdity of ourRQ-tree.

3.7.6 Application: Influence Maximization

The problem known amfluence maximizatioff2], whose most significative appli-
cation isviral marketing has received a great deal of attention in the data miniagalitire over
the last decade. It requires to find a Sedf cardinality &£ such that it maximizes thexpected
spread i.e., the expected number of nodes that would be infectea \iyal cascade started in
S, according to an underlying propagation model. A populappgation model for influence
maximization is thendependent cascade mod@R]: each active neighbar of a nodeu has
one shot at influencing and succeeds with the probabilityv, «) associated to the afe, u),

which represents the strength of the influence oh ». Given a directed probabilistic graph

100



Chapter 3. Reliability in Uncertain Graphs
G = (N, A, p), the expected spreadS) of a set of node$ C A is

o(S) = Pr(G)>_ Pu(S,1).

GCgG tcA

Rearranging the terms and using the notation reported imtitou(3.2), the expected spread

can be rewritten as

a(S) =D R(S,1).

teA

The problem of finding the sef of cardinality £ that maximizess(.S) is NP-hard. However,
thanks to the submodularity and monotonicityodfS), the simpleGreedy approach that itera-
tively adds taS the node that brings the largest marginal gain in the olwedtinction, provides
(1 — 1/e) approximation guarantee [92]. Unfortunately, finding saamode requires to com-
pute reliability, which is#P-complete. Therefore, the existing body of research ugaglplies
sampling methods (e.g., Monte Carlo) to compute the best sede at each iteration of the
Greedy algorithm.

We next show how the classiGreedy algorithm can exploit alRQ-tree index to
avoid resorting to costly Monte-Carlo sampling, thus aghig very high speed-up and paying
almost nothing in terms of accuracy.

At each iteration of th&reedy algorithm, given the current set of selected nofles
we need to compute the nodec N \ S such tha ", , R(S U {w},t) is maximum.

We use a histogram-based method to exploitRiztree index. We fix a few prob-
ability threshold values in ascending order, ig, < 172 < ... < n,. Let f(S,n;) de-

note the size of the reliable sétS(S,7;): we determined the expected spread fréhas

f(Sv np)np + [f(S> 7710) - f(S> 7710—1)]7717—1 . F [f(sv "72) - f(Sv "71)]"71-
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Figure 3.6: Influence Maximization: Last.FM
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Figure 3.7: Influence Maximization: NetHEPT

Next, we compare the standakeeedy algorithm coupled with Monte-Carlo sampling

(using 1,000 samples), and the same algorithm empowerbdivaRQ-tree index: the results
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onLast.FMandNetHEPTare reported in Figure 3.6 and 3.7, respectively.

We measure the effectiveness of the methods as the expguteaidsachieved by
the set of nodes selected. This is computed via Monte-Carigping. We observe that the
expected spread achieved by the two methods (left plotsgnr€i3.6 and 3.7) is almost the
same, while, as far as running time, employing R@-tree index allows at least one order of
magnitude of speed-up (right plots in Figure 3.6 and 3.7)t iRstance,RQ-tree requires?

hours to identify a seed set of 50 noded ast.FM as compared t8 days usingreedy along

with Monte-Carlo sampling.
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3.8 Summary

In this chapter, we introducRQ-tree, a novel index to efficiently answer a gen-
eralized version of reliability queries in uncertain graphirhe proposed index is based on a
hierarchical partitioning of the nodes of the graph abovécivive apply a candidate genera-
tion phase based on maximum flow, and a verification phasellmseither a lower-bounding
strategy or sampling.

Our experimental results over several real-world datagetes that: (1RQ-tree is up
to six orders of magnitude faster than the state-of-theartpling methods, while guaranteeing
high accuracy in terms of recall)(75 — 0.98]); (2) The effectiveness of our approach improves
with smaller arc probabilities, and also with higher prabgbthresholds; (3)RQ-tree scales
very well with the size of the input graphs. Finally, we albow how the use dRQ-tree index
in the well-known influence-maximization problem obtainki@e speed-up over state-of-the-
art methods, while achieving comparable accuracy.

In future work, we plan to extend our method for reliabilityagies when the arc prob-

abilities are not independent. We also plan to applyRQFtree in several diverse applications.
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Chapter 4

Social Influence Maximization

“Is Social Intelligence More Useful than 1Q?”
Daniel Goleman, author of tH8ocial Intelligence’

A central characteristic of social networks is that it faiates rapid dissemination of information
between large groups of individuals. This chapter will exarthe problem of determination
of information flow representativea small group of authoritative representatives to whom the
dissemination of a piece of information leads to the maxinspnead. Clearly, information flow

is affected by a number of different structural factors sastthe node degree, connectivity,
intensity of information flow interaction and the globalwstiural behavior of the underlying
network. We will propose a stochastic information flow modeid use it to determine the
authoritative representatives in the underlying socialvoek. We will first design a heuristic,
but more accuratBankedReplace algorithm, and then use a Bayes probabilistic model in order

to approximate the effectiveness of this algorithm with tise of a fast algorithm. We will
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examine the results on a number of real social network d#a$a aed show that the method is

more effective than state-of-the-art methods.

4.1 Introduction

In recent years, social networks have found increasing lpdpubecause of their
ability to connect geographically disparate groups ofvitllials. Social networks are well
known to enjoy the benefits of threetwork effegtwherein the increase in the size of the social
network also increases the perceived benefits of using itchMaf this benefit is embedded
in the information flows in the social network. These infotima flows arise as a result of
the communication between the different entities in théatawtwork. The information flow
is also impacted by the network topology and the intensitynfdrmation flow interactions
between different nodes. Since information flows play sukéyerole in the popularity of social
networks, significant research has been performed in rg@ars to characterize important
characteristics of such flows [108, 109].

A key question which arises in the context of social netwask® determine thén-
formation flow authoritiesn the social network. Information flow authorities are defiras a
very small group of members at which the dissemination afrmftion leads to the most rapid
spread throughout the social network. The concept of inébian authorities is peripherally
related to that of the concept bfibs and authoritiegh web networks [99]. The concept of hubs
and authorities is used in order to find central points of arkee in web networks. However, the

concept ofinformation flow authoritiess quite different from that of the hub-authority frame-
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work, in that it is more critically dependent upon the stunetof theflows along the underlying
network This is dependent both upon the structural charactesistithe network and the flow
intensity along different edges (which can be measured inynag@plications). In the experi-
mental section, we will see that the use of a purely struttaethod (calledPeerinfluenckgis
not sufficient for effective determination of flow authcesi The use of amformation flow
modelis critical in determining the best nodes for informatioesgimination. Furthermore, our
model also allows for the development of particular vasamhich can target specific nodes for
influence. This is interesting in a number of applicationsvhich only a subset of the nodes
may be relevant for dissemination of information.

Clearly, the flow authorities in the social network are likéb be central and well
connected entities in the network. This is related to thecephof determiningentral nodes
[65] in graphs and social networks. However, the local $tnat measures alone do not provide
a global view of thecentrality of flowsin the social network. Rather, the flow centrality is
defined by the global topology, and the pattern of interastinetween different nodes. A related
problem is that of virus propagation in computer networkd epidemic spreading [34,123]. It
has been observed in earlier work [34], that the flow of infation in social networks, blogs,
and network-based product-recommendation systems issumijar to that of virus spread in
computer networks. It has been observed in this work thastilueture of the network and the
interaction intensities between nodes can play a critiol@ in the information dissemination

process.
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We will design a stochastic approach in order to model the fielaavior in social net-
works. We will leverage this flow model in order to design apraach (calledRankedReplace)
for determining flow authorities in social networks. There will approximate the flow model
with a random-walk based model in conjunction with a prolistii Bayes algorithm. We will
refer to this algorithm as thBayesTraceback algorithm. This approximation is very efficient,
and turns out to be almost equally effective in practice. Vileshiow that our techniques are

much more effective than state-of-the-art technigues kvt be adapted to this problem.

4.2 Related Work

Social networks represent individuals and their relatijpss such as friendships, col-
laborations, or recommendation seeking relations. Thereledicated websites, such as Face-
book [53], Twitter [146], Orkut [125], hi5 [77], Myspace [1}P, LiveJournal [112], Last.FM
[105], and Delicious [49] which provide online social netking capabilities. Social networks
have been shown to have advantages as a medium for fast,pneddsinformation cascade.
They provide rapid access to large scale news data, sonstivea faster than the mass media,
e.g. the announcement of death of Michael Jackson [1]. Theyserve as a medium to collec-
tively achieve a social goal. For instance, with the use ofigrand event pages in Facebook
and Twitter, events such as “2011 Egyptian Protest” quickBched to the protestors world-
wide [132]. Social networks can also perform as a platformofdine marketing [52, 70, 113].
Thus, itis important to find a small subset of influential induals who can influence the largest

number of people in a social network. More formally, thBuence maximization problenan
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be stated as follow: Given a probabilistic model for influendetermine a set @&f seed nodes
generating the largest expected information cascade. drheufation of influence maximiza-
tion as an optimization problem is due to Domingos and Rud$am [52], who modeled influ-
ence by an arbitrary Markov random field, and provide haaosgbr maximization. The first
provable approximation guarantees are given by Kempenkégg, and Tardos in [92,93]. Sev-
eral heuristics have been also proposed to improve theesféigiof that method [37,38,71,108].
Recently, there have been several works on graph influengemization in the pres-
ence of a competing negative information spread [25, 321 Bf]. In [104], Lappas et. al.
introduced the concept df-effectors. Thek-effectors problem identifies seed nodes, such
that, the spread of an information is maximized over a seivafignodes and minimized out-

side the set.

4.3 Flow Authority Model for Social Networks

In this section, we will introduce the flow authority model focial networks. We
assume that the universal set of nodes over which the saefabrk is defined is denoted by
U, and the edge set hy. Therefore, the underlying graph is denoted(by A). The graph
is assumed to be directed, since information flows are speoifilirection in the most general
case. However, this assumption is not specific to the teaksidiscussed in this work and they
can easily be applied to undirected networks. This can biewath by replacing an undirected
edge with two symmetric directed edges. The set of nodes Whioh an incoming edge is

incident into node is denoted byV (i). In other words, we have/ (i) = {k : (k,7) € A}. The
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set of nodes on which the outgoing edges afe incident are denoted I8y(i). Therefore, we
haveO(i) = {k : (i,k) € A}. We assume a model of information transmissibility, in vbhic
a nodei which isexposed toinformation can transmit it to one of its neighbors. Infotioa
transmission can take on many forms in practical settings:

(2) In a social network, information may be forwarded to any @ ftiends of a given user in
the form of publicly visible text posts, hyperlinks, videosmessages. This user may or may
not choose to adopt this piece of information and transnfitrther.

(2) In a peer-to-peer recommendation or viral marketing systeoser may send a recommen-
dation to any neighbor. The neighbor may or may not make anpugtecision based on this
recommendation. Furthermore, this recommendation magraeafded to one of the neighbors
of the node. In general, it has been observed [52] that custm a network-marketing system
have a certain value in terms of their being able to influetheranembers of the network. The
determination of flow authorities will help us in identifgirkey points in the network which
lead to the greatest spread of information.

(3) The above dynamic is generally true for a variety of netwioaked epidemic outbreaks,
and may be generalized to social networks, blog posts [1@&kr monitoring systems, or any
general network infection system which has structurallsinty to epidemic outbreaks [34].

We will formally define the concept dfformation exposure

Definition 4.1. A node is said to be exposed to information Bit# at least one of its neighbors

contains the informatiof.
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It is important to note that the concept of neighborhaofibrmation exposurdas
defined in this work) only entails theresence of the informaticat one of its neighbors, rather
than any further explanation of what is done with it. The dé#fassumption is that if a node
contains some information bits, then all of its neighboesartomatically exposed to those bits.
The probability that such an exposure resulteventuainformation assimilation is determined
by a transmission matrix, which we will discuss shortly. Vémdte the transmission probability
along edgdi, j) by p;;. Note that this transmission probability simply indicaties probability
that an exposure of nodealso results in thinformation being assimilated byode;j. Nodej
then automatically becomes eligible to transmit to its hbays. We denote the corresponding
matrix of transmission probabilities by = [p;;]. We note that this matrix is extremely sparse,
because it is often overlaid on very sparse graphs such & setworks. We note that if;
be the probability that a given nodecontains informatioriZ, then iteventuallytransmits the
informationZ to adjacent nodg with probabilityr; - p;;. The value op;; can often be estimated
from the underlying data.

