A Case for Smartphone Reuse to Augment Elementary School Education

Xun Li
Pablo J. Ortiz
Jeffrey Browne
Diana Franklin
John Y. Oliver
Roland Geyer
Yuanyuan Zhou
Frederic T. Chong

University of California, Santa Barbara
Cal Poly San Luis Obispo
University of California, Santa Barbara
University of California, San Diego
University of California, Santa Barbara
What we see everyday is what we use everyday
Trend of Smartphones

Smartphone Shipments

Source: The Information Network
Some Numbers

• Nokia alone sells over 1 million handsets a day
• Over 300,000 iPads were sold in the first day
• iPhone 4 made another astonishing record by selling 1.7 million units in just 3 days
Some Numbers

- Nokia alone sells over 1 million handsets a day.
- Over 300,000 iPads were sold in the first day.
- iPhone 4 made another astonishing record by selling 1.7 million units in just 3 days.

Is this good?
Resource Use in Silicon Fabrication

- 1.6 kilowatt-hrs / cm²
- 20 liters water / cm²
- 3.3 billion active cell phone subscriptions
- ~20 cm² / phone
- 106 billion kilowatt-hrs (recall that datacenters use 80 billion kWh annually)
Throughput

- 280 Million phones sold / quarter
- Average lifetime of a phone: 1.5-2 yrs
- Old phones sitting in drawers, but throughput of over 1 billion phones / yr
- 32 billion kilowatt-hrs / yr just for uproc
Other Impacts

- 400 billion liters of water
  - 160,000 olympic swimming pools
  - More than double annual global bottled water consumption
- 400 million kg of soil to remediate just the copper
  (more copper on surface than inside the earth!)
What can we do?

- Recycling is an option but should happen when the phone is completely unusable
- Reusing Smartphones
  - Old phones are still in the market
  - Building sensor networks
  - Reuse is nothing new. What is new is the need to reuse.
Smartphone Reuse for Education
-- A Preliminary Study

• A Match: Reused Smartphones & Education
  ▪ Why education?
  ▪ What benefit Smartphones can bring?

• Feasibility of Reusing
  ▪ Does the functionality of reused Smartphones satisfy educational applications?

• Challenges of Reusing
Smartphone Reuse for Education -- A Preliminary Study

• A Match: Reused Smartphones & Education
  ▪ Why education?
  ▪ What benefit Smartphones can bring?

• Feasibility of Reusing
  ▪ Does the functionality of reused Smartphones satisfy educational applications?

• Challenges of Reusing
Why Elementary School Education?

• Elementary school students do not have access to Smartphones
• They are in the stage of learning that needs most fun stuff
Future of Education

- Text- vs. Visualization-based Learning
- Passive vs. Active Learning
- Individual vs. Cooperative Learning

Smart devices/PDAs are key elements of future education

Reused Smartphones have equivalent function with PDAs
Smartphone Reuse for Education -- A Preliminary Study

• A Match: Reused Smartphones & Education
  ▪ Why education?
  ▪ What benefit Smartphones can bring?

• Feasibility of Reusing
  ▪ Does the functionality of reused Smartphones satisfy educational applications?

• Challenges of Reusing
Methodology

- Experiments on Smartphones running educational applications
- Static Resource Requirement
  - Function Requirement
  - Storage Requirement
- Dynamic Resource Requirement
  - Memory Usage
  - Power Consumption
  - Network Communication
Methodology - Platform

