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ABSTRACT
Non-Fungible Tokens (NFTs) have emerged as a way to collect
digital art as well as an investment vehicle. Despite having been
popularized only recently, NFT markets have witnessed several
high-pro�le (and high-value) asset sales and a tremendous growth
in trading volumes over the last year. Unfortunately, these mar-
ketplaces have not yet received much security scrutiny. Instead,
most academic research has focused on attacks against decentral-
ized �nance (DeFi) protocols and automated techniques to detect
smart contract vulnerabilities. To the best of our knowledge, we
are the �rst to study the market dynamics and security issues of
the multi-billion dollar NFT ecosystem.

In this paper, we �rst present a systematic overview of how
the NFT ecosystem works, and we identify three major actors:
marketplaces, external entities, and users. We then perform an in-
depth analysis of the top 8 marketplaces (ranked by transaction
volume) to discover potential issues, many of which can lead to
substantial �nancial losses.We also collected a large amount of asset
and event data pertaining to the NFTs being traded in the examined
marketplaces. We automatically analyze this data to understand
how the entities external to the blockchain are able to interfere with
NFT markets, leading to serious consequences, and quantify the
malicious trading behaviors carried out by users under the cloak of
anonymity.
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1 INTRODUCTION
A Non-Fungible Token (NFT) is an ownership record stored on a
blockchain (such as the Ethereum blockchain). While digital items,
such as pictures and videos, are the most common assets traded
as NFTs, the sale of physical assets, e.g., postal stamps [29, 41],
gold [43], real estate [33], physical artwork [16], etc., is also steadily
gaining popularity. In the cryptocurrency world, an NFT is the
equivalent of a conventional proof-of-purchase, such as a paper
invoice or an electronic receipt. Among other things, what make
NFTs attractive are veri�ability and trustless transfer [67]. Veri�-
ability means that sales are recorded as blockchain transactions,
which makes tracking of ownership possible. In addition, the NFT
concept allows for the trading of digital assets between two mutu-
ally distrusting parties, as both the crypto payment and the asset
transfer happen atomically in a single transaction.

Several NFT marketplaces (NFTMs), e.g., O���S��, R������, and
A���, emerged in recent years to facilitate buying and selling NFTs.
This has sparked the interest of both crypto art collectors and
traders. To put things into perspective, O���S��, the largest NFTM,
collected $236M USD in platform fees generated out of a trading
volume of $3.5B USD [11] in August 2021 alone. This is around half
of the volume [21] generated by the e-commerce giant eBay during
the same period. And the all-time combined trading volume of the
top three NFTMs—O���S��, A���, and C�����P����—surpassed
$10B USD in September 2021 [9]. Individual NFT sales have also
skyrocketed in recent months [59], with nine out of ten of the most
expensive sales [1] taking place between February and August 2021.
For example, the media widely reported on the digital artist Beeple,
who sold an art piece for $69.3M USD; as another example, the �rst
tweet of Twitter CEO Jack Dorsey was sold for $2.9M USD. Also,
NFTMs have surfaced as the most gas-eating Ethereum contracts.
For example, O���S�� made it to the top of the list of gas-guzzlers
in E�������� [45], consuming around 20% of the gas spent by the
network.

As the NFT space exploded with multi-million dollar sales, cy-
bercriminals and scammers have inevitably �ocked to the markets
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to make quick pro�ts and cheat unsuspecting users. As a result,
numerous NFT scams also made recent headlines.

Legitimacy is one of the big issues with NFTs, as nothing pre-
vents an impostor from “tokenizing” and selling someone else’s art,
while the creator remains oblivious of the fraud. With the current
state of a�airs, the onus of verifying the token is on the buyer. Un-
fortunately, this is not always easy. For instance, in August 2021, a
perpetrator impersonated the popular British gra�ti artist Banksy
and sold an NFT [15] that featured a “fake” art piece by the artist for
$336K USD through an online auction. While NFTMs try to thwart
such attacks by mandating account validation, typically through
an artist’s social media presence, another scammer punched a hole
through R������’s veri�cation process and managed to get a fake
account associated with the renowned artist Derek Laufman veri-
�ed [27]. Counterfeits NFTs, also called copycats or parody projects,
resemble reputable collections and purport to have been created by
reputable sources. For example, the early NFT projectC�����P����
has numerous clones, such as C�����P�����. In some scenarios,
scammers set up unauthorized customer support channels and so-
cial media accounts that pretend to be a�liated with NFTMs in an
e�ort to steal customer information and compromise accounts [35].
Also, there is evidence of rug-pulls, where the owner/creator of an
NFT unscrupulously hypes an asset in order to in�ate its value, only
to cash out, leaving others to su�er from the subsequent decline in
value. One such example is the E������ B����� collection, which
was promoted by the popular American rapper Lil Uzi Vert through
his T������ account with 8.5M followers. Soon after the initial
investment by the buyers, he deleted all of his tweets, causing the
token values to plummet [36].

With enormous funds �owing into decentralized �nance (DeFi)
applications, scams have become lucrative money-making opportu-
nities. Previous research studied several di�erent aspects of crypto-
economic attacks, e.g., �nancial repercussions due to transaction
reordering [47, 49, 61, 71], �ash loan abuse [62], arbitrage oppor-
tunities [70], and pump-and-dump schemes [51, 56, 68]. Besides
protocol attacks, there also exists a substantial body of work on au-
tomated detection of smart contract vulnerabilities, e.g., reentrancy,
transaction order dependence, integer over�ows, and unhandled
exceptions [12, 26, 44, 46, 50, 52–55, 58, 60, 64, 69].

To the best of our knowledge, however, the existing literature has
not explored the security challenges in the emerging NFT ecosys-
tem, or performed a systematic and comprehensive analysis of the
associated threats. Our work �lls that void. First, we identify three
components constituting the NFT ecosystem. We then analyze each
component to discover security, privacy, and usability issues, as
well as economic threats. We hope that our work will be helpful
both for NFT marketplaces and their users. We envision this paper
as a guide to help NFTMs to avoid mistakes while making users
aware of the perils of the NFT space. In particular, we make the
following contributions:
Anatomyof theNFT ecosystem.We systematize the NFT ecosys-
tem, looking at the participating actors —marketplaces, external
entities, and users— and we analyze their mutual interactions
(Section 3).
Comprehensive data collection. We leverage multiple sources
of data, including the Ethereum blockchain, as well as asset and

event data sourced from the NFTM dApps, to paint a holistic picture
of how the ecosystem operates (Section 4).
Identifying irregularities in NFTMs. We identify �aws in the
NFTM designs, which, if abused, pose a signi�cant �nancial risk.
Identifying issues with external entities. We identify the o�-
chain external entities connected to the NFT ecosystem, and how
such entities can pose threats to users (Section 6).
Uncovering malicious user behaviors. We discover and quan-
tify trading malpractices, such as wash trading, shill bidding, and
bid shielding, which are taking place in the top marketplaces. The
insight drawn from our analysis sheds light on some of the prime
factors responsible for driving up the recent NFT frenzy (Section 7).
Releasing code and data.Wewill open-source our analysis frame-
work along with the data we collected to help researchers uncover
further interesting insights about the emerging NFT economy.

2 BACKGROUND
In this section, we introduce the building blocks of the Ethereum
ecosystem, with an emphasis on non-fungible tokens (NFTs) and
the economy that has grown around them.
The Ethereum Blockchain. Ethereum is the technology power-
ing the cryptocurrency Ether (ETH) and thousands of decentralized
applications (dApps). The Ethereum blockchain is a distributed,
public ledger where transactions are mined into blocks by min-
ers who solve cryptographic Proof of Work (PoW) challenges. In
this ecosystem, an account is an entity represented by an address
that is capable of submitting transactions. There are two types of
accounts in Ethereum: externally owned accounts (EOA), which
are controlled by anyone holding the corresponding private key,
and contract accounts, which contain executable pieces of code,
called smart contracts. A smart contract is a program run by the
Ethereum Virtual Machine (EVM), which leverages the blockchain
to store its persistent state. A transaction is the transfer of funds
between accounts, or an invocation of a contract’s public method.
The address that sends the funds or interacts with the contract is
denoted by msg.sender.
Non-Fungible Token (NFT). In the real world, tokens are repre-
sentations of facts, such as the position in a queue or the autho-
rization to access a facility. In Ethereum, tokens are digital assets
built on top of the blockchain. Unlike Ether, which is the native
(built-in) cryptocurrency of the Ethereum blockchain, tokens are
implemented by specialized smart contracts. There are two main
types of tokens: fungible and non-fungible. All the copies of a fun-
gible token, usually conforming to the ERC-20 interface [66], are
identical and interchangeable. Such tokens can act as a secondary
currency within the ecosystem, or can represent someone’s stake in
an investment. On the other hand, all the copies of non-fungible to-
kens, usually conforming to the ERC-721 [48] interface, are unique,
and each token represents someone’s ownership of a speci�c digital
asset, such as ENS domains [14] and CryptoKitties [7], or a physical
asset, like a gold bar.