In this work, we will examine the problem of picking a setkopoints in the network
which maximizes the aggregate probability of informati@sienilation over all nodes in the
graph. We refer to thesenodes as the information authorities in the underlying oetwWe

summarize the problem as follows:

Problem 4.1. Determine the se$ of k£ data points at which release of the information kits

would maximize the expected number of nodes over whistassimilated.
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Algorithm SteadyStateSpre@ditial Set: .S,
Transmission Matrix:P)
begin
for eachi € S setq’ (i) = 1;
for eachi ¢ S setq® (i) = 0;
t=0;
repeat
for eachi € S setg"t'(i) = 1;
foreachi ¢ S do
begin
¢ () =1 [Lene (L —pi-a"(9));
end
Crr1 = Y5 la"™ (1) — ¢" (0);
t=1t+1;
until (C; < 0.01 - Ch);

return (3,5 4°(4));

end

Figure 4.1: Determining the Expected Information Spread for a Givemtibg Set of Nodes

We note that this is a particularly difficult problem, becaudke probability of the
spread of the information at any particular node cannot lpressed easily in closed form.
Rather, it is described in the form ofren-linear systenof equations. We define(7) to be the
steady-state probability that nodassimilates the information. Then, the expected steadly sta
number of nodes which assimilate the information are gived b, (7). In order for node

to assimilate the information, it must receive the transiois fromat leastone of its neighbors.
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The flip side of this argument is that in order for nod® not assimilate the information, it
must not receive the transmission fr@ny of its neighbors. The probability that none of the

neighbors of nodétransmit to it is given by [;c ;) (1 — 7 (1) - pi;). Therefore, we have:

L—n(i)= [ Q== -pu) (4.1)

IEN (i)

In addition, for each of thé nodes inS at which the information is released, we set the corre-

sponding value ofr(-) to 1. Therefore, we have:
w(i)=1 VieS (4.2)

The above system of equations is nonlinear, since it usesdugt of the probability of (non-)
exposure from different neighbors. This is a difficult setegtiations to solve, and the corre-
sponding result can only be obtained via numerical estonatFurthermore, it is required to
determine the se$ optimally. The optimization problem is even more challengi We will

now restate Problem 4.1 more formally in terms of the retetiips discussed above:

Definition 4.2. Determine the sef of nodes which maximizes,_;; 7(i) subject to the follow-

ing constraints:
o 1—m(i) =Ilened —7(l) - pu) Vigs
e (i)=1 YieS
Next, we will describe a simple algorithm to determine thiimation authorities
with the use of an iterative numerical method. Later, we pridisent a much faster probabilistic

method for the same problem. This method uses a Bayes modetiar to determine the

optimal flow authorities.
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4.4 Determining Optimal Information Flow Authorities

In this section, we will present algorithms for determiniogtimal information flow
authorities. In order to determine optimal flow authoritie® also need to have a way to eval-
uate the (aggregate) steady state assimilation prolyabfliall nodes, when the information is
released at garticular set of nodesS. In order to design this algorithm, we will use an itera-
tive algorithm in whichg!(i) denotes the estimation ef(i) in the tth iteration. This iterative
approach is natural to solve the non-linear system of egusti In each iteration, we update
the value ofy’(7) from the value of;!~! (i) with the use of the equations in Definition 4.2. The
overall algorithm is denoted h¥teadyStateSpread in Figure 4.1. The input to the algorithm
is the setS at which the information is released.

The algorithm initializes,"(i) = 1 for each nodé < S and 0 for nodes which are not
in S. Subsequently, an iterative approach is used to updateathe wfg!*!(-) is updated from
q'(+) with the use of the equations in Definition 4.2. In each iteratwe trackC;, which is the
aggregate change in the absolute probabilities fggm to ¢;11(-). The algorithm is terminated
when the change in a given iteration is less tih&nof the change in the first iteration. At this
point, it is assumed that the probability values have cayeetto values which are close to their
true values.

The above method for determining the steady-state pratieditan be leveraged in
order to determine the optimum set binodes at which the information should be released.
We make use of a greedy approach which maximizes the expiectexhse in the information

spread as calculated by Figure 4.1. The algorithm works thithuse of an iterative approach
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Algorithm RankedReplace(Transmission
Matrix: P, NumberOfAuthoritiesk);
begin

DetermineSteadyStateSpread({i}, P) for

each node in the universal sel/;

S =lInitial set of k authority nodes with the
highest value ofteadyStateSpread({i}, P);
Sort nodes iV — S in descending order of
SteadyStateSpread(-);

for each nodé in U — S'in

descending ordeto
begin
Sort the listS in ascending order
of SteadyStateSpread({j}, P);
Pick the first element (if it exists) of
sorted listS which is such that
replacing: with it increases value of
SteadyStateSpread(S, P)
if no replacement has occurred in the last
r consecutive iterations, then
return (S) and terminate;
end
return (S);

end

Figure 4.2: The RankedReplace Algorithm
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in which we start off with a candidate set bfnodes and continually increase its maximum
flow value. We first pick the toz nodes with the largest individual steady state spread as the
initial candidate set of flow authorities. Of course this weapicking the candidates ignores the
structural relationships between these nodes. In gemwegalould like our flow authorities to be
reasonably well separated from one another in order to magithe probability of propagation
of information throughout the social network. In order tdiawe this goal, we use r@nked
replacealgorithm in which the nodes it — S are tried as possible replacements for nodes in
S in decreasing order of their flow value.

The iterative portion of the algorithm proceeds as followWs sort the nodes iti — S
in descending order of the steady state flow. In each iterati@ pick the next nodé from
U — S and use it to replace a node K if such a replacement increases the total flow of
S. Even though the flow value dfis typically less than that of the node it replaces, the to-
tal flow value may increase because of the nature of the nktlsoation of the two nodes.
For this purpose, the nodes thare tried as candidates for replacement in ascending vélue o
SteadyStateSpread(-). The first replacement in this order which increases thectisgfunc-
tion for the steady state information spread is executeid.dbssible that no such replacement
may exist. We continue to try different nodeslin— S for replacement, until such attempts
are unsuccessful far consecutive iterations. At this point, the algorithm taerates, and the
set of nodesS are reported as the flow authorities. The overall algorithiliustrated in Figure
4.2. The algorithm is referred to &inkedReplace, which corresponds to the broad approach

of ranking the nodes and iterative replacement based orighdysstate flow impact.
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4.4.1 The BayesTraceback Algorithm

The main problem with the solutions presented in the previections is that the
algorithms require iterative determination of the steatite probabilities. This can be rather
slow in practice. In this subsection, we will discuss howpeed up the algorithms for deter-
mination of the information authorities. This algorithmopides an an approximation of the
information authorities. The core-idea is to useaadom walkbased approach in which an
information packet is viewed as a token, and it is assumetdthieatoken at a given nodgis
inherited from one of itsncoming nodeg with probability proportional tg;;. Random walk
modeling is used for the page rank problem, though this ambrds different in the sense that
we use it fortrace backof the bestsource of information, rather than those nodes which will
be visited often by a random surfer. Thus, the algorithm dendcbebackward looking from a
desired resultrather tharforward looking to determine the resulh the experimental section,
we will show that a direct application of the page rank modedginot yield as accurate results
as theBayesTracebacknethod.

The random walk model is a relaxation of the original modeltfeo reasons:

(1) In the original model, a node can be infected only once, wdseeerandom walk can visit a
node multiple times.

(2) In the original model, a given node may infect multiple nodesnce, whereas in this case,
we are trying to trace the behavior of a single token, whic{siechastically) present only at

one node at a time.
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Algorithm BayesTraceback(Transmission Matrix:P
Discard Fraction;f, NumberOfAuthoritiesk);
begin
t=0;

for each node setq®(i) = 1/n;

repeat
g V() =) - ﬁmph
t=t+1,

Remove a fractiorf of the nodes
from the graph with the least value of
¢ Y (), with the restriction
that at leask nodes should remain;
Scale up probabilitieg!~*+1)(.) of
all remaining nodes by the same factor
so that the remaining probabilities sum to 1;
until (k nodes remain);
return remaining nodes;

end

Figure 4.3: The BayesTraceback Algorithm

We note that this simplification of the model allows us a trhaek of the steady-state
probabilities with the use of a Bayes model. We will see thetapproach is extremely efficient
and provides a good approximation to the exact algorithm.

In the case of the random walk model, our aim is to gictodes in the data which are
such that by releasing the information at thésgoints, the information spreads as evenly over

the entire network as possible. Intuitively, this corragmto release points which results in as
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much of the network being disseminated with the informaéispossible. We note that the even
spread of information may not be possible in steady-statee shesteady-statgrobabilities
in a random-walk model are dependent upon the structureeohétwork and the transition
probabilities, and are independent of the initial starfimint probabilities. Nevertheless, our
goal is to create an evenly spread probability distributisnanintermediate transienafter a
small number of iterations of the walk model. The goal is td firset of starting points which
will create such an intermediate transient at some poineréfbre, for a network containing
n nodes, we will start off with dinal transient probability distributiorof 1/n for each node,
and then use the Bayes theorem repeatedlyaime backthe initial probabilities for a certain
number of iterations, and pick tikenodes with the largest apriori probability with the use @ th
traceback technique. Therefore, we start off with the poditi@s for n nodes which are denoted

by ¢°(-) = ¢°(1) ... ¢°(n). As noted earlier, each of these values is equa/ia In subsequent

iterations, we will use the Bayes formula to determine theesofq=1(-),¢=2(-) ... ¢ (").
Note that we use negative superscripts for the time compgonemder to denote the traceback
starting from theth step of the walk. The vectqu(-) indicates the probabilities after tracing
the walk back fort steps.

Next, we will examine how the values qul)() can be determined fromr—t(.).
For any particular nodég let us examine all the incoming edges from the correspgndode

setN(i). We note that the a-priori probabiliti’(; — i| — tth node= i) that an information

token at node came from nodg in the previous step of the random walk is given by the Bayes
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formula over all possible nodes incoming into nadé& herefore, we have:

1eN (i) Pli

In order to trace back the values @f (t+1)(.) from ¢—(-), we can examine the different cases
over which the—tth node isi and sum up the values @f(j; — i| — ¢th node= i) over these

cases. Therefore, we have:

—(+1) Z q '(i) - P(j — i| — tth node= 1)
—t 'i

= q Z [ A —

Z ZIEN(Z b

The second equation above simply traces back for the priitlgadistribution of the position
of the information token at time stamp(¢ + 1) using the probability distribution of the token
at time stamp-t. Therefore, we can start off with the evenly distributedlyataility vector
¢°(-) and start tracing back the probabilities. The nature of theve probabilities suggest
that nodes with high outdegree and outgoing probabilitidissae increased probability during
the traceback process. The process above is repeateditEmations, and then thg nodes
with the largest value of " (i) are picked as the correct candidates. It remains to desitrébe
termination criterion. Furthermore, we need to design therdhm in such a way, so that the
algorithm converges.

It turns out that both of the above issues can be solved byngakheuristic change
to the algorithm. This heuristic change speeds up the cgemee and also provides a natu-
ral termination criterion to the algorithm. Note that sine only wish to determine the high

probability nodes after the traceback, we can start rengotyie nodes, whose influence to this
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is minimal. After each iteration of updating (“+1)(.) from ¢—*(-), we conceptually discard a
fraction f of nodes with the least probability (least valueqoﬁt“)(-)), by setting the corre-
sponding values Qj‘(t“)(-) to zero. We also delete the corresponding nodes and edges fro
the graph. At the same time, we scale up the probabilitiehefeémaining nodes (by the same
factor), so that they continue to sum to 1. This process ieatgu iteratively until exactly
nodes are remaining. Note that the last iteration is spétidle sense that less than a fraction
f of the nodes may need to be dropped in order to ensure that mtmwe to havek nodes
remaining. Thesé nodes are reported as the information authorities. Theatvagorithm
is illustrated in Figure 4.3. The input to the algorithm ig tliscard fractionf and the tran-
sition matrix P. The choice of thaliscard fraction f determines the speed of termination of
the algorithm. A larger choice of leads to faster convergence, but somewhat more inaccurate
results. In practice, we chogéto be abouts% of the total number of nodes. We note that
this algorithm is extremely efficient, since each iterai®a straightforward update step on the
different nodes. Furthermore, for a graph containingodes, the maximum number of iter-
ations is logn/k)/log(1/(1 — f)). This is because the number of nodes reduces by a factor
of (1 — f) in each iteration, and the number of nodes need to be reducethf to & in all
iterations. Because of the logarithmic variation, thisituout to be quite modest. For example,
for a network containing 0 nodesk = 10 and f = 0.05, the total number of iterations is less
than 180.