- HTC Nexus One

<table>
<thead>
<tr>
<th>Processor</th>
<th>Qualcomm® QSD8250\textsuperscript{TM} 1 GHz Snapdragon ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Android\textsuperscript{TM} 2.1 (Éclair)</td>
</tr>
<tr>
<td>Memory</td>
<td>ROM (Flash memory): 512MB, RAM: 512MB</td>
</tr>
<tr>
<td>Display</td>
<td>3.7-inch AMOLED with 480x800 WVGA resolution</td>
</tr>
<tr>
<td>GPS</td>
<td>Internal GPS antenna</td>
</tr>
<tr>
<td>Connectivity</td>
<td>Wi-Fi® IEEE 802.11 b/g</td>
</tr>
<tr>
<td>Camera</td>
<td>5.0 megapixel color camera with auto focus, 2X digital zoom, LED flash, and geo tagging</td>
</tr>
<tr>
<td>Battery</td>
<td>Rechargeable Lithium-ion polymer battery Capacity: 1400 mAh</td>
</tr>
<tr>
<td>External Storage</td>
<td>4GB microSD Card</td>
</tr>
</tbody>
</table>
## Methodology - Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plink Art</td>
<td>An application for identifying, discovering and sharing art.</td>
</tr>
<tr>
<td>Word Puzzle</td>
<td>Designed to provide a fun way to learn basic English words for preschool children.</td>
</tr>
<tr>
<td>Celeste</td>
<td>Help learning the Solar System by showing 3D planets in the direction that the camera aims at.</td>
</tr>
<tr>
<td>Trippo</td>
<td>Translate any given phase from both audio and text among over 30 different languages.</td>
</tr>
<tr>
<td>Voicetrans</td>
<td>Similar to Trippo plus being able to speech received SMS.</td>
</tr>
<tr>
<td>mobiProfessor</td>
<td>A learning platform that gives one access to community created courses.</td>
</tr>
<tr>
<td>Robotic Guitarist</td>
<td>A guitar emulator and chord guide.</td>
</tr>
<tr>
<td>FUN2Learn</td>
<td>A game for learning and practicing foreign languages.</td>
</tr>
<tr>
<td>Botanica</td>
<td>Helps researching the best plants for certain climate and locations by simulating food growing.</td>
</tr>
<tr>
<td>Learn!</td>
<td>A flashcard learning application which enables learning, creating learning material and sharing.</td>
</tr>
<tr>
<td>Flu Tracker</td>
<td>A highly effective flu prevention and educational app for everyone during flu season.</td>
</tr>
</tbody>
</table>
### Static - Function Requirement

Most applications only need around 3 in all 10 device features

<table>
<thead>
<tr>
<th>Application</th>
<th>Internet Access</th>
<th>SD Card Access</th>
<th>Camera</th>
<th>Network Location</th>
<th>GPS Location</th>
<th>Audio Record</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plink Art</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Word Puzzle</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Celeste</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Trippo</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>VoiceTrans</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>mobiProfessor</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Robotic Guitarist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>1</td>
</tr>
<tr>
<td>FUN2Learn</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Botanica</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Learn!</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Flu Tracker</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Static - Storage Requirement

![Graph showing static storage requirement for various applications.](image-url)
Flash storage wear-out

- Less frequent for Smartphone
- A 512MB flash memory will have a useful lifespan of 6.5 years.
Dynamic – Memory Usage

![Bar graph showing memory usage for various applications.](image)

- **Plink Art**
- **Word Puzzle**
- **Celeste**
- **Trippo**
- **Voicetrans**
- **mobiProfessor**
- **Robotic Guitarist**
- **FUN2Learn**
- **Botanica**
- **Learn!**
- **Flu Tracker**
- **All**

- **Minimum**
- **Average**
- **Peak**
Dynamic – Power Consumption
Dynamic – Power Consumption

- A fully charged battery (1400mAh) could run educational applications for 6.5 hours
Battery Degrading

- After 18 months use, 1250-mAh capacity is still left for the battery
Battery Degrading

![Graph showing battery degradation over time]

- **Regular Use**: battery capacity decreases over time, taking about 1.8 months to reach a certain level.
- **Reuse**: another battery is used, showing a different degradation pattern.
- **Battery still usable**: indicating a threshold where the battery is still functional.

The graph illustrates the decline in battery capacity over years, with distinct lines for regular use and reuse scenarios.
Dynamic – Network Comm.

![Bar chart showing network transmission for different applications with average and peak values.]
Smartphone Reuse for Education -- A Preliminary Study

- A Match: Reused Smartphones & Education
  - Why education?
  - What benefit Smartphones can bring?
- Feasibility of Reusing
  - Does the functionality of reused Smartphones satisfy educational applications?
- Challenges of Reusing
Challenges

• Heterogeneity
  ▪ Different manufactures
    • Apple, HTC, Nokia, Blackberry…
    • Different Device features / interface
    • Different OS: Linux / Windows / Palm / iOS…
  ▪ Different generations
    • iPhone Original, 3G, 3GS, 4G…
    • HTC T-Mobile G1, Nexus One…
  ▪ Device wear-out
Challenges

• Degraded reliability
• Partially configured devices
• Different processing power and timing guarantees
Conclusion

- Fast evolution of Smartphones is alarming
- Good match between Smartphone reuse and education
- Reused Smartphones can satisfy different resource requirement of educational applications
- Handling heterogeneity will be future work

Questions?