ERC-721 [48] is by far the most popular standard for imple-
menting non-fungible tokens on Ethereum. The standard interface
de�nes a set of mandatory and optional API methods that a token
contract needs to implement. Figure 1 presents a few of those API
methods relevant to our discussion.
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setApprovalForAll(address _operator ,
bool _approved) external

approve (address _approved ,
uint256 _tokenId) external payable

transferFrom (address _from , address _to ,
uint256 tokenId) external payable

tokenURI (uint256 _tokenId)
external view returns (string)

Figure 1: Important methods de�ned in ERC-721.

Figure 2: Anatomy of the NFT ecosystem showing all the market-
place actors, and theirmutual interaction. The dotted and solid lines
indicate data-centric and command-centric communication chan-
nels, respectively.

Each NFT has its own ID (to keep track of these unique tokens),
which is referred to as _tokenId. In ERC-721, an operator is an
entity that can manage all of an NFT owner’s assets. In other words,
an NFT owner can delegate the authority to act on her assets to
an operator. Depending on whether the _approved argument is
set, the setApprovalForAll() method either adds or removes the
address _operator from/to the set of the operators authorized by
the msg.sender (the NFT’s owner). Unlike an operator, who can
operate on all the assets of an owner, ERC-721 de�nes a controller
as an entity who is authorized to operate on one single asset held by
an owner. The approve()method approves the address _approved
as the controller of the asset _tokenId. An operator, a controller,
or the owner can call the transferFrom() method to transfer the
token _tokenId from the current owner’s _from address to the _to
address.

When an NFT is created (minted), the creator can optionally
associate a URL with the NFT. That URL, called metadata_url,
should point to a JSON �le that conforms to the ERC-721 Metadata
JSON Schema [48]. The JSON �le stores the details of the asset, e.g.,
its name and description, and also contains an image �eld storing
a URL, called image_url, that points to the asset. In this way, an
NFT essentially connects an asset with the record of its ownership.
Given a _tokenId, the associated metadata_url can be retrieved
by querying the tokenURI() API of the contract. Interestingly,
the creation and destruction of NFTs (“minting” and “burning”)
are not a part of the standard. Typically, mint() is de�ned as a
public function restricted to the contract creator, and invoked by
passing metadata_url as an argument. Minting can also be done
during contract creation by calling mint() through the contract’s
constructor.

InterPlanetary File System (IPFS). IPFS [23] is a distributed,
peer-to-peer, permissionless �le system. Anyone can join the IPFS
overlay network. A data item 3 is assigned a unique immutable
address, also known as content identi�er (CID): 283 = � (3), which
is the hash � of the �le’s content 3 . Therefore, when the content
of the �le changes, the CID changes as well. The content of a �le
is �rst split into blocks. All the storage elements, i.e., a directory,
the �les inside the directory, and the blocks within those �les, are
stored in a directed acyclic graph structure called a Merkle DAG.
IPFS maintains a distributed hash table (DHT) split across all the
nodes in the network to store provider records, which locate those
peers that store the requested content. To retrieve a data item 3 , a
node �rst looks up the providers % (3) in the DHT, and then requests
3 from the members of % (3).

3 ANATOMY OF THE NFT ECOSYSTEM
In this section, we provide an overview (Figure 2) of the economy
that has developed around NFTs. Speci�cally, we identify the actors
that participate in the ecosystem and the components they interact
with.
Users. NFTs are often used to sell digital collectibles and artwork,
e.g., images, audio �les, and videos. The users in the NFT ecosystem
belong to one of three categories: content creator, seller, and buyer.
First, the creators create digital content and upload it 1 to hosting
services (an external entity) to make the art publicly available.When
it comes to selling the content, some creators are not technical
enough to turn their art into an NFT, and put it as a token on the
blockchain. Therefore, they authorize 2 sellers to mint NFTs 6
and o�er it on marketplaces. In other cases, a content creator is
also taking the role of the seller. Once listed on a marketplace 3 ,
buyers can buy the artwork at a listed price, make o�ers, or place
bids 7 . If their o�er is accepted or they win an auction, the NFT
is transferred 8 by invoking the transferFrom() API (Section 2)
from the seller to the buyer to re�ect the change in ownership.
Marketplaces. NFT marketplaces (NFTM) are dApp platforms
where NFTs (also referred to as assets) are traded. There are typically
two main components of an NFTM—a user-facing web frontend,
and a collection of smart contracts that interact with the blockchain.
Users interact with the web app, which, in turn, sends transactions
to the smart contracts on their behalf 5 . Primarily, there are two
types of contracts: (i) marketplace contracts, which implement the
part of the NFTM protocol that interacts with the blockchain, and
(ii) token contracts, which manage NFTs. Marketplaces typically
allow users to perform the following activities: (a) user authenti-
cation, (b) token minting, (c) token listing, and (d) token trading.
The token-related activities are collectively called events. Depend-
ing on where these events are stored, three broad types of NFTM
protocol design are possible: (i) on-chain: all the events live on
the blockchain. Since every action costs gas, this design makes
the NFTM operationally expensive for the users. NFTMs that fol-
low this design include A���, C�����P����, F���������, and
S����R���. (ii) o�-chain: the events are recorded in a centralized,
o�-chain database managed by the NFTM. Users perform various
activities by interacting with the web app, not the blockchain, and,
therefore, this design is gas-friendly. N���� is an example of an
o�-chain NFTM. (iii) hybrid: depending on their type, events are
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stored either on-chain or o�-chain. To ensure the integrity of the
operation, on-chain and o�-chain events are tied together with a
cryptographic check. O���S�� and R������ follow this model.
IUser authentication.Users �rst need to register with theNFTMs
to access their services. Post-registration, two di�erent authenti-
cation work�ows are possible: (a) classic credentials-based (user-
name/password), or (b) signature-based. With the latter, the user
is �rst asked to sign a challenge string. Then, the marketplace re-
covers [34] the address of the signer (user) from the elliptic-curve
signature. O���S��, R������, F���������, C�����P����, and
S����R��� follow this model. Since Ethereum private keys are es-
sentially unguessable [24], this authentication method is generally
more secure than traditional passwords (passwords are typically
drawn from a limited set of characters, shorter in length, and easier
to brute-force).
I Tokenminting. A token isminted (created) 6 by calling the ap-
propriate method of the token contract, which generally complies
with the ERC-721 or ERC-1155 standard. A single token contract
can manage the ownership of a number of NFTs. Every NFT is
assigned an integer called _tokenId. Therefore, an NFT is uniquely
identi�ed by the htoken_contract_address, _tokenIdi pair on
the blockchain. A “family” of NFTs, which are either similar, or
based on a common theme, called a collection, e.g., C�����P����.
An NFT can be minted in many di�erent ways: (a) default contract:
the token is minted as part of a pre-deployed, designated token
contract managed by the marketplace. NFTMs like O���S��, F����
������, S����R���, etc., provide a default contract to hold NFTs
when no custom contract is deployed by the creator. (b) replica con-
tract: the NFTM itself deploys a contract on behalf of the creator to
manage the collection that the NFT is a part of. Deployed contracts
have identical bytecode, but are customized through initialization
parameters. Examples of such NFTMs includes N���� and R����
���. Since both default and replica contracts are managed by the
NFTM, together they are called internal token contracts. (c) external
contract: the creator independently deploys a custom contract to
manage the collection, and later imports it to the marketplace. To
be interoperable with the NFTMs, external contracts must follow
a well-established token standard. Otherwise, a custom integra-
tion is needed. O���S�� and R������ allow external contracts on
their platforms. A single token contract can manage one or more
collection. Typically, replica or external contracts manage a single
collection, while the marketplace default contract manages several.
In the latter case, the NFTM dApp maintains an o�-chain associa-
tion between the set of _tokenIds and the collection those belong
to.
I Token listing. Once created, a seller lists their assets for sale
3 . To list an NFT on a platform, some NFTMs, e.g., F���������,
S����R���,N����, mandate either the seller or the entire collection
(that the NFT is a part of) to be veri�ed. Even for the NFTMs
where veri�cation is optional, for example, O���S��, R������,
getting an artist or a collection veri�ed provides credibility and
increases buyers’ con�dence. NFTMs display special badges on
veri�ed pro�les of artists and collections, which helps in building
a brand, and receive preferential treatment to boost sales – such
as search priority and safe-listing to suppress safety-related alerts
before the purchase.