We note that successive removal of nodes and edges fromdbé grill eventually

lead to the underlying graph becoming disconnected. Thes dwt change the overall algo-
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rithm, since the iterative transition relationships couaé to hold within each connected com-
ponent. Conceptually, the algorithm will eventually fing ttmost significant nodes” in the

highest probability components.

4.4.2 Restricting Source and Target Nodes

In the previous discussion, we picked the most relevant flathvaities for the entire
set of nodes. In this section, we will examine the case whenvisk to determine the flow
authorities for a particular sét of target nodes. Such situations may arise in a number of sce-
narios in which a user may target a particular subset of nodeshich the information flow
needs to be maximized. This problem can be achieved by simgtiifications to each of the
above algorithms:

(1) For the case of thRankedReplace algorithm, the only change is to modify tisteadyState-
Spreadalgorithm. In the modified algorithm, we add the §éto the input parameters. The
actual state probabilities on the nodes are computed usingame algorithm as before, except
that the final information flow value which is returned is detmed by summing up these prob-
ability only overT rather than the entire set of nodes. When RaekedReplace algorithm is
executed with this new method of determining the steady $kaiv, it automatically picks the
set of flow authorities which maximize the flow to the targatBe

(2) For the case of thBayesTraceback algorithm, we consider the nodes within target set as the
sink nodes. Note that, the nodes that have the maximum ituever a set of target nodes in-

tuitively correspond to the nodes that can evenly spreathtbemation within the target nodes

121



Chapter 4. Social Influence Maximization

as quickly as possible. However, to achieve the maximum flihinvtarget nodes, we are free
to take help of non-target nodes. Now, in this modifietyesTraceback approach, the algo-
rithm still remains the same inside the subgraph imposeti®yarget nodes. For the subgraph
imposed by the non-target nodes, we do not care the total flatxcould be aggregated there by
the whole process, as this is used only for the flow propagatithin the target nodes. There-
fore, the only change to the method is that we do not propabatéow from target node to
non-target node, but we propagate flow from non-target getasets.

It is further possible to restrict the set of influential nede a particular se$. This
situation can arise in cases, where the information canlbagsed only at specific nodes. This
generalization can be solved by adding this as an input peisann case oRankedReplace
algorithm. We only use the nodes $hfor the ranking process in this case. For the case of the
BayesTraceback algorithm, we run the algorithm in the same way as the previase, except

that the topk nodes from the sef are picked as the final solution.

4.5 Experimental Results

We will present experimental results which illustrate tifeaiveness, efficiency and
robustness of our techniques on a number of real data setanpare our results, we consider
some of the structural and random walk based algorithms tasahdaselines. For example,
we implemented th&ecursive Neighbor MeanR(V M) Algorithm [120], which determines
the peer influence groups and thereby identifies the densteduin a large network. The

node with the highest degree centrality [51] in each cluisteonsidered the authority node in
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H Rank ‘ RankedReplace ‘ BayesTraceback ‘ Peer-Influence ‘ Degree Discount ICH
1 W. Gao W. Gao L. Fortuna W. Li
2 F. Catthor P.S.Yu D. Roy Chowdhury W. Wang
3 P.S.Yu M. T. Kandemir | Timothy D. Sullivan L. Zhang
4 M. T. Kandemir F. Catthoor Wei Li I. T. Foster
5 A.L.S. Vincentelli| A. L. S. Vincentelli S.C. Lin W. Zhang
6 E. Bertino T. S. Huang E. K. Zavadskas M. Li
7 T. S. Huang E. Bertino K. J. Archer L. Zhang
8 I. T. Foster W.-Y. Ma H. Van Keulen L. Wang
9 L. Benini D. F. Towsley W. Wang A. L. S. Vincentelli
10 H.-P. Seidel I. T. Foster R. Andrushkiw J. Wang
11 W.-Y. Ma E. D. Demaine | A. Thanachayanont W. Liu
12 E. D. Demaine H.-P. Seidel H. Zimmermann J. Zhang
13 M. Li Ming Li S. P. Perone J. Wang
14 D. F. Towsley V. Keulen C. Lpez-Garca L. Li
15 W. Wang J. Han M. McCormick F. Catthoor
16 W. Li H. Zhang C. Jiang Y. Zhang
17 M. Piattini P. Nagley L. F. Osborne E. Bertino
18 H. Chen J. Saltz J. Dongarra X. Li
19 L. Zhang M. J. lIrwin J. P. Woodruff W. Gao
20 H. Garcia-Molina G. Weikum A. Halme H. Zhang

Table 4.1: Top-20 Results Obtained by Different Influence Maximizatdethods

each cluster using this baseline approach. We refer to lysithm asPeer-Influenceén the

experimental section. We also implemented Bregree Discount IGeuristic [39] discussed

earlier. In the IC model, each active node gets a single &tmnactivate each of its neighbors

independently with a certain probability. In tiegree Discounteuristic of the IC model,

while selecting some node as the authority node, we do not count the edgeowards its

degree, ifu has already been selected as an authority node. Finallypmpare our toge flow

authority nodes with the top-nodes having the higheBageRank29] values.
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Figure 4.6: Influence Maximization: Effectiveness Results (Twitter)

45.1 Data Sets

The algorithms were tested on a variety of different kindsnédéraction networks.

These interaction networks were constructed from a numbdifferent kinds of social net-
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Figure 4.9: Influence Maximization: Efficiency Results (Twitter)

work settings. We describe the data sets in detail below.
DBLP Collaboration Network: We use the well known DBLP collaboration graph [47] con-

sisting 0f684, 911 distinct authors and, 764, 604 collaboration edges among them. We define
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the transmission probability of an edge to be proportionght number of times that the two
authors publish a paper together. The proportionalityofastthe inverse of the maximum num-
ber of collaborations between any pair of authors in the agtw

Last.fm Social Network: We crawled a social network consisting &if8, 800 users from the
last.fmsite. This is a music web site where users listen to theirfea/tracks and communicate
with each other based on their choice of music. There areahdb8, 340,954 edges among
these users. In each case, an edge represents user postcarnéspond to song recommen-
dations between users. The transmission probability ofdge és proportional to the number
of times a recommendation was sent from one user to anotherpibportionality factor is the
inverse of the maximum number of communications betweerhaoysers.

Twitter Social Network: We crawled a social network consisting bfd94, 092 users from
http://twitter.com. Twitter is a free social networkingcamicro-blogging service that enables
its users to send and read messages There are a t@talif, 193 edges among these users.
In each case, an edge represents messages sent from one asethier. The transmission
probability of an edge is proportional to the number of tintles users have communicated.
As in the previous case, the proportionality factor is theeige of the maximum number of

communications between any pair of users.

45.2 Case Studies

Before more concrete presentation of the effectivenesstsasith quantitative mea-

sures on the information spread, we will provide an inteitdxploration of the results obtained
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with the different algorithms for thBBLP data set. This provides an intuitive understanding
of the nature of the results obtained by the different meth¥de provide the name of authority
nodes fork = 20 in Table 4.1. It is evident that the authority nodes deteedihy theRanked-
ReplaceandBayesTraceback algorithms mostly contain well-known and influential resers
from different fields of computer science. Furthermore, what even though the algorithms
are quite different from one another, the authority nodeasrdened are quite similar. Further-
more, these researchers ataucturally placedn such a way so as to maximize the interaction
with other researchers. All these factors contribute tadoke aggregate flow across the entire
network. ThePeer-Influencanethod is particularly poor in determining good authoribdas,
because it does not properly compute the flows on the basgsmdbm walk behavigrand pure
structural diameters simply do not encode enough infoonath ensure robustness. This re-
sults in lower aggregate flow across the whole graph. We alsted theDegree Discount IC
algorithm. TheDegree Discount IGilgorithm determines better quality results than Peer-
Influencealgorithm, because it uses a weighted version of randork;wadiere the weight is de-
termined by the degree of a node and the corresponding tissismprobabilities; however, the
determined authority nodes are quite different fromRhekedReplace andBayesTraceback al-
gorithms, because it performs a forward calculation as segd®o Bayes-based backward mea-
sures. This difference is quite significant; in the nextise¢twe will use quantitative measures
on the information spread to show that fR@nkedReplace andBayesTraceback algorithms are

more effective than thBegree Discount I@lgorithm in many cases.
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45.3 Effectiveness Results

In order to measure the effectiveness of a set of authoritles6, we used expected
value of the steady state flow from the determined$éb the remaining set of nodes. We
determine the expected aggregate flow for different valfigs the number of authority nodes.
Figure 4.4 illustrates the effectiveness result forg P data set. The value @fis illustrated
on the X-axis, whereas the flow value is illustrated on tHeaxis. The expected aggregate
flow increases with the number of authority nodes, since d¢lease of information at a larger
number of nodes leads to greater spread of information. Rdrked-Replacmethod slightly
outperforms theBayesTracebachklgorithm. We will see that thBayesTracebacknethod is
also extremely efficient, and therefore it is the most pcattalternative among the different
methods. Furthermore, both techniques perfaignificantly better than the three baseline
techniques. For example, when we Bet 60, the expected aggregate flow using Renked-
Replace BayesTracebackPageRankDegree Discount IGnd thePeer-Influencanethods are
296.70, 275.42, 211.67, 250.28 and111.48 respectively.

Figure 4.5 illustrates the effectiveness results of outhafor thelast.fm data set.
Both theRanked-ReplacandBayesTraceback algorithms perform very similarly, and also sig-
nificantly outperform the three baseline methods. #er 60, the expected aggregate flow using
the Ranked-ReplaceBayesTraceback, PageRankDegree Discount IGnd thePeer-Influence
methods ard 682.62, 1692.21, 1450.62, 1523.50 and 527.27 respectively. In Figure 4.6, we
illustrate the results for th&witter data set. In this case, tixegree Discount IQeuristic per-

forms slightly better than thBayesTraceback method. For example, fdr = 80, the expected
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aggregate flow using thiRankedReplace, BayesTraceback, PageRankDegree Discount IGnd

the Peer-Influencenethods ar®33.64, 851.47, 258.76, 891.24 and222.34 respectively.
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4.5.4 Efficiency Results

We compare the running time of tlRankedReplace and BayesTracebacknethods
with that of the three baseline methods. Figure 4.7 showeffigency result for theDBLP

data set. The number of authority nodeis varied from20 to 100 on the X -axis, whereas the
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running time is illustrated on th&-axis. ThePeer-Influenceapproach is the most inefficient,
and its running time increases rapidly with the number ofiarty nodes. Th@&ayesTraceback
algorithm, on the other hand, is very efficient, though Elegree Discount IGlgorithm is the
fastest. Fork = 60, the running time of theRankedReplace, BayesTracebackPageRank
Degree Discount 1Gand Peer-Influencanethods are8904, 343, 104, 71 and 50743 seconds
respectively. The running times for thest.fm data set are illustrated in Figure 4.8. HoE=
60, the running time of th&Ranked-Repla¢d3ayesTraceback, PageRankDegree Discount IC
and thePeer-Influencamethod are9265, 628, 301, 105 and98930 seconds respectively. Thus,
the Peer-Influencanethod is two orders of magnitude slower than our two methoalso,
the BayesTraceback method is an effective alternative to tRankedReplace method, while
maintaining a significantly high level of effectiveness.

Besides, the time requirement for tBayesTraceback method does not vary much
with respect tak. This is because a fixed fraction of the nodes are discardeddh iteration,

and the number of iterations for convergence of this methdadviersely proportional ttog n.
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The Ranked-Replacmethod is a greedy approach and it does not follow any spqmfiern
with respect td. However, the running time of tH2egree Discount I@s proportional tok [39].
We note that, in th@witter dataset (Figure 4.9), th#ayesTraceback approach is more efficient
than theDegree Discount IQeuristic for higher values @f. For example, when we skt= 80,
the running times of thRanked-Repla¢cdBayesTracebachkPageRankDegree Discount IGnd

the Peer-Influencemethods ard0225, 275, 1001, 362 and312345 seconds respectively.
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4.5.5 Robustness and Scalability with increasing Networki%e

Our goal in this section is to test the robustness and sditffati the method with
increasing network size. This will show the effectivenekthe method with different network
sizes, and also the scalability of the method. In order tainbtetworks of increasing sizes, we
randomly deleted nodes (and their incident edges from thee si), and tested the algorithm
over networks of increasing size. We &ethe number of authority nodes, 28. We provide
results on the effectiveness and efficiency for increasimglyer of nodes.

Figure 4.10 shows the variation of the maximum informatipread with increasing
number of nodes for thBBLP data set. The total flow value initially increases with thentwer
of nodes, because the full benefit of multiple points of infation release in small networks is
not realized. On the other hand, if the networks are too |atgmn the information spread may
get sufficiently damped in a few iterations. Therefore, thevflialue increases relatively fast
up to the value o, = 300, 000 for both theRanked-Replacand BayesTraceback methods,
and then levels off. Th&anked-Replacand BayesTraceback method both outperform the
baseline approaches by a high margin for all values.ofThis suggests that the method is
extremely robust over networks of different sizes. Figufel4dhows the corresponding results
for last.fm data set. As in the case of tidBLP data set, the expected aggregate flow for the
Ranked-Replacand BayesTraceback methods are much higher than thatlédgree Discount
IC, PageRanlkand thePeer-Influencanethods over the entire range of possible network sizes.
We plot the expected aggregate flow for different networksior the case of thEwitter data

setin Figure 4.12. The results are similar to the case ofttier dwo data sets when the number
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of nodes is less thah 000, 000. However, forn greater thari, 000, 000, the Degree Discount
IC heuristic performs slightly better than tBayesTraceback method.

Figure 4.13 illustrates the running time scalability wititieasing number of nodes
for the DBLP data set. For th8ayesTraceback method, the running time does not vary much
with respect to the number of nodes since the number ofibamincreases only logarithmically
with the number of nodes. As observed earlier, it is slowanttheDegree Discount I@nethod
but significantly faster than either tiRankedReplace or thePeer-Influencenethods. For small
values of the number of nodes the Peer-Influenceapproach is slightly faster than tRanked-
Replacemethod; however, the former does not scale well and is mustesithan théRanked-
Replacemethod for larger networks. Far = 500, 000 or higher, thePeer-Influenceapproach
requires significantly more time than tRanked-Replacechnique. The results for thast.fm
data set show similar trends, as is evident from Figure 4Thk results for th@witter data
set are illustrated in Figure 4.15. In this case, the runtimgs of Degree Discount IGand
BayesTracebachlgorithms are comparable. These algorithms are alsdfisigmily faster than

the other two methods.

4.5.6 Targeted Flow Authorities

We also tested our two schemes for the case when we deterthimédw authorities
for a particular set of target nodes. For DBLP collaboration graph, we randomly selected a
set 0f 1000 target nodes and determine the corresponding authoritgsntiich will maximize

the flow within that target set. Figure 4.16 illustrates tkpexted aggregate information spread
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within this target set (for different numbér of authority nodes) using the modifidtanked-
ReplaceandBayesTraceback methods. Figure 4.17 illustrates the corresponding runtime

to find the authority nodes. In this case, we do not show thelin@smethods because they can-
not be easily modified when particular nodes are targeteds,Tdur scheme also provides better
functionality than the baseline methods. It is evident thatmodifiedBayesTracebackethod
performs almost as well as the modifiednked-Replactchnique; however it is significantly
faster in terms of running time. Unlike tHRankedReplace method, the running time of the
BayesTraceback method is relatively insensitive to the number of authanitglesk. Therefore,

the BayesTraceback method provides the best tradeoffs between quality andesftig.

4.6 Summary

In this chapter, we designed an algorithm for the deterrdnaaf optimal flow au-
thorities in social networks. We designed two algorithmstifie task, which correspond to the
RankedReplace andBayesTraceback algorithms. We presented experimental results illustgati
the effectiveness of our methods on a number of social n&tagrand collaboration graphs.
Our results show that the techniques proposed in this warkrarch more effective than the
currently available techniques. While tRankedReplace technique is slightly more effective
than theBayesTraceback method, the latter is significantly more efficient. Furthers it is
much superior to the baseline methods in terms of effeadis®n TheBayesTraceback algo-

rithm provides the best tradeoff between quality and efficye
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Graph Pattern Mining

“Nature uses only the longest threads to weave her pattesaghat each small
piece of her fabric reveals the organization of the entigetstry.”

Richard P. Feynman

Mining graph patterns in large information networks isicdlt to a variety of applications such
as malware detection and biological module discovery. Hewedrequent subgraphs are of-
ten ineffective to capture association existing in thegaiegtions, due to the complexity of
isomorphism testing and the inelastic pattern definition.

In this chapter, we introduce proximity pattern which is gngficant departure from
the traditional concept of frequent subgraphs. Defined & afdabels that co-occur in neigh-
borhoods, proximity pattern blurs the boundary betweemset and structure. It relaxes the
rigid structure constraint of frequent subgraphs, whiteoducing connectivity to frequent item-
sets. Therefore, it can benefit from both: efficient miningtémsets and structure proximity

from graphs. We developed two models to define proximitygpat. The second one, called
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Normalized Probabilistic AssociatiofNmPA), is able to transform a complex graph mining
problem to a simplified probabilistic itemset mining prablewhich can be solved efficiently
by a modified FP-tree algorithm, callgd-P. NmPA andpFP are evaluated on real-life social
and intrusion networks. Empirical results show that it ndiydinds interesting patterns that are
ignored by the existing approaches, but also achieves hegloqmance for finding proximity

patterns in large-scale graphs.

5.1 Introduction

Graph patterns are building blocks for several key grapltieijons, including graph
indexing, graph search, graph classification and clugidd, 50, 160, 167]. Existing graph
pattern mining algorithms, like those developed in [2881984, 101, 124, 150], achieved great
success using strategies that efficiently traverse therpaspace. However, the definition of
frequent subgraphs might not be appropriate for new agjgitacenarios present in social and
information networks. First, the definition is not elastimagh to capture fuzzy patterns exist-
ing in massive attributed graphs. Figure 5.1 shows one ebearwhere each node is attached
with a set of labels. These labels can be movies recommendadiber, functions carried by
a gene, or intrusions initiated by a computer. As illustiaite Figure 5.1,a, b, ¢ often occur
together and formulate an association pattern, whiteare not associated together. However,
{a,b, c} is neither a frequent subgraph, nor a frequent itemset ifreat £ach node as a trans-
action. Patterq{a, b, c} has three characteristics: (1) Proximity, these threeldade tightly

connected; (2) Frequency, they appear many times; (3) biliggi they are not always con-
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nected in the same way. Due to these characteristics, weatapply the traditional frequent
graph mining algorithms such as FSG [101] and gSpan [159htbthiem. On the other hand,
frequent itemset mining [12, 73] can not be used eithergsinch, ¢} do not appear in the same
set of nodes.

® @ @

@

@
()

Figure 5.1: Proximity Pattern{a, b, c}

Secondly, for small graphs such as chemical structurespdgghism checking is
never a problem as demonstrated by the existing frequephgraning algorithms. However,
for large graphs like intrusion networks and social netwpthere can be a huge set of isomor-
phic embeddings existing for frequent subgraphs. It besocostly to generate all kinds of
frequent subgraphs. To overcome the above two issues, wesE@ new graph pattern con-
cept, calledProximity Pattern A proximity pattern is a subset of labels that repeatediyeap
in multiple tightly connected subgraphs @ {a, b, c} in Figure 5.1 is an example. Proximity
pattern is an itemset. However, it has a connectivity reguent: the labels must be associated
tightly and frequently in the graph. For example, in a sooitlvork, it can be a set of movies
that are watched by multiple groups of users. That is, inrai@é&nd proximity patterns among
movies, one should not only consider the collection of mewatched by each person (in this
case, it is a traditional itemset mining problem); insteatke should also consider the movies

watched by his or her friends and friends of friends. In thdse; labels associated with two
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different nodes are related due to the connection betweasse ttwo nodes. The same mining
problem also exists in finding associations of intrusiongheninternet, where each node cor-
responds to an IP address and there is a directed edge bdtme#dh addresses if an intrusion
attack takes place between them. Itis interesting to findsiseciation of different attack types,
which can be used to analyze intrusions.

In this work, we first introduce an intuitive neighbor assticin model to define and
allocate proximity patterns by identifying the embeddingshese patterns in a graph and then
finding a weighted maximum independent set among these eatimgsd Although this approach
is intuitive, it is inefficient to find patterns in large graptiue to the complexity of embedding
enumeration and maximum independent set finding. Therefreedefine proximity patterns
from an influence point of view, using a probabilistic infation propagation model. Based
on this model, we propose novel techniques for finding prayimattern within a large graph,
which consider conditional probabilistic association luf tabels at each vertex. In the end, a

statistical test is developed to measure the significandisobvered proximity patterns.

Our Contributions. To the best of our knowledge, this is the first research watdodéucing
the concept of proximity patterns in large graphs.

We model the problem of determining the proximity among labe two distinct
approaches, neighbor association and information prajgaigaWhile the neighbor associa-
tion model is a direct approach of finding the associationragriabels based on their distance
across the edges of the graph, we have shown that this methuat efficient for large scale

graphs. In the information propagation model, we develogehprobabilistic techniques to
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determine the proximity among labels in a graph databasedoan the Markov model [128].
We justify that they will be efficient as well as consistentianinterpretations of “relation be-
tween transactions” and the “association of labels”. Tlopagation model is able to transform
a complex graph mining problem to a simplified probabiligtinset mining problem, which
can be solved efficiently by a modified FP-tree algorithmiecgd =P (probabilistic FP-growth).
Furthermore, for the discovered patterns, we define an tlgdanction that will measure their
interestingness using randomized test.

In summary, we propose a complete pipeline to define and nrimémity patterns
in massive graphs in a scalable manner. As tested in reatditial networks and intrusion
networks, proximity patterns turn to be interesting andadie to capture patterns missed by

frequent itemsets and frequent subgraphs.

5.2 Related Work

Finding graph patterns is an active research topic in datégi In the area of mining
a set of graphs, efficient frequent subgraph mining algmdtthave been proposed, including
AGM [84],FSG [101], gSpan [159], followed by Path-Join, MgRFFFSM, GASTON, etc. Re-
cently, techniques were developed to mine maximal graptenmat [82] and significant graph
patterns [75]. These methods adopt subgraph isomorph#inges a way to count the support
of graph patterns in multiple graphs.

In the area of mining single massive graphs, [35, 60, 102¢ld@ed techniques to

calculate the support of graph patterns, i.e., how manysime should count a subgraph in
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one graph, when there are overlapping embeddings. KuramaochKarypis [102] proposed

using the maximum independent set as the support of subgragtich is proved to have the
downward closure property by [60]. [19] proposed a suppatsare that is computationally
less expensive and often closer to intuition than other oreas Since subgraph isomorphism
is still used in these methods, they cannot handle the pigxjmatterns discussed in this work,
where strict isomorphism is not desired.

Discovering rules from transactions has been extensivelgied. The concept of
association rules was first introduced in [11, 13], whereaihors proposed an Apriori based
approach to determine all frequent itemsets. [129] dessrébhash-based algorithm which is an
improvement over the Apriori approach. In [164], Zaki prepd a depth-first search algorithm
using set intersection. FP-growth was introduced by Hah ét §73], which uses an extended
prefix-tree (FP-tree) structure to store the database im@@ssed form. In [18], Au and Chan
introduced fuzzy association rules based on the fuzzy setyh Here, each item is assigned a
non-binary weight according to its significance with redpea user defined criterion. In [116],
Mangalampalli and Pudi have shown how the existing algarithike Apriori and FP-growth
can be modified to mine data in a fuzzy environment. Very ribgeRernecker et al. [24] and
Charu et al. [8] proposed techniques for mining frequenhdets from uncertain databases.
Their techniques could also be applied. However, to the dfestir knowledge, no previous

work targets the problem of finding proximity patterns in toatext of massive graphs.
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5.3 Preliminaries

An attributed grapltz = (V, E) has a label set and each node is attached with a set
of labels. The label set of a noden G is L(u). Let I be a subset of labels such that the labels
in I tightly connect and appear repeatedlydn/ is named asProximity Pattern”. Proximity
patterns are degenerated to frequent itemsets, if we drdpeaédges inG. In this work, we
focus onbidirectional andunweightedgraphs. However, the proposed models and algorithms
can be applied tdirectedgraphs as well. Some modifications are requiredveightedgraphs,
which we shall discuss later in Section 5.5.3.