I Token trading. Buyers can make o�ers, or place bids 7 on the
assets on sale. When an o�er is accepted, or an auction is settled, the
NFTM transfers 8 assets from the seller’s account to the buyer’s.
Usually, this is when the NFTMs charge a fee for the service they
o�er. A few key aspects of the NFTM bidding system are discussed
below: (i) Pricing protocol: The bid price can either increase or de-
crease with every bid. In an English auction, the bid opens at a
reserve price, which is the minimum price the seller is willing to ac-
cept for an NFT. Subsequent bids from the buyer gradually increase
the price. The NFT goes to the highest bidder. The English auction
approach is used by most NFTMs, e.g., O���S��, F���������, and
S����R���. In a Dutch auction, the bid opens at a high price. Sub-
sequent bids from the seller gradually decrease the price. The NFT
goes to the bidder who �rst accepts a bid. A��� follows the Dutch
auction pattern. (ii) Bid storage: Bids can be stored either on-chain,
e.g., C�����P����, F���������, S����R���, or o�-chain, e.g.,
N����, R������, O���S��. There are protocols, such asW�����
used by O���S��, which keep both the sell order (listing) and the
bids o�-chain for gas e�ciency, though the order matching and the
NFT transfer happen on-chain. Therefore, the marketplace contract
cryptographically veri�es the buy order against the associated sell
order to prevent a malicious buyer from either buying an item that
is not on sale, or tampering with an existing sell order. (iii) Active
bids: Some NFTMs disallow multiple active bids on the same asset.
For example, in C�����P����, F���������, or S����R���, when
a bidder outbids the current top bidder, the latter gets automatically
refunded. (iv) Bid withdrawal: Some NFTMs, such as C�����P����,
allow the withdrawal of bids, while others, for example, F������
����, do not. (v) Bid settlement: Bid settlement does not require
seller’s intervention in most cases, i.e., the asset automatically goes
to the highest bidder. However, for some NFTMs like C�����P����,
the bid has to be explicitly accepted by the seller.

When an item is sold by a seller other than the creator, it is called
a secondary sale. Royalty is the payment made to the creator for
every such secondary sale. Before the �rst (primary) sale takes place,
the creator speci�es the royalty amount, which is then deducted
from every secondary sales and given to the creator. The deduction
happens either (i) on-chain, where royalty is calculated by the
marketplace contract during the buy transaction, or (ii) o�-chain,
where the NFTM dApp keeps track of the royalty accumulated from
all the sales.
External entities. External to both NFTMs and blockchain, there
are services and devices that provide the necessary infrastructure
for the system to work. For example, creators store 1 their artwork
on web servers or storage services such as Amazon S3 or IPFS.
When buyers purchase the NFT, they can exercise their bragging
right by displaying the art on photobook-style websites or digital
NFT photo-frames. The websites, photo-frames 11 , and NFTMs 4
fetch tokens from the blockchain 10 , and respective artwork from
those services.

4 ANALYSIS APPROACH
This paper studies scams, malpractice, and security issues in the
NFT ecosystem. In particular, we investigate the following research
questions related to the three entities identi�ed in the previous
section, i.e., users, marketplaces, and external entities: (RQ1.) Are
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O���S�� [30] 4.32B 12,215,650 349,911,634 A, B A
A��� [3] 1.75B 891,238 487,486 B B
C�����P���� [8] 1.18B 9,999 172,157 B B
R������ [32] 199.42M 72,509 1,864,997 B B, W
S����R��� [39] 106.87M 28,676 198,848 B B
S����� [37] 97.42M 298,219 1,392,292 B W, B
F��������� [17] 68.19M 112,120 508,349 B B
N���� [28] 300.12M - - - -

Table 1: Characteristics of the marketplace dataset. A: API access,
W: Web scraping, B: Blockchain parsing.

there weaknesses in the wayNFTMs operate today, and can those be
exploited (Section 5)? (RQ2.) How and to what extent do external
entities pose a threat to the NFT ecosystem (Section 6)? (RQ3.) Are
users involved in any fraud or malpractice resulting in the �nancial
loss for others (Section 7)?

We used a hybrid (both qualitative and quantitative) approach
to answer RQ1, and a quantitative approach for both RQ2 and RQ3.
The rest of this section discusses how we collected the data for the
quantitative analysis, and we provide a rationale for choosing the
speci�c NFT marketplaces that we examined in more detail.
Marketplace selection. In line with previous work [57], we use
D���R���� [9], a popular tracker of dApps, to select the most rele-
vant marketplaces. We selected 8 out of a total of 35 marketplaces
(Table 1) listed in D���R����. This selection was based on the
following two criteria: (a) backed by the Ethereum blockchain, and
(b) the “all-time” trading volume is over 50M USD as of June 15,
2021.
Data collection.We collect two di�erent types of data: (a) infor-
mation about the NFTs (assets), e.g., collection name, asset URI,
metadata URI, etc., traded on the di�erent marketplaces, (b) NFT-
related events, such as mint, buy, sell, auction creation, placing of
a bid, acceptance of a bid, transfer, etc., generated as a result of
marketplace activity. To conduct di�erential analysis for one of
the studies, we needed to monitor how the details of certain assets
change over a period of time. Therefore, we crawled the same set of
assets three times with a three-month interval between two subse-
quent crawls: in June 2021, September 2021, and �nally in December
2021. Moreover, we collected event information continuously be-
tween the June and September crawls. We use C���G���� [6] API
to fetch historical prices of the cryptocoins to convert the pricing
information to their equivalent USD value.
Asset and event information: The �rst step to collect asset and
event information is asset enumeration, i.e., obtaining the list of
assets traded on a marketplace. Once enumerated, we collect the
asset and event information for those assets. For both the steps, we
employ three di�erent strategies, subject to marketplace restric-
tions:
1) API access: If a marketplace exposes an appropriate API, we use
it to retrieve the list of assets and events. Unfortunately, the APIs
are often record-limited, e.g., for a speci�c query, O���S��’s API
returns at most 10, 000 assets. However, the total number of assets
listed on their website was 18.2M at the time of crawling. As a
workaround, we generate API requests with combinations of sort
and filter parameters to fetch di�erent sets of assets with every
request.

2) Web scraping: If a marketplace does not provide an API interface,
but its terms and conditions (T&C) do not disallow scraping of their
web interface, we crawl the assets and events data from the website.
3) Blockchain parsing: If a marketplace neither provides an API
nor allows web scraping, we retrieve asset and event data directly
from the blockchain, if possible. Trading activities of a decentral-
ized marketplace are handled by smart contracts that are well-
known. Leveraging the ABI (Application Binary Interface) of the
contracts published in E��������, we parse historical transactions,
e.g., atomicMatch() in case of O���S��, to retrieve asset and event
details.

Our asset collection is best-e�ort, as it is impossible to enumer-
ate all the listed assets in a marketplace. This is due to various
reasons mentioned above, such as the absence of marketplace APIs,
their rate limits, and T&C prohibiting any crawling activity. Table 1
shows the number of assets and events collected for each market-
place, and the strategies used to collect data. Since N���� does not
provide an API, prohibits web scraping through T&C, and stores
events o�-chain, we were unable to collect data on the marketplace
activities.
Measurement study.We utilize the asset and event data we col-
lected to perform several measurement studies, which are described
in the subsequent sections. We would like to emphasize that we
attain reasonable coverage, e.g., O���S��, the largest NFTM that
accounts for 89.63% of assets in our dataset, listed 18.2M assets
in their website at the time of crawling. We crawled 12.2M assets,
which is 66.94% of the size of the marketplace. Since O���S�� con-
tributes to the most number of assets in our dataset, we use only
O���S�� in Section 5 (unless the study requires cross-NFTM anal-
ysis) and Section 6, as only that dataset would be representative
enough to capture the extent of the issues we quanti�ed in those
sections. However, since we measured the occurrences of trading
malpractices per NFTM in Section 7, we used assets from all the
marketplaces.

5 ISSUES IN NFT MARKETPLACES
In this section, we identify weaknesses in the design of NFTMs,
which, when abused, pose a signi�cant risk in the form of �nan-
cial loss to both the marketplaces and its users. For this part of
the study, we gathered information from public security incidents,
attacks, and abuses reported on various blogs and technical reports,
direct interactions with individual marketplaces, and marketplace
documentation. We have systematized our �ndings by connecting
those issues with the marketplace activities discussed in Section 3,
and then quanti�ed, whenever possible, the prevalence/impact of
those issues. Lastly, we systematically evaluated the existence of
each of the issues across all the marketplaces (Table 2).

5.1 User Authentication
(U1) Identity veri�cation. Art in the physical world has been
used in money laundering schemes [2]. NFTs might make this pro-
cess easier, as trades are executed by anonymous users, and there
are no physical artworks to be transported. Identity veri�cation
is the �rst step to deter such criminals. Major crypto exchanges,
such as Coinbase and Binance US, are highly regulated. To create
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User authentication
U1. Identity veri�cation 7 7 7 7 7 7 7 7
U2. Two-factor authentication N 7 N N N O N 3

Token minting
M1. Veri�ability of token contracts 7 N N 7 N N N 7
M2. Tampering token metadata

M2.1 Changing metadata url P 3 7 7 P P 7 7
M2.2 Decentralized metadata O 7 7 O O 7 M O

Token listing
L1. Principle of least privilege 3 3 3 3 P 3 7 7
L2. Invalid caching 3 N N 3 N N N N
L3. Seller / collection veri�cation O N N O M N M M

Token trading
T1. Lack of transparency 7 7 7 7 7 7 7 3
T2. Fairness in bidding 7 3 3 7 3 7 3 7
T3. Royalty and fee evasion

T3.1 Cross-platform 7 7 N 7 7 7 P 7
T3.2 Post-sales modi�cation 3 7 N 3 7 7 7 7

Table 2: Issues in the NFT marketplaces. O: Optional, M : Manda-
tory, P: Partial, N: Not applicable, 3: Exists, 7: Does not exist.

an account with these exchanges, one needs to provide person-
ally identi�able information (PII), e.g., name, residential address,
social security number (SSN), along with supporting documents
con�rming these details. Without getting the identity veri�ed, it is
either impossible to use the platform, or it can only be used with
tight �nancial restrictions in place. To investigate if the NFTMs
impose similar regulatory restrictions, we interacted with them
by creating accounts. We discovered that no NFTM has made any
steps towards enforcing KYC (Know Your Customer) rules nor
implemented AML/CFT (Anti-Money Laundering/Combating the
Financing of Terrorism) measures. As a result, apart from being
able to hide the identity, a user can create several accounts on the
platform that are hard to be traced back to one single entity.
(U2) Two-factor authentication. Enabling 2FA (Two-Factor Au-
thentication) greatly enhances the security of a password-based
authentication work�ow. While traditional �nancial institutions
like banks, brokerages, and cryptocurrency exchanges, such as
C������� and B������, provide 2FA as an option, it is not yet a
ubiquitous option for NFTMs. S����� manages a user’s wallet on
her behalf. As a result, an attacker who is able to login into an
account can download the user’s Ethereum private key associated
with the wallet, and transact on behalf of her. Though S����� does
support 2FA, it is not enabled by default. 2FA was also optional
for N���� users until the infamous hack [19] that compromised a
number of accounts in March 2021. According to their initial as-
sessment, none of the impacted accounts used 2FA when the hack
took place.

5.2 Token Minting
(M1) Veri�ability of token contracts. A token contract is con-
sidered “veri�able” if its source code is submitted to E��������.

Given the functional complexity of these token contracts, source
code is much easier to audit than bytecode. Veri�ability of external
token contracts is crucial as they can be malicious or buggy. As
an example, O���S�� users complained about a malicious token
contract that did not transfer tokens after purchase. Also, to make a
particular NFT valuable, sometimes NFT projects promise to circu-
late only a certain number (rarity) of that token. A malicious token
contract can be abused to mint more tokens than the rarity thresh-
old, thus dropping the token’s price, which hurts the buyers. A
malfunctioning contract can burn gas without even doing any real
work, e.g., almost all Purchase events of the CelebrityBreeder
contract failed with errors. Ideally, an NFT project should make
the source of the underlying token contract available for public
scrutiny before the NFTs are minted to make sure that they are
neither malicious nor buggy. Unfortunately, none of the NFTMs
that support external token contracts mandates such contracts to
be open-source.
I Quantitative analysis. To enumerate how abundant closed-
source NFT tokens are, we queried E�������� API for every token
contract in our dataset to check if its source is present. Out of 11,339
token contracts, 8,122 (71.63%) were open-source, while the remain-
ing 3,217 (28.37%) were closed-source, of which 7,850 (96.65%) and
3,209 (99.75%) tokens belong to O���S��, respectively.

Further, we intended to evaluate if closed-source tokens are more
likely to exhibit malicious behavior than open-source ones. Since
NFTMs take down NFTs when they observe or receive a report
of either an abuse or a violation of the T&C, we consider “take-
down” as an indirect (yet strong) indication of a token being found
malicious. According to our observation, 1,765 (55.00%) closed-
source tokens were taken down by O���S�� between June and
December, which account for $328.8M USD in trading volume. On
the contrary, only 606 (7.72%) open-source tokens were taken down
during the same span.
(M2) Tampering with tokenmetadata. The metadata of a token
holds the pointer to the corresponding asset. Hence, if the metadata
changes, the token loses its signi�cance. The ERC-721 standard for
NFTs actually allows for the possibility to change a token’s meta-
data. However, when an NFT represents a particular asset (such
as a piece of art) that is sold, changing the metadata violates the
expectation of the buyer. The location and the content of the meta-
data are decided at the time of minting. A malicious creator/owner
A can alter the metadata by manipulating either of the two post-
minting: (i) by changing the metadata_url, and (ii) by modifying
the metadata itself. Even if (i) can be disallowed at the contract
level, metadata hosted on third-party (web) domains can be freely
modi�ed by A, if she controls the domain. This second attack can
be prevented if the metadata is hosted in IPFS. Since the URL of an
object stored in IPFS includes the hash of its content, the metadata
cannot be modi�ed while retaining the same URL recorded in the
NFT.

For internal token contracts, C�����P����, F���������, R����
���, andN���� o�er no way to update the metadata_url of an NFT.
A��� allows the creator to modify the URL at any time. O���S��,
S����R���, and S����� allow modi�cation by the creator until
the �rst sale. Since only F��������� mandates storing the meta-
data on IPFS, other NFTMs are susceptible to the second attack for
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the internal contracts. Since no NFTM supporting external token
contracts employs any check to prevent metadata tampering, both
attacks are feasible.
I Quantitative analysis. We performed a di�erential analysis to
determine the change in the metadata_urls of external assets over
a period of time. Speci�cally, we monitored the metadata_urls
of all 9,064,767 external O���S�� assets three times over a span
of six months in an uniform interval—in June 2021, September
2021, and December 2021, respectively. Since ERC-721 metadata
extensions are optional (explained in Section 6), metadata_urls
were completely missing for some of the assets. Also, O���S��
took down some assets during this time period, which is why their
metadata_urls could not be retrieved in the subsequent crawl. Af-
ter excluding these two kinds of assets, we were left with 3,079,139
assets that had metadata_urls in all three crawls. According to
our observation, the metadata_urls of 89,089 (2.89%) and 35,446
(1.15%) assets changed between the �rst two and the last two crawls,
respectively.

5.3 Token Listing
(L1) Principle of least privilege.While listing an NFT, the NFTM
takes control of the token so that when a sale is executed, it can
transfer the ownership of the NFT from the seller to the buyer. To
this end, the NFTM needs to be either (i) the owner of the NFT:
that is, the current owner transfers the asset to an escrow account
E during listing, or (ii) a controller: an Ethereum account C that
can manage that speci�c NFT on behalf of the owner, or (iii) an
operator: an Ethereum account O that can manage all the NFTs
in that collection. The escrow model in case (i) is risky because
one single escrow contract/wallet E managed by the NFTM holds
all assets being traded on the platform. Therefore, the security of
all assets in a marketplace depends on the security of the escrow
contract or the external account that manages such contract. This
design essentially violates the principle of least privilege. As a result,
either a vulnerability in the contract or a leak of the private key of
the external account could compromise the security of all the stored
NFTs.N����, F���������, S����R��� follow this approach. A safer
alternative would be to adopt (ii) or (iii), where a proxy contract C
or O deployed by the NFTM becomes the controller of the NFT, or
the operator of the entire NFT collection, respectively. As enforced
by the marketplace contract, the NFTM is able to transfer an NFT
only when it has been put on sale and the required amount is �rst
paid to the seller. This ensures the safety of the NFT token even in
case of a marketplace hack. If the private key of a seller (owner of
an NFT) gets leaked, it can, at most, compromise the safety of that
speci�c NFT or collection, as opposed to all the NFTs as in the case
of the escrow model.
I Quantitative analysis.Among the NFTMs in our dataset, F����
������ holds tokens in an escrow contract, while N���� uses an
Externally Owned Account (EOA) as escrow wallet. S����R���
escrows tokens only when an auction is ongoing. The larger the
number of NFTs held in escrow, the greater is the risk. On December
31, 2021, S����R���, F��������� and N���� held 55, 64079, and
90988 NFTs in their escrow accounts, respectively.

Count Total
Sales

Average
Sales

Taken
Down

Veri�ed 502 $114.5M $228,028 -Seller Non-veri�ed 124,398 $2.7B $22,001 -
Veri�ed 1,805 $3.3B $1,824,882 88

O
��
�S

��

Collection Non-veri�ed 234,112 $403.4M $1,723 11182

Table 3: Number of veri�ed andnon-veri�ed sellers and collections,
along with corresponding sales volumes.

(L2) Invalid caching. While displaying an NFT on sale, O���S��
and R������ leverage a local caching layer to avoid repeated re-
quests to fetch the associated images. If the image is updated, or
disappears, the cache goes out of sync. This could trick a buyer into
purchasing an NFT for which the asset is either non-existent or
di�erent from what the NFTM displays using its stale cache.
I Quantitative analysis. To understand the potential impact of
this caching issue, we measured how many image_urls in our
O���S�� dataset are inaccessible (non-200 HTTP response code), but
O���S�� still serves the corresponding cached versions. Out of total
12,215,650 NFTs, image_urls of 3,945,231 (32.30%) tokens were
inaccessible. However, O���S�� still cached 2,691,030 (68.21%) of
those inaccessible images, thus creating the illusion that the asset
linked to the NFT is still alive. One such broken collection is G���
U��������, a veri�ed collection with an overall trading volume of
19.8K Ethers.
(L3) Seller and collection veri�cation. Listings by veri�ed sell-
ers/collections are not only given preferential treatment by the
NFTMs, but they also attract greater attention from the buyer com-
munity. However, the veri�cation mechanism is typically ad-hoc,
and the �nal decision is at the discretion of the NFTMs. Common
requirements include sharing the social media handles of the sellers
and proving their ownership, sharing contact information, collec-
tions needing to reach certain trading volume, submitting the draft
�les of the digital artworks, etc. Marketplaces such as F���������
adopt a stricter policy by mandating veri�cation of all the sellers on
their platform. However, there are NFTMs, e.g., O���S��, R������,
where veri�cation is optional. Buyers are expected to exercise self-
judgment when trading on these platforms, which, unfortunately,
puts them at greater risk.