Let D = {t1,tq,...,t,n} be a set ofindependent transaction@n the context of

attributed graphs, the set of nodes). Each transactiomicsrd subset of items ib.

Definition 5.1 (Support) The supportup(I) of an
itemset! C L is the number of transactions in the data set that confaiSometimes, we also

use the percentage to represent support.

An itemset is calledrequentif its support is greater than a user-defined minimum
threshold. Nearly all the classical frequent itemset ngjréiigorithms apply the property of

Downward Closurd12] to prune the pattern search space.

Definition 5.2 (Downward Closure) For a frequent itemset, all of its subsets are frequent; and

thus for an infrequent itemset, all of its supersets mushfsequent.

Unfortunately, since frequent itemset mining does not iarghe connections in an

attributed graph, it might miss interesting patterns. Fédu2 shows an example. If we consider
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each node as an independent transact{én,/2} will not be reported as a frequent itemset.
The two items do not occur together in any of the nodes. Howeveareful examination of
Figure 5.2 reveals that they always occur within one-hofadie of each other{l;,l,} is a

proximity pattern:l; is associated in the proximity &f.

Figure 5.2: Frequent Itemset vs Proximity Pattern

For a proximity patterr?, we need to identify locations of this patternGh Each of

these locations shall contain all of labelslin

Definition 5.3 (Embedding and Mapping)Given a

graph G and a subset of vertices m € V(G), Let L(w) be the set of labels in, i.e., L(7) =
UuerL(u). Given a label subset, = is called an embedding dfif I C L(x). A mappinge
between/ and the vertices imr is a functiong : I — 7w s.t.,31, ¢(I) € mandl € L(¢(1)). A

mapping is minimum if it is surjective, i.&y € 7w, 3l s.t. ¢(1) = v.

In Figure 5.2,{v1,v9,v3} forms an embedding dfl1, 2, 15}. There can be two pos-
sible mappings in this embedding: (&) mapsl; to vs, I3 to vy, andis to v3, and (2)¢2 maps
I1 towg, s to v3, andl; to vs. In these two mappings;; is minimum, ¢, is not. The vertices in

7 might not be connected. For examp{e/, v3} is an embedding ofl4, I5 }
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Given an itemsel and a mapping, we need a functiorf (¢) to measure its associ-
ation strength: how tightly the mapped labelsrimre connected. For examplg(¢) could be
the inverse of diameter af or the inverse of_, .y () d(u,v), whered(u, v) is the shortest
distance between andwv. Since there could be multiple mappingsidinwe always choose the
mapping that has the highest value fdf»). To simplify the presentation, we also denote the
strength of an embedding #$ér).

In the next section, we are going to investigate two modeldefine the support of

proximity patterns.

5.4 Neighbor Association Model

The complexity of proximity patterns rises from the intemections of labels in a

graph. One has to perform the following three steps to ifleptoximity patterns:

1. Find all the embeddings;, 7, . . . , T, Of an itemsef in the graph,
2. For each embedding measure its strength(r),

3. Aggregate the strength of the embeddirfgel) = ;" | f(m;). TakeF'(I) as the support

of I.

In order to find the support of a proximity pattern, one has st #numerate all
the embeddings of the pattern. Unfortunately, due to grapimections, there could be an
exponential number of redundant embeddings. First, thadmy between the embeddings of

a pattern is not obvious. When two embeddings overlap, tedapped part might be double
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counted. The support derived from multiple embeddings wdlate the downward closure
property (Definition 5.2). That is, the support of a pattémight be less than a patteffy even
thoughI C I’, which makes it difficult to design fast mining algorithmsec®ndly, any subset
of vertices, , could be an embedding of a pattefras long as/ C L(w), though for those
loosely connected embeddings, their strength might beagibigl.

In order to solve the above two issues, we introduce two nsddehis chapter, neigh-
bor association model and information propagation model.

Letr, mo, ..., ™y, be the embeddings dfin G. we build an overlapping graph: each
node represents an embedding and an edge connects two engseifithey share at least one
common vertex. In the overlapping graph, each nodeftia$ as its weight. Figure 5.3 shows

an example of a partial overlapping graph derived from Fdug.

Figure 5.3: Overlapping Graph

For frequent graph mining in a single graph, Kuramochi andyia [102] proposed
using the maximum independent set as the support of subgragtich is proved to have the
downward closure property [60]. An independent set in alyriapa subset of vertices with
no edge connecting them. In Figure 5.3, embeddings, form a maximum independent set.
This concept can be extended to the overlapping graph witghtse For a label sef, the

support ofl could be the sum of vertex weights derived by the maximum kteigdependent
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set. It can be proved that the support defined using maximuighivindependent set has the
downward closure property too. We call this moblelighbor Association Model

While the neighbor association model solves the patterniagwaing issue, it is NP-
hard in general with respect to the number of embeddings fiven pattern [161]. Since the
number could be huge, in practice, it is not feasible to gaerell the embeddings of proximity
patterns and then find their maximum weight independent Bletis we resort to the second

model,Information Propagation Model

5.5 Information Propagation Model

The neighbor association model examines the associatiomdrgraph structure per-
spective. For example, for two labéls i-, in a graph, how closely they are connected and how
often they are connected. It is possible to examine the saaidem from a network influence
perspective. Take a movie recommendation social netwodhaxample, where users could
recommend movies to their friends. Assutig is the initial graph. Based on the recommen-
dations, users might watch more movies and generate a ng@h grawith updated watched
movie lists. This process iterates until it reaches a stgldeh where the movie list for each

user does not change any more.

G0—>G1—>...—>Gn.

In an ideal situation, it is meaningful to mine frequent it&ts inG,,. However, in

reality we only have an incomplete snapshot betwégrand G,,. Proximity patterns in&;
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could be interpreted as an approximation to frequent itésriné-,,. With that being said, if we
are able to simulate the influence process by generéifrgm G, to approximate~,,, we can
instead use frequent itemsets mined frého represent proximity patterns @;. This is the
main idea of the information propagation model.

We model the influence process using a first order Markov motle¢ given graph
is considered as the present state, and the associatiorgdatmis in the future state will be
reached through an iterative stochastic process.LILe} be the present state of denoted by
the labels present im, and! be a distinct label propagated by one of its neighborsiahd. ().

Hence, the probability of observing(«) and! is written as

P(LU{1}) = P(LI)P(), (5.1)

where P(1) is the probability ofl in u’s neighbors and”(L|!) is the probability that is suc-
cessfully propagated to.
For multiple labels{y, I2, . .., L,,, the joint probability of observind. U {l1, ..., 0}

can be written as, assuming each label is propagated indeptiy

P(LU{ly,...,lm}) = P(L|ly) % ... % P(L|ly) * P(ly) % ... P(Ly). (5.2)

The propagation model captures an important characteiistsocial graphs where
nodes can influence each other. As the distance increasdgfltifence decreases [4], which is
exactly what proximity patterns would like to capture. | thext two subsections, we intro-

duce two distinct approaches to assign values to the afort@mned conditional probabilities,
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P(LJl), along with the detailed algorithms. These two approaclaslle the situation when

the same label is propagated by multiple nodes, with diffedéstances.

5.5.1 Nearest Probabilistic Association

According to the exponential decay model of transmiss$jb[ll56], the transmissi-
bility decays as a power of the distance from the initial seurln theNearest Probabilistic
Associationmodel (NPA), the conditional probability?(L(u)|l) of Eq. 5.1,A4,(1), is defined

as follows.

Definition 5.4 (Nearest Association)Let! be a label present i which is the nearest one to
u, wherel ¢ L(u). A, (1) = P(L(u)|l) = e~*¢, whered is the distance from to u, and« is

the decay constanty(> 0).

A, (1) decays to zero ag approaches teo. For an unweighted graph, we assume
d = 1 for each edge. The algorithm to find the stable propagateﬂhgﬁais outlined in
Algorithm 3. G is like a classical transaction database, where each npdesents a transaction
and each label represents an item. However, unlike transacin@, items could have values
0, 1 or a fraction between them due to the probabilistic propeftpur model. Similar to
classical transactions,denotes full association aficho association; whereas a proper fraction
indicates partial association of the labels at that verféde association value should decrease
as the distance between a vertex and a label increases (9, T@erefore, we have an input
cut-off parametet in Algorithm 3. We do not propagate a label when the nearesiciation

value for that label is less than
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Algorithm 3 Generate Intermediate Datagét

Input: GraphG, cut-off parametee.
Output: Intermediate Dataset.
1: ¢ = 0 // iteration
2: for all vertexu of G do
3.  LetLo(u) be the label set of
4. Vi€ Lo(u), A,(1)=1; otherwise4,,(1)=0
5: end for
6: for all vertexu of G do

7. forall labellin L;(v) \ L;(u), v is u’s neighbordo

8: updateA, (1) using Definition 5.4 (choose the maximum one)
9: If less thare, do not propagatéto u
10: end for

11 Lipi(u) = {Li(u) U {l}A,(l) > 0}
12: end for

13: if L,y = L, for all vertices inG then
14:  Output4, for all v € V(G)

15: else

16: i =1+ 1, goto step

17: end if
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Note thatA, (/) = 1 whenu itself has the label; A, (1) = 0 whenl is considerably
away fromu, or there is no path from to any of the vertices having Since the association
of a label at a vertex is determined by the nearest occurrehtdee label, we call it “nearest
association”. Once the intermediate dataset is formeldyfoig the joint distribution of Eq. 5.2,

we shall define the support of a proximity pattern.

Definition 5.5 (Probabilistic Support)Given an intermediate datasétderived by the Nearest

Probabilistic Association model, the supportloE {11, 1ls, ..., 1y}, sup(l) = |—‘1/| Z Au(lh)
ueV
-+ Ay (L), whereA, (1) represents the probability of observihat w.

The support definition ilNPA has the downward closure property. Thatsigp(l) >
sup(J) if I C J. This is due to the fact that,(I) < 1. Letl = {l,ls,...,l} and

J = {ll,lg,. .. ,lm,lm+1 Ce ,ln}. Since

m n

[T4.0) = [ Aut) T Auts),
i=1

i=1 i=m-+1
we have

sup(I) > sup(J).

Iy, I2 I, I2 Iy, I U7 PR PP P

™ (1) (@ supti 1y =1
(b) sup(ly, I2) =1
() sup(l, I) = 0.69
(d) sup(ly, 1) = 0.57

@ ‘ @ (e) sup(ly, I2) = 0.50

I, I I, I l2 I

(a) (b) (c) (d) (e)

Figure 5.4: ConsistencyNPA and Frequent Itemset
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The definition is also consistent with the support definitbfrequent itemsets, where
A, (1) can only be0 or 1. Figure 5.4 shows the connection, where the decay constast
set atl. NPA rightly assigns the highest support valie 1) for {l;,l5} in Figure 5.4(a)
and 5.4(b), which is consistent with frequent itemsets. Jingport value gradually decreases
in Figure 5.4(c), 5.4(d), and 5.4(e). The decreasing orflaupport reflects the association
strength ofly, I, in different structures. Figure 5.4(c) has a higher supfmnt{l;,l»} than
Figure 5.4(d) since there are twgs close tol;. Note that, we assume = 1 for all these

examples.

(a) (b)

Figure 5.5: Support vs Structure Difference

TheNPA support is both commutative and associative. It can alsslight difference
between structures. Table 5.1(a) and 5.1(b) show the iediate dataset for two different
substructures in Figure 5.5(a) and Figure 5.5(b) respaygtivRightly this approach assigns

higher support fo{ 11, l2, I3} in Figure 5.5(a).