Since veri�cation comes with �nancial bene�ts, it has been
abused in di�erent ways: (i) Forging veri�cation badge. Scam-
mers forged pro�le pictures with an image of the veri�cation badge
overlaid on them, making the pro�les appear visually indistinguish-
able from the veri�ed ones at a cursory glance. (ii) Impersonation.
Abusing weak veri�cation procedures, scammers got their fake
pro�les veri�ed by just submitting social media handles, without
actually proving the ownership of the corresponding accounts [27].
(iii) Wash trading. One of the requirements of O���S�� to verify
a collection is to have at least 100 ETH in trading volume [20],
which is possibly hard to attain for a newly launched collection.
Historically, this requirement has incentivized people to perform
wash trading, i.e., performing �ctitious trades between multiple
accounts that are all under the control of the attacker, to arti�cially
in�ate sales volumes.
I Quantitative analysis. To highlight the economic incentive
behind veri�cation abuse, we present the number of sales and the
sales volume generated by the veri�ed and non-veri�ed sellers and
collections in O���S�� in Table 3. Though only 0.40% sellers and
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0.77% collections of O���S�� are veri�ed, the average sales per
veri�ed seller and collection are 10 and 1,059 times more that their
non-veri�ed counterparts, respectively.

Next, we measure how e�ective the NFTM veri�cation mech-
anisms are in preventing abuse. Had the veri�cation mechanism
been foolproof, then a veri�ed collection could not be malicious,
and in turn, it should never have been taken down. However, we
observed that 4.88% of the veri�ed and 4.78% of the non-veri�ed
O���S�� collections were taken down in six months (between
June and December 2021). This indicates that though veri�cation
attempts to reduce abuse, it fails to eliminate it completely. The fact
that the veri�ed collections are still taken down shows that bad
actors do “slip through” the system and verify their collections.

5.4 Token Trading
(T1) Lack of transparency. NFTs are asset-ownership records
that should be stored on the blockchain to allow for public ver-
i�ability. In a decentralized setting, an NFT sale is handled by a
marketplace contract C< that invokes the transfer() API of the
token contract CC to transfer the token from the seller to the buyer.
Every sale transaction and the associated transfer, for example, the
atomicMatch() call in case ofO���S��, is visible on the blockchain.
Among other things, each transaction includes the following infor-
mation: (i) address of the seller (current owner), (ii) address of the
buyer (new owner), (iii) how much the NFT was sold for, (iv) time
of ownership transfer. Querying for ownership has further been
made easier by ERC-721 ownerOf() API that returns the current
owner of a token. The sales records, in conjunction with the API,
permit one to reconstruct the precise sales and ownership history
of an NFT.

On the other hand, if sales records and transactions are stored o�-
chain, it becomes impossible to verify any trades and the ownership
history of an NFT. Moreover, a malicious NFTM can abuse this fact
to forge spurious sales records to in�ate the trading activity and
volume. O�-chain records are susceptible to tampering, censorship,
and prone to disappear if the NFTM database goes down. Among
the NFTMs we surveyed, only N���� maintains o�-chain records.
When an item is listed, N���� takes control of the NFT by �rst
having it transferred ()1) to an escrow wallet. Thereafter, multiple
trades can take place while N���� holds the custody of the asset,
but no sales record is ever emitted on the blockchain. If and when
the owner decides to take the NFT out of N����, the marketplace
transfers ()2) the token back to the owner’s account. Since only )1
and )2 are visible from the blockchain, no intermediate ownership
and sales activity can be veri�ed.
(T2) Fairness in bidding. NFTMs implement bidding either (i)
on-chain, through a smart contract that requires the bid amounts
to be deposited while placing the bid, or (ii) o�-chain, through the
NFTM dApp which maintains an orderbook without requiring any
upfront payment. O�-chain bidding is unfair as it can be abused by
both the NFTM and the users. Since bids are not visible from the
blockchain, NFTMs can in�ate the bid volume to create hype. Also,
placing bids is inexpensive, as there is no money transfer involved.
Therefore, such NFTMs are more susceptible to bid pollution, a form
of abuse where a large number of casual bids are placed on items.
Since no money is locked, most of these bids are likely to fail due to

a shortage of funds in the bidder’s account at the time of execution.
Since on-chain bidding costs gas to place/cancel bids, it deters
scammers from placing spurious bids, making abuses less frequent.
Moreover, on-chain bids reserve the bid amount upfront. Therefore,
such bids invariably succeed during settlement. In O���S��, we
observed sellers complain that (attempted) sales of their items fail
because the WETH balances of the winning bidders drop below the
o�ered amounts.
I Quantitative analysis. Unless a bid fails due to lack of funds,
an NFT gets transferred to the highest bidder at the end of the
auction. To measure the extent of bid pollution in the NFTMs, we
enumerated the auctions where the highest bidder did not receive
the item. This is unfair to the seller, because the bid immediately
below might be a lowball o�er. Our analysis uncovered 16,215
and 15,368 such instances out of 48,862 and 19,109 total auctions in
O���S�� and R������, respectively. We did not �nd any evidence of
the same in the F���������, A���, and S����R��� marketplaces.
(T3) Royalty distribution and marketplace fee evasion. If a
royalty is set, every trade should earn a fee for the creator. However,
we identi�ed ways in which users can potentially abuse the royalty
implementations: (i) Cross-platform. As explained in Section 3,
royalty is enforced by either the marketplace contract or the dApp,
both of which are speci�c to an NFTM. Also, NFTMs do not share
royalty information with each other. Therefore, royalty set on one
platform is not visible from the other. Leveraging this lack of coor-
dination, a malicious seller can evade royalty by trading the NFT
through a platform where royalty is not set, though it is set on
another. (ii) Non-enforcement. Neither royalty nor marketplace
fees are enforced in ERC-721 token contracts. A malicious seller can
thus avoid both payments by transferring (ERC-721 transfer())
the NFT to the buyer directly and settling the payment o�-platform.
Both royalty and fees could be levied inside the transfermethod of
the token contract, though the additional logic makes the API more
expensive. (iii) Post-sales modi�cation. O���S�� and R������
allow the creator to modify the royalty amount even after the pri-
mary sale. Now, the royalty is calculated on the price listed by the
seller. In a potential abuse scenario, a creator can �rst lure a buyer
⌫ by setting a low royalty and then increasing it post-sales. During
secondary sales, ⌫ may not notice this change at all, and may end
up giving more royalty to the creator than initially advertised.
I Quantitative analysis. We discovered potential abuses of un-
conditional token transfer (case ii) to evade NFTM fees and royalty.
The question of evasion appears when a seller ( lists an NFT on a
marketplace to gain popularity, but executes the trade o�-platform,
entirely bypassing the marketplace protocol. There could be two
possible cases. Seller ( might trust the buyer ⌫ and, therefore, trans-
fers the NFT �rst. After that, ⌫ settles the payment. In the other
case, the order is reversed. For the assets listed in each NFTM, we
counted the number of occurrences on the blockchain where an
address (seller) ( transferred the NFT to another address (buyer) ⌫,
and ⌫ sent a payment to ( on-chain within 15 minutes (before or
after) the transfer transaction. We found 56920, 302, 2777, 5, 814,
56, and 0 such instances for assets listed in O���S��, S����R���,
R������, F���������, C�����P����, S�����, and A���, respec-
tively. Note that this estimate is conservative, because the payment

674



Understanding Security Issues in the NFT Ecosystem CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

could be made either o�-chain or outside the time window that we
considered for our analysis.

We also measured how often creators abuse sellers by increasing
the royalty after the primary sale (case iii). For each O���S��
asset, we enumerated the “sell” events in increasing order of time,
and counted the number of times the royalty was increased with
respect to the previous sale. We discovered 157,450 instances of
such royalty modi�cations across 20,802 (8.81%) collections.