Table 5.1(a) Table 5.1(b)

1 lo I3 1 lo I3

node_1 1 0.37 | 0.37 node_1 1 0.37 | 0.14

node_2 | 0.37 1 0.37 node_2 | 0.37 1 0.37

node_3 | 0.37 | 0.37 1 node_3 | 0.14 | 0.37 1
sup(ll, lg, lg) =0.14 sup(ll, lg, l3) = 0.08

Table 5.1: NPA Intermediate Dataset for Figure 5.5

151



Chapter 5. Graph Pattern Mining

Complexity. Let |V| be the total number of vertices @, the average degree of each vertex
be d, and the average number of labels in each vertex.b# there are totak iterations in
Algorithm 3, the time complexity of generating the interrizgel dataset: is O(|V]-d" - s).
Sincet << |V, the complexity is almost linear in the number of verticeke parametet is a
measure of the maximum depth where we may look for a label.dEpth will be determined
by the decay constant ande. In social networks, the mutual interaction and social erfice
usually decays quickly with distane¢d4, 31, 78, 118]. The influence is negligible when- 3.

In NPA, the probabilistic association value of a label at a disarns given bye~**. Since we

. 1 1
ignore the value less thant < —In (—)
« €

Iy Iy
I Iz I
(a) (b)

The NPA model is fast to calculate. However, there is a potentialesd-or each

Figure 5.6: Problem withNPA

vertex, it only considers the nearest neighbor of each labbus it cannot differentiate the
situations when there are more than one nearest vertichghwitsame label. Figure 5.6 shows
two graphs. In both casesup(l;,l2) = 0.37 according ta\PA. In order to differentiate them,
we propose the second model, Normalized Probabilistic &iaton, to take into account all

the nearest occurrences of the same label.
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5.5.2 Normalized Probabilistic Association

In the normalized probabilistic association modgh{PA), we try to normalize the

association by the number of neighbors who have the samk labe

Definition 5.6 (Normalized Association)Given an attributed unweighted graghand a node

u, if the number of neighbors af is n and there arem neighbors having the labdl the

normalized probabilistic association bft uis NA,(l) = P(L(u)|l) = nnj 1@‘0‘.

The normalizing factorZ = (%) will give more association strength for the
labels that are contained by many neighbors. In order termdifitiate the two cases in Figure
5.6, we choose: + 1 rather tham as the denominator. Sind€A4,(I/) < 1, the downward
closure property is maintained. For weighted graphs, thdiied version ofNmPA will be
discussed in Section 5.5.3.

For an itemsef, the support off underNmPA could be calculated similar tdPA
(see Definition 5.5), by following the joint distribution Bq. 5.2. The supports INmPA shall
be smaller than those NPA.

NmPA has two advantages ovliPA. We have the following lemmas.

Lemma 5.1. Given two nodes and«’, assume: and«’ have the same number of neighbors,

labell ¢ L(u),l ¢ L(u'), we haveN A, (1) > N A,/ (1) if more neighbors of. contain!.

Lemma 5.2. Given two nodes andv, assume: has more neighbors than labell ¢ L(u),l ¢
L(v), we haveN A, (l) > NA,(l) if the percentage of’s neighbors that contair is no less

than that ofv’s.
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Lemmas 5.1 and 5.2 show that tNenPA could break the tie situations when there is
an equal number of neighbors or an equal number of neighlamiady. NmPA favors the case
when more neighbors containThese are desirable properties OME&A.

For the two substructures shown in Figure 5.6. The normdlasociation of;, at
vertex1 is %ﬁ ~ 0.19 for Figure 5.6(a) and@ ~ 0.25 for Figure 5.6(b). Therefore,
NmPA assigns a higher support féf, I} in Figure 5.6(b) than that in Figure 5.6(a). It can be
verified that thesup(l;, l3) values will bel.0,1.0,0.59,0.52,0.50 for the substructures shown
in Figure 5.4(a), (b), (c), (d) and (e) respectively. Theref similar toNPA, the NmPA support
of {l1,l2} decrease gradually from Structures (a) to (e) in Figure 5.4.

Next we apply Algorithm 3, as before, to find the intermedid#taset. The only
change will be in Line8 of Algorithm 3. We shall use the following equation to upd#te
probability,

NA, () = ! D e NA(L), (5.3)

n+l vEN (u)

where N A, (1) is the association strength batv and N (u) is the neighbor set ai. Sincel

could be a label propagated from another verféx,, (/) could be less thah.

Complexity. NmPA has the same complexity &A. However, in practice the propagation
decays much faster since we normalize the probabilistiociestson with respect to the number
of neighboring nodes at every iteration. UsMBA andNmPA, the set of all proximity patterns
can be determined efficiently from the intermediate dajasethey follow the downward clo-

sure property. In addition tPA andNmPA, other influence models could be adapted here. As
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long as the probabilistic association is calculated by D@im5.5, the same mining algorithm

could be applied.

5.5.3 Moadification for Weighted Graphs

It is easy to verify thalNPA andNmPA are also applicable to weighted graphs. In
NPA, we consider only the nearest vertex of any label among allngighboring vertices.
Suppose, the nearest occurrence of a lahglat distanceal from vertexu. Then, theNPA
probabilistic association dfatw is given byN, (1) = e, If there are totah neighbors from
vertexu, and among them neighbors, each at distandgfrom u, have the label. TheNmPA
probabilistic association dfatu is given byN A, (1) = Y. e=*% /(n + 1). The procedure

of generating the intermediate dataset remains the same.

5.6 Probabilistic Itemset Mining

Given an attributed grap&¥, the proposed information propagation models such as
NPA and NmPA will generate a large set of probabilistic itemsets, whogmlmer is equal
to |V(G)|. Each itemset has tupleg, A;4(1)), whereid is the vertex id and4;4(7) is the
probabilistic association of labélto this vertex. To be consistent with the terminology used in
frequent itemset mining, we also call vertex as transaction

In the existing frequent itemset mining algorithms such gwicki [13] and FP-
growth [12, 73], the support of an itemset is the number ofioences of all the items together

in that itemset. Our problem setting is inherently diffdrgimce it has to multiply the fractional

155



Chapter 5. Graph Pattern Mining

support values of all the constituent items to determingdh support of an itemset. In the
following discussion, we will first describe an algorithmniine all the proximity patterns from
the intermediate dataset generated by NR&A or NmPA model described earlier. Next, we
provide an approximate version that will improve efficiermayd reduce memory consumption.
Finally, in addition to the support definition, we introduse objective function to measure the
“interesting-ness” of a proximity pattern and make the atgm more efficient and effective to

generate only the top-interesting patterns.

5.6.1 Exact Mining

Algorithm 4 describes an exact mining algorithm, caledP (Probabilistic FP-Growth).
pFP is derived from FP-Growth in [73]. It first removes the infueqt1-itemsets and constructs
the FP-tree, where transactions share the same upper ghéirifirst few frequent items are
the same. We briefly introduce FP-tree here. For detailsiersaare referred to [73]. FP-tree
is a prefix tree. The root of an FP-tree is a NULL node, sincé ¢t@msaction can be prefixed
by a NULL item. In the original FP-growth algorithm, each eadin the tree is labeled by
an item/ and also associated with a count, denoted:daynt(v), representing the number of
transactions that pass through the node. At the same timegdehtable is built. For an entry
(I,H(I),ptr) in the header tablef{ (1) denotes the count of nodes in FP-free containing the
item I andptr records the list of nodes containing the iténT his is also known as trede-link
of I. Now, for each frequent lengthpatternl present in the header table, the following tech-

nique is applied. The FP-growth algorithm starts from adesg lengtht pattern, sayl, and
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for each node: attached to the side-link df, it follows the path till the root of the tree. These
paths are called the conditional pattern basé.ofhen, an FP-tree on this conditional pattern
base (conditional FP-tree) is constructed, which acts emadction database with respecf to
Next, the algorithm recursively mines this resulting F&etto form all possible combinations
of itemsets prefixed with.

In our problem setting, labels are probabilistic and we rteedhultiply these prob-
abilistic association values to determine the joint asdmsi of multiple labels. To handle
probabilistic itemsets, in our algorithm, each nadm the FP-tree is associated with a bucket
B(v) consisting of the probabilistic association values of ialje items contained in that node,
which is a set of tuplesid : A;4(I)), wherew is in the side-link of item/ andid is the
transaction id contained in. The buckets can be stored in the disk and accessed when the
corresponding nodes are processed. As we move up the tesliitkets corresponding to the
composite itemsets in the sub-header table can be formadsiegly by the intersection of the
buckets of its constituent items. For example, consideméariediate dataset given in Ta-
ble 5.2. Assume, the minimum support threshold is s& @t Thus, the infrequent iterfy
having supportg.15/3 = 0.05 can be removed first. The remaining items are then arranged in
a decreasing order of their frequencylad, I3, l4. The corresponding’ P-tree is depicted in
Figure 5.7. Note that, although has higher support than thatif it is placed below in the
F P-tree, since frequency éf is lower than that ofs in the dataset.

The exact algorithm is given in Algorithm 4. HerH,(I) in the header table denotes

the sum of the probabilistic association values for ittmFor example, while processirig
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transaction id| [ lo I3 |la] U5
1 1 103 0 0] 0.1
2 0.5102]05]|1 0
3 0 [02(05]|0]0.05

Table 5.2: Proximity Patterns: Intermediate Dataset

Root

Figure 5.7: FP-Tree for Table 5.2

from the original header tabld, we start moving upwards frofg following two distinct paths
I3 — 11 — Iy — root andiz — Iy — root. The first node encounterediis so it will be added
in the sub-header tabld;, of i35 with H;, (1) = 0.5 x 0.5 = 0.25 > minsup x DBSIZE
(see Figure 5.8). Sa&3/; is a frequent pattern. The corresponding bucket will contaily the
entry 2 : 0.25, which can be formed as an intersection of buckett @nd/,. The algorithm
now recursively considers the sub-header tdblg, by moving upward froni; along the path
li — la — root. It calculatesH;,;, (I2) = 0.25 x 0.2 = 0.05 < minsup x DBSIZE. So,
l3l1l2 is not a frequent pattern. Now, the control comes backitn where the next entry is
la, with Hy,(l2) = 0.5 x 0.2+ 0.5 x 0.2 = 0.2 > minsup x DBSIZE. So,l3ls is also
frequent. Its bucket will contain two entri@s 0.1 and3 : 0.1; which can be determined by the

intersection of buckets @§ andi,. Note that, it cannot be extended further and this also fasish
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the processing of; from the original header tabl/. So, the algorithm starts processihg

which is next tals in H.

I: 0.7
l4: 1.5
! I: 0.25 I: 0.05
I3: 1.0 1,: 0.2
Hisl
I 1.0 Hl, 3
H

Figure 5.8: pFP applied on Table 5.2

The problem with the exact algorithm (Algorithm 4) is th&ig running time increases
compared to that of the original FP-growth algorithm [152¢cause we need to access the
bucket whenever the corresponding node is processed. Howbe arguments in support of

this exact algorithm can be as follow.

1. Each bucket size is small compared to the original inteliate dataset size. Therefore,
pFP is still efficient compared to apriori based approaches reitte whole dataset needs

to be scanned every time.

2. During the execution ofFP, we need only two recent buckets in the main memory.
Therefore, the buckets used before can be removed from the mmeamory. Since the
buckets for the composite itemsets are formed by intersedii its constituent itemsets,

the bucket of a large itemset usually gets smaller than thigd constituent itemsets.
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5.6.2 Approximate Mining

The exact mining algorithm needs to maintain a bucket witistaof transaction ids,
since we have to multiply the fractional association valteegetermine the joint support of
multiple items. However, is it possible to compress bucketthat they can be accommodated
in the main memory along with the FP-tree? The compact reptasgon of buckets must be
sufficient enough to generate an approximation to the jasbeiation of multiple items. Here,
we propose that, instead of maintaining a long bucket lisi@fA;d(l)) for each node in the
FP-tree, we can associate two variabkesy andoccurrence, with each node.

Supposé€, andl, are two distinct labels appearing at nogesandv, respectively in
the FP-tree, where, is the parent ob,,. Let, the bucketd3(v,) andB(v,) in the exact algo-
rithm have the association valuds (I,) = x1, A2(ly) = z2,..., An(ly) = z,, and A (l,) =
y1, A2(ly) = v2,..., An(ly) = y, for transactiond,, 2, ..., n respectively. Note that some of

n n
y; can be zero. We defineum for v, andv, assum(v,) = Zx,— andsum(v,) = Z y;. The
=1 =1
variableoccurrence is defined as the number of all nonl—zero occurrences ofltbel la the
corresponding node of the FP-tree. Cleashturrence(v,) = n andoccurrence(vy) < n.
The approximate algorithm associates these two variallesandoccurrence with each node

while forming the FP-tree. Now, we define thpproximate joint associatioof [, andl, as

givenin Eq. 5.4.
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Al 1) = sum(vy) - sum(vy)
Y maz{occurrence(vy), occurrence(vy) }

(5.4)
1 n n
= " ;xz : ;yi

The exact joint association 6f andi, is given byA(l,,,) = Z{xi'yl}' Therefore,
=1
the absolute erraF due to the approximation can be expressed as follow.

= lwi (— = — )] (5.5)
i=1
= Sl ()

The errorE is small compared tel(l,,,) when all thez;’s or all they,’s are very
close to each other. For example, if we consider the nodeseofP-tree corresponding i
and!/; in Figure 5.7, the exact joint associatigh= 0.40, whereas the approximate joint as-
sociationA = 0.35, and the absolute errdt = 0.05. Using this summarization technique,
we developaFP(approximate probabilistic FP-Growth), an approximattorpFP. Only the
build_subtable procedure needs to be changed from the exact mining algod#scribed ear-

lier (see Algorithm 4). The newuild_subtable procedure is given in Algorithm 5.

5.6.3 Top-k Interesting Patterns

The support value defined by our probabilistic associati@dehonly tells the as-

sociation strength of a proximity pattern in a given grapm.otder to measure its real “inter-
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estingness”, we need to compare the support value with theyenerated by a randomization

test.

Randomization Test. Given an attributed graptr, where each node has a set of labels, we
conduct the following random permutation: Randomly setect nodesu, v and one of their
labels,i,, [, respectively, then swap these two labels so thhasl, attached, ana hasi,
attached. The permutation is repeated until all the labedssvapped. Le) be the result
graph.

Assume thap and ¢ be the support value of an itemskin G and @ respectively,
using our probabilistic association model. Ilfis not found in the permutated gragh i.e.,
g = 0, we replaceg with the product of support values of all its constituentelizb Now,
we considerl asinterestingif the difference betweep andq is high. Note that, the higher
difference betweep and ¢ indicates that the individual items ihtruly formulate a pattern.
If we only consider the value of I, it might be high since some of its members occur very
frequently, in which case;, value will also be high. Thus, by considering the differebhetveen
p andg, we can eliminate those uninteresting patterns from thatrest. We propose to apply

G-test score [139] as an objective function to measure tleegistingness of a pattern.

1—
p-lng—k(l—p)'lnl P (5.6)

We developed a pruning method similar to the vertical prgrapproach proposed
by Yan et al. [158] and integrate it withFP andaFP to mine interesting patterns using the

probabilistic FP-tree built fronds and@.
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Proximity Patterns vs Frequent Itemsets It is also possible to compare the proximity patterns
mined from a grapldZ with the frequent itemsets mined from the node label setséfignores
the connection between nodes. One can run the above tesplagirg ¢ with the support of
frequent itemsets. The result will tell the new patterng ttra missed by the classic frequent

itemset mining approaches. In the experiment section, Welamonstrate such patterns.

5.7 Experimental Results

In this section, we present experimental results whiclstithte the effectiveness of
the information propagation mod®imPA and the efficiency of our approximate itemset min-
ing frameworkaFP on a number of real-life graph datasets. We are not going peraxent
neighbor association model due to its time complexity. ldeorto evaluate the effectiveness,
we report the tope interesting patterns discovered by our approaches. Wéalkalanalyze
the effectiveness and efficiency of the approximate itemsaing algorithm &FP) over the
exact one §FP). Finally, we provide a comparison of our result with thaffiefiquent itemset
and subgraph mining. The experiments are performed usiimgge <ore in 832GB, 2.50GHz

Xeon server.

5.7.1 Graph Datasets

Our models and mining algorithms are tested on a variety aif geaph data sets

including Last.FM, Intrusion network, and DBLP.
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LAST.FM We crawled a local network consisting 6f899 users from [105]. Last.FM is a
music web site where users listen to their favorite track$ @ammunicate with each other
based on their choice of music. For each user, we crawled tst racent communications
among them. These communications recommend songs. Weheratas edges. There are
total 58, 179 edges. For each user, we also crawled the nan3eagtists (or musical bands) of
the most recently listened tracks by that user. There aad@0340 artists and musical bands
crawled. We mined proximity patterns among these artists ransical bands by using the

social network graph that we built.

Intrusion Alert Network This network contains the anonymous log data of intrusientsin

a computer network. It ha200, 858 nodes and03, 020 edges where each node is a computer
and an edge means a possible attack such as Denial-of-SanitTCP Service Sweep. Each
node hag5 labels (computer generated alerts in this case) on avefégee are around, 000
types of alerts. We aim to find the association of alerts ia ¢naph data, which could reveal

multi-step intrusions.

DBLP Collaboration Graph The DBLP graph is downloaded from [47]. There &64,911
distinct authors and, 764, 604 collaboration edges among them. We consider the keywords
present in the paper titles as the labels correspondingt®tauthors. We selet30 important
keywords to determine the association among them. Eachhmaslaround labels on average

in this graph.
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5.7.2 Effectiveness

| Proximity Patterns | Score]

#

1 | Tiésto, Armin van Buuren , ATB 0.62
2 | Katy Perry, Lady Gaga, Britney Speafrs0.58
3

4

5

Ferry Corsten, Tiésto, Paul van Dyk | 0.55
Neaera, Caliban, Cannibal Corpse 0.52
Lacuna Caoil, Nightwish, Within 0.47
Temptation

Table 5.3: Top-5 Proximity Patterns (Last.FM)

We present the top-interesting patterns for theast.FM data set in Table 5.3. We
applied theNmPA propagation model and treFP mining algorithm. For theNmPA model,
we set the decay constant= 1 and cut-off parameter = 0.12. These parameters ensure
that we propagate a label at most two hops. A label is propdgata node only when at least
one third of its immediate neighbors contain that label. Ppagerns are ranked by the G-test
score defined in Eqg. 5.6. Also, we report only the fopatterns after eliminating their smaller
sub-patterns.

These patterns are practically interesting, Ad.BandPaul van Dykare popular Ger-
man DJ; whereasiésto, Ferry Corsten and Armin van Buurare Dutch trance producers and
DJ. Britney Spears, Lady Gaga, Katy Pemye American female pop singers and entertainers.
Lacuna Caoil, Nightwish and Within Temptatiane Gothic metal bands from Italy, Finland and
Netherlands respectivelyNeaeraand Caliban are death metal bands from Germany; while
Cannibal Corpséds an American death metal band.

Table 5.4 illustrates the proximity patterns discoveredby algorithms but ranked

low by the classic frequent itemset mining algorithm. Itwhkdhat the togs patterns in Ta-
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| #]  Proximity Patterns | Score]
1 | Tiésto, Armin van Buuren , ATB 0.62
2 | Katy Perry, Lady Gaga, Britney Speafrs0.58
3 | Ferry Corsten, Tiésto, Paul van Dyk | 0.55
4 | Neaera, Caliban, Cannibal Corpse 0.52
5 | Lacuna Coil, Nightwish, Within 0.47
Temptation

Table 5.4: Proximity Patterns minus Frequent Itemsets (Last.FM)

ble 5.3 and 5.4 are the same. That is, none of thesé tperesting’ patterns are reported by
the classical frequent itemset mining algorithm, sinceatdras of these patterns do not co-occur

frequently in individual nodes.

| #] Interesting Patterns | Score]

1 | Ping.Sweep, Smurfittack 2.42
TFTP_Put, Audit TFTP_Get Filename, 2.32
ICMP_Flood, PingFlood
3 | TCP_ServiceSweep, EmaiError 1.21
4 | HTML _Outlook MailTo_Code Execution,| 1.15
HTML _NullChar_Evasion
5 | SQL.SSRRSlammerWorm, 0.88
SQL.SSRPStackBo

Table 5.5: Top-56 Proximity Patterns (Alerts)

The tops proximity patterns for thdntrusion Network data set are given in Ta-
ble 5.5. The first one describes a Smurf denial of servicelattBhe ICMP echo request (Ping)
packets addressed to an IP broadcast address cause a larger raf responses, which might
consume all available network bandwidth. The second oneitbes a TFTP (Trivial File Trans-
fer Protocol) attack, which allows remote users to writesfile the target system without any

authentication. The fifth one is an attack to Microsoft SQkvBe2000 which is vulnerable to
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a stack-based buffer overflow in the SQL Server Resolutioni&= The discovered proximity

patterns show that multiple attacks are often coupled kegeb complete one intrusion.

| #] Interesting Patterns | Score]

1 | ICMP_Flood, PingFlood 0.94

2 | EmailLError, SMTRRelay
_Not_Allowed, HTML _Null 0.94
CharEvasion

3 | ImageRIFF_Malformed, 0.90
HTML _NullChar_Evasion

4 | TFTPPut, PingFlood, 0.80
Audit_TFTP_Get Filename

5 | EmaiLCommandOverflow,
EmailVirus_Double Extension,| 0.75
EmailError

Table 5.6: Proximity Patterns minus Frequent Itemsets (Alerts)

Table 5.6 illustrates the proximity patterns discoveredhby algorithms but ranked
low by the classic frequent itemset mining algorithm on titeuision network dataset. The first
one is related to ICMP DOS Attack. The second one could bgdrid by spammers who use
an open relay to send unsolicited email to a number of emabwatts. The fifth one could

indicate an attacker’s attempt to overflow a buffer using mmand that is longer than 512

characters.
| #] Interesting Patterns | Score]
1 | Association, Rules, Mining 1.17
2 | Distributed, Network, Architecture 0.84
3 | Sensor, Video, Network 0.80
4 | Channel, Allocation, Network 0.67
5 | Vector, Machine 0.45

Table 5.7: Top-6 Proximity Patterns (DBLP)
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Table 5.7 shows the top-interesting patterns mined from tRBLP data set. Item-
setsl and5 are related to Data Mining and Machine Learning. Item&atsfrom distributed

systems. The remaining patterns are from sensor and nefigt.

5.7.3 Efficiency and Scalability

| Steps | Last.FM | Intrusion | DBLP |
NmPA 2.0 5.0 187.0
FP-tree 1.0 10.0 89.0
Formation
Top-k Pattern 4.0 2.0 254.0
Mining

Table 5.8: Proximity Pattern: Runtime (sec)

We present the running time for our algorithms on the thresalmentioned data sets
in Table 5.8. It can be observed that each component runy fast. For example, th® BL P
collaboration graph with abo0t7 million nodes requires less th@minutes to be processed.

Next, we analyze the influence of different parameters orrihaing time of infor-
mation propagation, FP-tree building and Topattern mining. We use theBLP graph for
these experiments. Figure 5.9(a) shows the variation afingntime with respect to the num-
ber of nodes present in the graph. In order to vary the numbeodes, we randomly delete
some nodes and the corresponding edges from the graph. e sktcay constant = 1 and
vary the depth of propagation frointo 3 for this experiment. The cut-off parameter is set at
e = 0.36,0.12 and0.04 respectively. Figure 5.9(a) shows that tNen P A running time in-
creases linearly with the increasing number of nodes. Hewdve slope of the lines increases

as we increase the depth of propagation.
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Figure 5.9: NmPA Time (DBLP)

Figure 5.9(b) shows the variation of running time with regp® the propagation
depth usingvm P A method. We setv = 1. In order to achieve a propagation depth a2, 3
and4, we set the cut-off parameter= 0.36, 0.12, 0.04 and0.01 respectively. Experiments are
performed for different values of. Figure 5.9(b) shows that tiémPA running time increases
exponentially with the increasing depth of propagationjclitan be explained as the number
of h-hop neighbors increases exponentially as we increaseethta k.