6 ISSUES RELATED TO EXTERNAL ENTITIES
The asset (picture, video) that an NFT points to must be accessible
for this NFT to be “meaningful.” NFTs can point to assets in two
ways. If the NFT contract is ERC-721-compliant and implements
the metadata extension, then the token includes a metadata_url
on-chain, which points to a metadata record (JSON). This record, in
turn, includes an image_url �eld that points to the actual digital
asset. Many older tokens, on the other hand, are not standard-
compliant and do not contain any on-chain image_url. Instead,
they use some ad-hoc, o�-chain scheme to link to an asset. For
such NFTs, NFTMs implement custom support so that they can
generate valid image URLs. Since both the metadata record and the
asset are stored o�-chain, those do not enjoy the same guarantee
of immutability as the NFT itself. When any URL becomes inacces-
sible, that breaks the link between the NFT and the corresponding
asset. In practice, the URLs frequently point to a distributed stor-
age service, e.g., IPFS, or centralized storage, e.g., a web-domain or
Amazon S3 bucket. For IPFS URLs, if the NFT owner is aware, she
can keep the NFT “alive” by pinning the resource (i.e., storing it
persistently). Even that could also be problematic, because NFTs do
not store the hash value of the actual resource but rather store URLs
that point to an IPFS gateway web service. If the gateway becomes
unavailable, the NFT “breaks.” In general, NFTs that include URLs
that point to domains outside the control of the NFT owners risk
getting invalidated when the corresponding domains go away.
I Quantitative analysis. We performed an analysis to quantify
the number of O���S�� NFTs that were “lost” due to the rea-
sons outlined above. As of June 15, 2021, out of our 12,215,650
assets from O���S��, there were only 3,175,644 assets with a valid
metadata_url �eld. QueryingO���S��’s API, we obtained 8,363,550
assets with non-empty image_url �elds. The remaining 3,860,607
assets did not have an image_url �eld, which means that they are
hosted directly on O���S�� (content creators have the option to
leave the image URL �eld empty, in which case O���S�� handles
the hosting). We �rst check whether the image and metadata URLs
point to resources hosted on IPFS. Next, we check whether the
URLs are still accessible. To this end, we perform an HTTP HEAD
query. If the query returns with a response code other than 200
(OK), we perform an HTTP GET query next. If that also returns a
non-200 response code, we mark that URL as inaccessible. We take
this two-step approach to optimize for performance, and not to
generate false negatives due to web servers that do not respect
HEAD queries. Also, the servers hosting the assets could be o�ine
at the time of testing, but later come back up online. To account
for this possibility, we repeated the above URL-check three times
in a span of 15 days. Only the assets marked as inaccessible in the

Figure 3: Validity of image and metadata URLs

previous attempt were tested for accessibility each time. An asset
is �nally marked as inaccessible only if all three attempts agree.

Figure 3 reports our �ndings. Two important observations are:
(i) Only 3.91% of the assets (images) and 9.04% of metadata records
hosted on IPFS have disappeared in our dataset between June and
December; as expected, NFTs hosted on IPFS are less likely to
disappear than those hosted on non-IPFS domains. (ii) Though
IPFS is supposed to be more resilient to disappearance of the assets,
a majority of asset URLs (88.71%) as well as metadata URLs (80.69%)
are hosted on non-IPFS domains. Looking at all lost NFTs, they have
generated a staggering amount of $160,761,805 USD in revenue from
118,294 transactions. Not only that, due to the caching issue we
discussed in Section 5, it is very well possible that a fraction of
them are still in circulation. As this analysis shows, persistence is a
pressing issue in the NFT space.

7 FRAUDULENT USER BEHAVIORS
In this section, we study the impact of various fraudulent user
activities that occur in NFTMs. In particular, we look at counterfeit
NFT creation as well as trading malpractices, such as wash trading,
shill bidding, and bid shielding.

7.1 Counterfeit NFT Creation
The authenticity of an NFT is endorsed by the smart contract man-
aging the collection. Therefore, to ensure that the token one is
buying is legitimate, buyers are advised to verify the contract ad-
dress of the collection from o�cial sources, e.g., the project’s web
page, before making a purchase. Unfortunately, buyers are not al-
ways aware of the existence of counterfeits, or of how they can
verify an NFT’s authenticity. Instead, they only rely on the names
and visual appearances of items in the marketplaces. This makes it
possible for malicious users to o�er “fake” NFTs. We observed the
following types of counterfeits:
(i) Similar collection names. There are fake NFTs that use the
name of a collection or individual piece that resembles the original
(victim) one. A common trick is to substitute ASCII characters in
the original name with non-ASCII characters that look alike. To
prevent such abuse, O���S�� restricts users from using popular
collection names and certain special characters. Still, it is often
possible to circumvent these limitations, e.g., by adding a dot(.) at
the end of the name or substituting an upper-case character with
a lower-case one, e.g., a fake of “CryptoSpells” collection used the
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name “Cryptospells.” Moreover, restrictions can cause problems for
legitimate users, e.g., French users complained about not being able
to use the accented characters in collections.
(ii) Identical image URLs. Some fake NFTs point to existing as-
sets, i.e., they simply copy the image_urls of legitimate NFTs. For
example, C�����P���� is a well-known collection. Of course, noth-
ing prevents a scammer from deploying her own token contract
on the blockchain and mint tokens that point to C�����P����. A
buyer who just looks at the appearance of items in a collection will
see the C�����P���� images and might mistake the NFTs for the
originals.
(iii) Similar images. Instead of copying the image_url, a scammer
might copy the digital asset and then mint an NFT that points to
this copy. As of now, no NFTM runs any similarity check to detect
if a media �le has already been used by other NFTs.
I Quantitative analysis.We looked for each type of counterfeits
present in the O���S�� dataset comprising of 12,215,650 NFTs
spread across 236,057 collections.

(i) To check for (potential) counterfeits that abuse similar collec-
tion names, we compute the Levenshtein distance, an edit distance
metric between pairs of collection names (strings). Since a shorter
distance indicates greater similarity, we considered a maximum
distance of 2 characters, which means that we only consider collec-
tion names as similar if they di�er in at most two characters. We
considered 52,399 collections that have names longer than 7 charac-
ters, and a minimum of 10 NFTs in it (collections with fewer NFTs
could be insigni�cant) to avoid spurious matches. Given that it is
more bene�cial to imitate veri�ed collections, we only considered
collection pairs that include one veri�ed collection (and the other
one is considered to be its replica).

Our analysis found 322 collection pairs with similar names. We
noticed that the names of most of the replica collections were minor
modi�cations of the names of the respective veri�ed collections, for
example, pluralizing a noun, adding whitespace at hard-to-notice
positions, etc., which indicates a potential intent to mislead. We
then randomly picked 100 pairs and checked if those replica col-
lections indeed contain images that are similar to the veri�ed ones
and that could mislead buyers. Since judging the similarity visually
could be subjective, two researchers independently performed the
assessment, and a pair was marked “visually similar” only if both
the decisions agreed. We discovered 11 such collections, which we
reported to O���S�� requesting a take-down. Moreover, we identi-
�ed an additional 11 collections that were already taken down by
O���S�� (which indicates wrongdoing) between June and Decem-
ber 2021.

(ii) To check for counterfeits that leverage identical image_urls,
we �rst collected 8,363,550 image_urls comprising of 944,420 IPFS,
and 7,419,130 non-IPFS URLs from our dataset. Objects on IPFS are
accessed through IPFS gateways, which are web services. An IPFS
URL is typically of the form: http(s)://<gateway>/<ipfs_hash>.
Any gateway can be used to access the object pointed to by <ipfs_hash>.
Therefore, we pre-processed those URLs to extract only the hash
component. In the last step, we performed a string comparison
between every pair of IPFS hashes and non-IPFS URLs, which re-
ported 356,377 and 2,082,119 identical IPFS, and non-IPFS URLs
with at least one duplicate, respectively.

(iii) To �nd potential counterfeits due to image similarity, we
crawled the images pointed by the image_url for all NFTs in our
dataset. Since the individual assets linked to NFTs can be very large,
we decided to focus on downloading just the smaller resolution
version of an asset generated and cached by O���S��. We then
used the perceptual algorithm [31] of I����H��� [22], a popular
(2.1K G��H�� stars) image hashing tool, to compute a “fuzzy” hash
that is tolerant to small perturbations of the images. Lastly, we
compare every pair of hashes to �nd similar images.We refrain from
comparing hashes of the images that are part of the same collection,
as they are likely similar (but not counterfeits). We downloaded
9,991,013 images, and we discovered 59,425 hash collision pairs. We
randomly picked 100 such pairs, and manually veri�ed that 90% of
those image pairs are indeed visually identical.

7.2 Trading Malpractices
In this section, we explore illicit trading practices, speci�cally, wash
trading, shill bidding, and bid shielding [4, 38, 42]. We �rst discuss
how these malpractices are relevant in the context of NFTMs, and
then build heuristic models to detect such attacks. Finally, we apply
these models to all 13,628,411 assets and 354,535,763 events we
collected (Section 4). The goal is to measure the extent and impact
of these trading activities on the top 7 NFTMs.
Data modeling. From the event data and the Ether �ows collected
from blockchain transactions, we extract actions (such as transfers,
sales, bids, ...) that operate on NFTs. Figure 7 shows the types of
predicates (actions) that we record for users D, assets 0, auctions 83
and prices ? . These predicates capture relationships that we use to
build four di�erent graphs: A sales graph GB (sale), a bidding graph
G1 (auction, bid, cancel_bid,win), a payment graph G? (paid), and
an asset transfer graph GC (transfer). G1 contains two types of
nodes: users (D) and assets (0), and directed edges from D to 0
annotated with property tuples of the form (?, C, 83). All of GB , G? ,
and GC contain only one type of node: users (D), and directed edges
from D1 to D2. Edges in GB , G? , and GC are annotated with property
tuples of the form (0, ?, C), (4), and (0), respectively.

7.2.1 Wash Trading. In wash trading, the buyer and the seller col-
lude to arti�cially in�ate the trading volume of an asset by engaging
in spurious trading activities. In NFTMs, users wash trade to either
create the illusion of demand for a speci�c asset, artist, etc., or to
in�ate metrics that are of their �nancial interest, such as getting a
pro�le/asset veri�ed, or collecting rewards. For example, R������
users are incentivized by $RARI governance tokens where the more
a user spends, the more tokens they receive [25]. It is suspected
that many high-value NFT sales related to popular projects such as
C�����K������ [7] and D����������� [10] are instances of wash
trading [42].
Detection. In the NFT space, wash traders primarily intend to in-
crease the sales volume of NFT collections. To detect wash trading,
given a set of assetsA = {01,02, ...,0=} that are part of a collection,
we check for a set of users (addresses) U = {D1,D2, ...,D<} who
heavily trade those assets with each other. We assume a limited
number of colluding users to make the problem tractable (we use an
empirical threshold of 50 users). In other to generate wash trades,
these users repeatedly trade that set of assets among them, which
often results in cycles in the sales graph GB . Hence, we check GB
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Figure 4: Distribution of wash trading fac-
tors across collections

Figure 5: Relative volumes of wash
trading in di�erent marketplaces

Figure 6: Distribution of shill
bidding across collections

sale(D1,0, ?, C,D2) : � D1 sold 0 to D2 at price ?
at time C

auction(D, ?, C, 83,0) : � D started auction with id 83
at time C with starting price ?

bid(D, ?, C, 83,0) : � D placed bid ? on 0 at time C
on an auction with id 83

cancel_bid(D, ?, C, 83,0) : � D canceled bid ? on 0 at C
on an auction with id 83

win(D, ?, C, 83,0) : � D won auction 83 on 0
at time C with price ?

paid(D1, 4,D2) : � D1 transfered 4 ethers to D2
transfer(D1,0,D2) : � D1 transfered 0 to D2
Figure 7: Relationships in graphs GB ,G1 ,G? ,GC .

for the existence of cyclic relationships among these users. In a
strongly connected component (SCC) of a graph, there exist paths
between all pairs of vertices. Therefore, this type of wash trade can
be detected [65] by checking if two users: D1 and D2 appear in any
SCC of the sales graph GB . In other words, if SCC(D1,D2,GB ) holds,
it means that both the users are involved in round-trip trades, i.e.,
there exist either direct, or indirect sale relations between them in
both the directions. Now, two users being a part of an SCC can be
accidental, and does not indicate the frequency of trades between
them. However, in a wash trade, users are involved in frequent
sales. Therefore, we only consider SCCs where the number of sale
relationships between every two intermediate users is above (indi-
cating ‘heavy’ trading volume) an empirically determined threshold
(n). We use n = 10 in our analysis.

However, bad actors can come up with more intricate strategies
to conceal apparent connections so that such simple detection can
be evaded. We manually analyzed the blockchain transactions his-
tory and found two evasion strategies that would throw o� the
prior analysis. In the �rst case, when we investigated an other-
wise legitimate-looking sale relation D8 ! D 9 ! D: , we realized
that both D 9 and D: are funded (Ether transfer) by the same “par-
ent” user D8 . We capture this case by checking if two users: D1
and D2 appear in any weakly connected component (WCC) of the
payment graph G? . In other words, if WCC(D1,D2,G? ) holds, it
means that direct or indirect Ether-�ow exists between those two
users in either direction. In the second case, for a sale relation

D8 ! D 9 ! D: , we identi�ed multiple unconditional asset transfers
(ERC-721 transfer()) from D8 to D: , giving a strong indication of
a close tie between those users. We capture this case by checking
if two users: D1 and D2 appear in any WCC of the transfer graph
GC . In other words, ifWCC(D1,D2,GC ) holds, it means that direct
or indirect unconditional asset transfer relationships exist between
those two users in either direction.

To summarize, our model considers any sale(D1, _, _, _,D2) rela-
tion a potential wash trade if: SCC(D1,D2,GB ) _WCC(D1,D2,GC ) _

WCC(D1,D2,G? ).
I Quantitative analysis. We detected 9,393 instances of wash
trading that generated $96,858,093 USD in trading volume across
5,297 collections involving 17,821 users in all NFTMs except A���,
F���������, and C�����P����. Moreover, out of 238,180 collec-
tions in our dataset, only 8,869 collections had more than $2K in
trading volume, out of which 2,569 (28.97%) collections show signs
of wash trading.

We de�ne wash_trade_factor (WTF) as the fraction of the total
trading volume of a collection generated by wash trading, i.e., if
WTF is 1, then all the trades are wash trades. In Figure 4, we show
the distribution of the wash_trade_factor across collections where
wash trading has been detected. Of all the wash traded collections,
1,824 (34.43%) collections had less than 5% (WTF < 0.05) of the
trades generated by wash trades. Interestingly, we discovered 1,571
(29.66%) collections which were heavily abused, because more than
95% of all of their trades are wash trades, totaling $3,407,284 USD
in the trading volume. Figure 5 shows the relative volumes of wash
trades that have happened in di�erent NFTMs. Though nearly equal
volume of wash trades were discovered in both R������ (49.30%)
and O���S�� (50.43%), given that the overall trading volume of
O���S�� is 21 times more (Table 1) than that of R������, it seems
that wash trading is signi�cantly more frequent in R������ than
O���S��. Our �nding is also corroborated by discussions we saw
on R������ D������, which indicates a heavy amount of past wash
trading incidents as malicious users attempted to secure $RARI
tokens.
I Manual analysis. In our analysis, the size of a connected com-
ponent represents the number of addresses involved in a wash
trade. We observed that 98.88% (9,288 of 9,393) of the reports had
a component size at most 10. Therefore, for our manual analysis,
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we randomly selected 100 reports, and checked whether one of
the following two conditions holds: (i) if 0 addresses are involved
in C transactions on = NFTs, then both C � 20 and = ⌧ C need to
hold. The intuition is that if a set of users “heavily” trades on only
a small number of assets, then those are likely to be wash trades.
Alternatively, (ii) the addresses involved in trading are all funded
by a common, on-chain funding source. This is true when the “sup-
posed” buyers, in reality, are all funded directly by the seller, or by
a seller-controlled address, before making (pseudo) purchases. If
one of these two conditions holds, we consider a detected wash
trade instance as a true positive. We determined all the sampled
instances as true positives.
Limitation. Ethereum mixers (informally “tumblers”), such as Bit-
mix [5], ETH Mixer [13], and Tornado Cash [40], are anonymity
services that help to conceal the true source of a payment by break-
ing the link between the receivers and the sender of the funds.
Speci�cally, these services accept Ethers from a user, and either
route it to a smart contract, or relay it through a complex, large
network of addresses by splitting the amount into a number of
micro-transactions; essentially mingling that fund with hundreds
of other users. Since our wash trade detection strategy leverages
information about Ether �ows between two addresses, mixers can
lead to false negatives.

7.2.2 Shill Bidding. Shill bidding is a common auction fraud where
a seller arti�cially in�ates the �nal price of an asset either by plac-
ing bids on her own asset, or colluding with other bidders for
placing spurious bids with increasingly higher bid amounts. This
can lead to honest bidders paying higher prices than they would
have otherwise. With high-value bids on assets becoming increas-
ingly common, it is suspected that many sales su�er from arti�cial
price in�ation [38].
Detection. Detecting shill bidding is di�cult when looking at a
single auction in isolation. It becomes even harder when malicious
users take turns, placing bids on each others’ auctions so that the
seller-bidder relation changes. In this paper, we only consider the
simple case where a speci�c user repeatedly places bids in auc-
tions, yet never (or rarely) purchases anything. Moreover, we check
whether there is some relationship between this user and the seller.
Thus, our �ndings should be viewed as a lower bound on the actual
number of shill bidding occurrences in NFTMs. Our detection mech-
anism draws on our insight from the manual analysis of NFTM
activities and prior work [63].

Let bid(D1 , ?8 , C8 , 83,0) denote the 8-th bid placed by user D1 with
amount ?8 at time C8 on asset 0 in an auction with id 83 created by
the seller DB . Then, user D1 is a shill bidder if:
Rule 1. D1 places at least = bids on an asset 0 auctioned by DB with
monotonically increasing bid amounts. That is, 88 2 [1,=], bid(D1 ,
?8 , C8 , 83,0), the following holds: 88,89, C8 > C 9 =) ?8 > ? 9
Rule 2. D1 never buys the asset 0, i.e., win(D1 , _, _, 83,0) is false .
Rule 3.D1 has limited buying/selling activity, i.e., |{sale(D1 , _, _, _, _)}
[ {sale(_, _, _, _,D1 )}| < f , where f is an empirically determined
threshold. We set f = 10 for our analysis.
Rule 4. D1 is “connected” to the seller DB either through Ether�ows
(G? ) or asset transfers (GC ). That is, WCC(D1 ,DB ,GC ) _WCC(D1 ,
DB ,G? )) holds.