Next, we show the variation of running time with respect ttibtal number of labels
in Figure 5.10. We use the complddBLP graph and labels are selected randomly for this
experiment. Similar to the previous case, we set the deaastaotc = 1 and vary the depth of
propagation from to 3. It can be observed that the running timeNohPA on theDBLP data
set increases linearly with the increasing number of labels

In Figure 5.11, we analyze the running time of FP-tree foiomaand topk pattern
mining usingaFP with respect to the number of nodes. The propagation is deimg NmMPA
with o = 1 ande = 0.12. Note that, as we increase the number of nodes, the runmmegfar
the FP-tree formation increases almost linearly. Howetierrunning time for mining levels off

after a certain value of. This can be explained as follow. If there arlabels, each transaction
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Figure 5.10: NmPA Time vs. # of Labels (DBLP)
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Figure 5.11: Mining Time vs. # of Nodes (DBLP)

requires at most¢ scans to form the complete FP-tree. So, the time complekibpitding the
FP-tree is almost linear in the number of nodes present igrédygh. However, once the FP-tree
is built, the mining depends on the size of the FP-tree andmtite actual size of the database.
Hence, the running time for mining levels off after a certe@tue ofn.

In Figure 5.12, we plot the running time of FP-tree formatmal topk pattern mining
usingaFP with respect to the number of labels. Note that, the lattereiases at a higher rate

compared to the former as we increase the number of labels.
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5.7.4 Exactvs. Approximate Mining

We compare the effectiveness of our two mining algorithnes, pFP (exact) and
aFP (approximate) orLast.FM data set. Table 5.9 reports the toproximity patterns minus
frequent itemsets reported by tp&P mining algorithm. If we compare these patterns with
those reported by thaFP in Table 5.4, the tof- patterns remain the same. Only the score
values differ slightly and therefore, the rank is a littl¢ different for some patterns. However,
if we consider the running times given in Table 5.10, it isye@sconclude that thaFP is very
efficient compared to theFP . Moreover, this difference in running time grows very fastlze
size of the database increases. ForBLP graph data, th@FP mining algorithm requires

about8 hours, whereasaFP reports the topge patterns in less tha® minutes

| #]  Proximity Patterns | Score]
1 | Katy Perry, Lady Gaga, Britney Spedrs0.58
2 | Ferry Corsten, Tiésto, Paul van Dyk | 0.55
3 | Tiésto, Armin van Buuren, ATB 0.55
4 | Neaera, Caliban, Cannibal Corpse 0.51
5 | Lacuna Coil, Nightwish, Within 0.46
Temptation

Table 5.9: Proximity Patterns minus Frequent Itemsets using Exactirgimlgorithm
(Last.FM)

| Steps | aFP(approximate)| pFP(exact)]|
F P-tree Formation 1.0 3.0
Top-k Pattern Mining 4.0 21.0

Table 5.10: Proximity Pattern: Runtime Comparison (sec) (Last.FM)
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5.7.5 Frequent Subgraph Mining

Subgraph patterns are a subset of proximity patterns, ifellapse their structure.
For Last.FM, the tog significant patterns discovered by LEAP search [158], arergin Ta-
ble 5.11. These top-patterns are also discovered by our probabilistic assonianethod. If
the support threshold is setidk, there aré7 frequent subgraphs, while our approach discovers
5,444 proximity patterns. If we raise the support threshold fertlour approach could still find
interesting patterns, while the existing subgraph miniggrithm cannot. For Last.FM¢ 6K
nodes), the running time of subgraph mining is comparabth wirs. But for the Intrusion
Alert Network (= 200K nodes), it needs abodthours, while our algorithm terminates within

17 seconds. Our approach avoids subgraph isomorphism testing

| # | LEAP Patterns |

1 | Nirvana, Arctic Monkeys, Muse
Radiohead, Arctic Monkeys, Muse
Red Hot Chili Peppers, Arctic Monkeys, Metali¢a
Radiohead, Placebo, Depeche Mode
Radiohead, Cold Play, Arctic Monkeys

Y x| W N

Table 5.11: Significant Patterns via LEAP (Last.FM)
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Figure 5.12: Mining Time vs. # of Labels (DBLP)
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5.8 Summary

We introduced a new pattern concept in graphs - proximitiepat which is a signif-
icant departure from the traditional concept of frequetigsaphs and frequent itemsets. Prox-
imity pattern blurs the boundary between itemset and stractlt relaxes the rigid structure
constraint of frequent subgraphs, while introducing $treee association to frequent itemsets.
We discussed the weakness of a neighbor association matipt@posed an information prop-
agation model that is able to transform a complex mining lerobto a simplified weighted
itemset mining problem, which was solved efficiently by a ified FP-tree algorithm. Fur-
thermore, for the discovered patterns, we defined an obgeftthction that could measure their
interestingness using randomization test. In summary, nggsed a complete pipeline to de-
fine and mine novel proximity patterns in massive graphs inadabkle manner. This pipeline
was evaluated on real-life social and intrusion networkapkical results show that it not only
finds interesting patterns that are ignored by the existipgr@aches, but also achieves high

performance for finding proximity patterns in large-scalapis.
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Algorithm 4 pFP: Probabilistic ltemset Mining

Input: Intermediate transaction dataset; and the minimum supip@s$hold: minsup.
Output: frequent itemsets above the minsup.
Method: build the FP-tree; then cathine_tree(, H)

procedure mine_tree(X, H)

1. for all entry! (top down order) inHd do

2: if [%] > minsupthen
3: output{/} U X;
4: create a new header tabtg by calling build_subtable(I);

5: mine_tree({I} U X, Hy);
6: endif
7: end for

procedure build_subtable(I)

1: for all nodev on the side-link off do

2. walk up the path from to the root once;

3:  if encounter a node with label J then

4 add/update the entry fof in H; as below:

5: insertu as a side-link of/ for that entry;

6 Hi(J)=H/(J)+ D> {Aal])- A}
deB(v)NB(u)

7: add{id, A;q(J) - Aia(I)} in B(vu) for all id € B(v) A B(u)};

8 endif

9: end for
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Algorithm 5 aFP, Approximate Itemset Mining
procedure build_subtable(I)

1: for all nodev on the side-link off do
2. walk up the path from to root once;

3: if encounter a node with label.J then

4 add/update the entry fof in H; as below:

5: insertu as a side-link of/ for that entry;

6: calculateﬁ(u, v), the approximate joint association of nodeandv as mentioned in
Section 5.6.2;

7: H(J) = Hy(J) + A(u, v);

8: sum(vu) = A(u,v);

9: occurrence(vu) = occurrence(u);
10:  endif

11: end for
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Chapter 6

Conclusion and Future Directions

“In literature and in life we ultimately pursue, not conclaas, but beginnings.”
Sam Tanenhaus, irLiterature Unbound’

6.1 Concluding Discussion

With the advent of complex social and information networksy graph queries are
emerging, including graph pattern matching and mining,ilaitity search, ranking, and dis-
covery of influential nodes that require smarter and fast@ply data analysis. My dissertation
makes fundamental contributions in proposing effectiveé saalable techniques to solve these
novel problems, and thereby significantly advances the-siathe-art in this field.

In the domain of querying heterogeneous networks, we pexpNeMa [96] — a
novel graph-based query-answering framework that is whig/to the network schema. We
represented the user’s query also as a graph (not necgssariraph-isomorphic to the data

graph), and defined the query results as thekt@pproximate matches of the query graph in
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the data graph. Our methoeMa advances state-of-the-art network querying methods in two
ways. First, we proposed a neighborhood-vectorizatioedasst metric for approximate sub-
graph matching, which relaxes the rigid structural andllafetching constraints of subgraph
isomorphism. Second, we designed machine learning-bdfeiérg and scalable algorithms to
identify the topk graph matches in large networks. Empirical evaluation segeral real-life
datasets shows thitMa efficiently finds high-quality matches, as compared to stétihe-art
graph querying and keyword search methods, BLGNKS [76], SAGA [142], IsoRank [138],
andgStore [171]. In addition,NeMa is very robust against structural and label noises, and also
scales well with the size of the data graph.

In the area of querying uncertain graphs, we propd?€dtree [94] — an indexing
method to efficiently answer reliability queries, that iglfing the set of all nodes that are reach-
able from a query set of nodéswith probability no less than a given threshojd Based on
RQ-tree, we defined a fast filtering-and-verification online querglaation strategy. Extensive
experiments on real-world uncertain graphs and under akesettings show that our approach
is very efficient—speed-up over sampling methods up to sieis of magnitude, as well as
accurate—recall typically in th@.75,0.98] range. In addition, we have shown application of
RQ-tree in the influence-maximization problem [92].

In the domain of viral marketing, we designed a heuristiodatgm, RankedReplace
[7] for the influence maximization problem. We then proposeBayesTraceback model in
order to approximate the effectiveness of this algorithrthhie use of a faster technique. We

also examined the results on a number of real social netwaik sets, and verified that our
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methods are more effective than state-of-the-art appesadh addition, we also considered the
targeted source and targeted destination versions of tluemte maximization problem.

For querying massive graph stream, we constructed a stalisytnopsis, calle@Matrix
[6], with the use of a 3-dimensional sketch structure. Oaoggis maintains information about
the structural behavior of the underlying network. ThG8$/atrix is useful for a variety of
structural queries such as the determination of edge freig® subgraph frequencies, inverse
gueries, or the determination of connected componentsegparimental results also show that
GMatrix can compress very large streams into a small space.

In [97], we introduced a novel graph pattern, called pheximity pattern, which is
a significant departure from the traditional concept of fiexat subgraphs. Proximity patterns
relax the rigid structure constraint of frequent subgraphiile introducing connectivity to
frequent itemsets. Therefore, it benefits from both: efficimining in itemsets and structure
proximity from graphs. We developed two models to define jpnity patterns. The second
one, calledNormalized Probabilistic AssociatigiNmPA), transforms a complex graph mining
problem to a simplified probabilistic itemset mining prahlewhich is solved efficiently by a
modified FP-tree algorithm, callggFP. NmPA andpFP were evaluated on real-life social and
intrusion networks. Empirical results show that it not ofilyds interesting patterns that are
ignored by the existing approaches, but also achieves hegloqmance for finding proximity

patterns in large-scale graphs.
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6.2 Future Directions

My immediate goal is to extend my previous work on graph gmernand mining,
whereas my long-term goal is more open ended and relatedatgsss) processing and man-
agement oBigGraphssuch as the knowledge graph.

| would like to work on the following, and other related prebis, in my immediate

research.

Graph Query. Can we integrate theemantic searchvithin graph querying methods? Can
we perform large graph alignment based on the answers of adewle graph queries? How
can one obtain diversified answers [151] over graphs, and tgbhniques should we use to
incorporate the users’ feedbacks? What features one musidew in order to build a classifier
over graphs [67]? Can we leverage Bewdsourcing[15, 46, 63] to formally improve the
expressive power of SQL and SPARQL? Wiltaph embeddindechniques [168] be useful
to answer queries over social and information networks?t, lag not least, can we apply
these graph querying techniques in theb searc We often like to get direct answers of our
queries instead of links that point to various webpages.h\ttie emergence of several types
of graph-structured data, such as Freebase, DBpedia, Yadj@aogle's knowledge graph,
integrating graph querying techniques has become an edsamtt step for an improved web

search experience.

Uncertain Graphs. Many classical graph problems, suchcasnmunity findingndgraph clus-

tering can be considered within the context of uncertain graphst,N@w can one embed a
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probabilistic graph in a lower dimension [141]? | am alseiested in the influence maximiza-
tion problem withco-operative campaignersvhere each campaigner wants to maximize her

influence in her native region, and does not want to influetivercampaigners’ native regions.

Dynamic Graphs and Streams.| would like to study graph matching and mining problems in
streaming and semi-streaming models [58]. For example, dawone perfornto-clustering
over graph streams? Can we mine theriodic proximity patterndrom graph streams and
time-evolving graphs? How do we detect thespicious graph patterria a telephone or email
network where the communications are received as grapims&§33]? How can one deal with
dynamic updates in the query graphs?

Finally, my long-term goal is to explore new topics in the domof BigGraphs The
continued growth of semi-structured and network data anglrepplications — along with the
emergence of cost-effective storage — ensure that the BBig@raphs processing and manage-
ment will pose many interesting problems. Usually the @males in BigData are classified into
three broad categoriegolume variety, andvelocity. Due to variety in BigData, researchers are
looking for a flexible data-model that can capture the retetiamong various entities, while
being not strictly typed. Therefore, graph has the potetdidoe a data-model for BigData.
One may need to consider various aspects beyond the sewafttine graph, for example, the
node and edge attributes, uncertainty, and graph streamterdisciplinary knowledge from
social science, machine learning, databases, distrilmartbuting, and graph theory are also

important. | am very interested in investigating the impottproblems in these domains.
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