Rule 5. We de�ne shill score as the ratio of the number of times
D1 participates in an auction created by DB and the total number
of auctions that D1 participated in. In our detection approach, the
shill score must be greater than `, another empirically determined
threshold. We set ` = 0.8 for our analysis.
I Quantitative analysis. We detected 703 instances of shill bid-
ding across 282 collections involving 1,211 users in all NFTMs
except A��� and C�����P����. We estimate shill_pro�t as the
pro�t made by the seller due to shill bidding. Speci�cally, assume
legitimate bidders place bids on an item �rst, and then shill bidding
drives the price up. If 1; is the o�er made by the last legitimate
bidder before shill bidding starts, and the item is �nally sold at 1B
due to arti�cial in�ation, we compute (1B � 1; ) as the shill_pro�t.
According to our analysis, malicious sellers have collected a cumu-
lative pro�t of $13,014,662 USD from all the shill bidding instances
detected. In Figure 6, we show the frequency of shill bidding in-
stances discovered across collections where shill bidding has been
detected. The majority (197) of the collections have just one in-
stance of shill bidding, while almost all collections (281) have fewer
than 20 shill bids.

The one exception is the o�cial collection of F���������, which
seems to be heavily a�ected by shill bidding. With 212 instances
(30.16% of all instances detected) of shill bids in that collection
alone, it becomes the one with the most number of shill bids on any
individual collection. Our model also reports frequent shill bidding
activity on the o�cial collection of S����R��� (15 instances) and
C�����V����� (11 instances), which is an O���S�� veri�ed col-
lection with 5.8K items and a cumulative trading volume of 19.2K
ETH.
I Manual analysis. Since shill bidding often closely resembles
legitimate bidding behavior, it is harder to detect than other mal-
practices. Therefore, to remain conservative during ground-truth
determination, we looked for the following conditions: (i) the shill
bidder ( placed at least 3 bids in an auction, and (ii) if the average
price of the items that ( bought is ? , and the average bid that (
placed in that auction is 1, then ? ⌧ 1, and (iii) ( never bought any
NFT from that seller. We manually veri�ed 100 reports that we ran-
domly selected from the instances that our approach detected. Out
of these 100 cases, 61 show strong indications of being instances
of shill bidding. For the remaining 39, we could not draw any de-
�nitive conclusion from the trading patterns alone. We observed
an interesting shill bidding case in F���������, where the initial
reserve price of an NFT was 2 ETH. The item was targeted by a shill
bidder who bid [3.3, 4.4, 5.5, 6.71, 8.14] ETH on that item, thereby
making the item �nally sell at 9 ETH. However, all the NFTs owned
by the bidder were worth between (0, 2] ETH, and the bidder never
bought any items from that seller.

7.2.3 Bid Shielding. In bid shielding, a malicious bidder D2 guards
a low bid, possibly from a colluding bidder D1, with a bid high
enough to deter legitimate bidders from placing any additional
bids. Immediately before the auction ends, D2 retracts the bid, thus
uncovering the low bid from D1 to let her win the auction.
Detection.We apply the following heuristics to detect instances of
bid shielding inNFTMs. If for two usersD1 andD2, bid(D1, ?1, C1, 83,0),
bid(D2, ?2, C2, 83,0) and cancel_bid(D2, ?2, C3, 83,0) hold, then D2 is
shielding a bid from D1 if:
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Figure 8: Distribution of bid shielding across collections

Rule 1. For all bids {bid(D8 , _, C8 , 83,0)}=8=1 placed on asset 0, C3 > C8
holds, i.e., no new bid was placed after D2 retracted her bid on asset
0.
Rule 2. D1 won the auction with id 83 . That is, win(D1, ?1, C4, 83,0)
holds, and D1 < D2 ^ ?1 < ?2.
I Quantitative analysis. We detected a total 316 instances of
bid shielding across 117 collections involving 471 users only in
O���S��. It is expected, because other NFTMs implement bidding
policies (Section 3) to deter suchmalpractices, for example, on-chain
bids, removal of the the previous bid when outbid, etc.We compute
shielded_bid_di�erence, the di�erence in the bid amounts of the two
colluding parties, the potential bid shielder and the auction winner.
While the minimum shielded_bid_di�erence amount was $200.77
USD, the maximum was as high as $152,606.31 USD for one of
the token in M������� V�����, a veri�ed collection. Additionally,
all 316 instances together shielded a total of $942,061 USD worth
of bids. Figure 8 shows the number of instances of bid shielding
discovered across collections where bid shielding has been detected.
For most of the collections (113 out of 117), we �nd less than ten
instances of bid shielding per collection. E������� N��� S������
(ENS), a popular Ethereum name lookup service, makes it to the top
of the list with 49 bid shielding instances. Another notable �nding in
this category was the C�����V����� collection. We noticed several
complaints by C�����V����� collectors on their D������ server
about the recent increase of bid shielding activity. According to our
analysis, $24,519.27 USDworth of bids were shielded by 35 instances
of bid shielding, which corroborates this prior observation. Our
results show that bid shielding is frequent in veri�ed collections as
66.67% (78 out of 117) of the bid shielded collections were veri�ed.
I Manual analysis. We have manually veri�ed randomly chosen
100 instances �agged by our analysis. During manual analysis, we
mark an instance as a true positive if (i) the potential bid shielder
⌫ and the (colluding) auction winner, are the last two highest
bidders on that auction in that order, and (ii) ⌫ cancels her bid
just before ( 2h) the auction ends, and (iii) during the auction,
they never outbid each other. Out of the 100 instances, our manual
analysis con�rms 90 such instances as true positives. Our detection
model produced some false positives because it does not take into
account the last condition listed above. Let 18 and F8 be the bids
from ⌫ and, , respectively. Now, �rst they outbid each other, i.e.,
11 ! F1 ! 12 ! F2 ! 13, and then ⌫ removes 13 at the last mo-
ment (possibly ⌫ just changes her mind). This is not a bid shielding
scenario, as the bids from ⌫ drove up the price for, . This would
not happen in a bid shielding scenario as ⌫ and, are colluding.
However, the �rst two conditions are still met, and therefore our

model incorrectly �ags this case. We also observed that most of bid
shielding activities are performed in veri�ed collections, such as
C�����V�����, ENS, etc., as they are popular and in high demand.

8 RELATEDWORK
To the best of our knowledge, we are the �rst to perform an in-
depth study of security and privacy risks in the NFT ecosystem.
Our paper �ts into the recent line of work on cryptoeconomic at-
tacks in decentralized �nance (DeFi) systems. The transparency
of blockchains opens up the possibility of launching economic at-
tacks by manipulating the market. Since uncommitted Ethereum
transactions and their gas bids are visible to other network partici-
pants, an attacker can o�er a higher gas price to get their malicious
transactions mined early in a block, before the victim transaction.
This behavior is called front-running [49]. The authors in F�����
B��� [47] demonstrated how arbitrage bots front-run transactions
in decentralized exchanges (DEX) to generate non-trivial revenues.
Sandwich attacks take this idea a step further by both front- and
back-running victim transactions. Zhou et al. [71] quanti�ed the
probability of being able to perform such an attack and the pro�ts
it can yield. In fact, a recent paper [61] reported the pro�t extracted
from the blockchain to be a staggering $28.8MUSD in just two years,
leveraging sandwiching, liquidation, and arbitrage. The authors
also measured the prevalence of other pro�t-making operations,
e.g., clogging and private mining. Another DeFi trading instrument,
�ashloans, allows a borrower immediate access to a large amount
of funds without o�ering any collateral, under the condition that
the loan needs to be repaid in the same transaction. Qin et al. [62]
analyzed how �ashloans have been used to execute arbitrage and
oracle manipulation attacks, and they presented a constrained op-
timization framework to cleverly choose the attack parameters
that maximize the pro�t. D���P���� [70] proposes trading algo-
rithms to generate pro�t by crafting complex DeFi transactions,
both with and without �ashloans. Recent research [51, 56, 68] has
also characterized and quanti�ed pump-and-dump, a price manipu-
lation scheme that attempts to in�ate the price of a crypto asset by
spreading rumors and misinformation.

9 CONCLUSION
This paper conducts the �rst systematic study of the emerging NFT
ecosystem on 8 top NFT marketplaces (NFTM). First, we perform
a large-scale data collection from various sources, viz., Ethereum
mainnet, NFTM websites, and their documentation. We compile
a comprehensive list of design weaknesses originating from the
NFTMs and external entities, which often lead to �nancial conse-
quences. Further, we develop models to detect common trading
malpractices, and quantify their prevalence in these marketplaces.
For additional discussion and supplementary materials, please refer
to the full version of our paper [18].
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