Software Engineering Issues
for Network Computing

Carlo Ghezzi and Giovanni Vigna

Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32
20133 Milano, Italy
ghezzi|vigna®elet.polimi.it

Abstract. The Internet is becoming the infrastructure upon which an
increasing number of new applications are being developed. These appli-
cations allow new services to be provided and even new business areas
to be opened. The growth of Internet-based applications has been one of
the most striking technological achievements of the past few years. Yet,
there are some risks inherent in this growth. Rapid development and
reduced time to market have probably been the highest priority con-
cerns for application developers. Therefore, these developments proceed
without following a disciplined approach. We argue that the resulting
applications will become the legacy systems of the near future, when the
quality of these systems will need improvement but, at the same time,
modifications will be hard to make in an economical and reliable way.
In this paper we discuss the need for a software engineering approach to
the development of network applications. In particular, we discuss a pos-
sible research agenda for software engineering research by looking at two
specific areas: the World Wide Web and applications based on mobile
code.

Keywords and phrases: Internet, World Wide Web, mobile code, soft-
ware engineering, software quality, software development process.

1 Introduction

Since the beginning of the 1990’s, use of the Internet and the World Wide Web
(WWW) has exploded. Today, there are more than 50 million users from about
200 countries; the yearly rate of growth has been more than 50%, and the number
of forecasted users by the year 2000 is approximately 380 million [20].

In recent years, there has been a shift both in the way the Internet is used and
in how its potential is perceived by technology developers, service providers, and
users. The Internet is not merely seen as a communication infrastructure that
allows people to communicate in a fast, cheap, and reliable way; it is increasingly
seen as the infrastructure upon which new services, new applications, and even
new and previously unforeseen types of social processes are becoming possible.
For example, electronic commerce may revolutionize the way business is done.

102 C. Ghezzi and G. Vigna

As another example, interactive distance learning and tutoring may change the
way knowledge is transferred and will support new kinds of learning processes.

A new field is therefore emerging: network computing. By this, we mean
computing where the computational infrastructure is a large set of autonomous
and geographically distributed computers, connected by the Internet. In this
paper we discuss critically the current state of network computing, to understand
the current risks that are inherent in its growth.

Rapid development and reduced time to market seem to be the major con-
cerns that drive the developments of network computing applications. The im-
plementation technologies used for new developments are often unstable; in some
cases they are just partially developed prototypes. Applications are developed
in an ad hoc manner, without following disciplined design approaches, and of-
ten with little concern for their qualities, such as reliability or modifiability. We
argue that these systems are likely to become the legacy systems of the near
future, when people will discover that these applications are difficult to main-
tain in an economical and reliable way. We see a similarity between the current
situation and the one that existed in the sixties (see [9] and much of the work
that was spurred on by that paper), when the risks due to the lack of appropriate
mathematical foundations, methods, and tools were recognized, and a suitable
research agenda was set for software engineering to tame those risks.

This paper is structured as follows. In Section 2, we introduce some some
general concepts about network computing. In sections 3 and 4 we look into two
specific important areas of the network computing domain: the World Wide Web
and applications based on mobile code. For these two areas, we discuss what the
main risks are and outline a possible research agenda. This is not meant to be an
exhaustive account of what is needed, but rather reflects a subjective viewpoint
that is based on our work and some initial results that have been achieved by
our research group at Politecnico di Milano. Section 5 draws some conclusions
and outlines future work.

2 Network Computing

The term network computing (or “Internet computing”) is difficult to define
precisely. The term is often used informally to denote the research efforts, tech-
nologies, products, and services that exploit the global network, known as the
Internet (for example see [19]). One may object that network computing is just
another name for the “traditional” distributed computing field. This is only
partially true. Indeed, network computing is based on a distributed system,
composed of a set of computational nodes connected by a network and there-
fore several of the methods and techniques developed so far by the distributed
computing research community can be viewed as foundational background for
network computing. However, there are some distinguishing characteristics of
network computing that make it possible to identify a research field with new,
unsolved problems. These characteristics are large scale, autonomy, heterogene-

Software Engineering Issues for Network Computing 103

ity, and mobility, which influences both the communication layer and the com-
putational layer of the network.

In network computing, the communication layer is a global-scale internet-
work composed of autonomous subnetworks. Each subnetwork is deployed, main-
tained, and evolved without a centralized control. In addition, the network is
composed of heterogeneous technologies: from those used to connect computers
in a LAN, to those used to interconnect LANs geographically, to those used to
connect mobile computing devices. The different technologies used to provide
connectivity, spanning from fiber optics to different kinds of wireless connec-
tions, provide different levels of quality of services, e.g., in terms of performance
and reliability. Therefore, given two communication endpoints in the network,
few assumptions can be made about the type of communication that can be es-
tablished. In addition, wireless technology allows computational nodes to move
while remaining still connected to the net. This supports mobile users, who may
be using laptops or personal digital assistants (PDAs). Therefore, the protocols
used to transfer data across the network must cope with topologies that may
change dynamically.

The computational layer is the infrastructure that is responsible for support-
ing the execution of applications. This layer is composed of the network nodes
and the operating system software associated with these nodes. Nodes are or-
ganized in clusters administered by different autonomous authorities, each with
different objectives, access procedures, and use policies. In addition, the com-
putational infrastructure includes heterogeneous platforms, ranging from PCs
to workstation and mainframes. Therefore, a global-scale computational layer
must be based on mechanisms that can be deployed on very diverse hardware
and software platforms. The heterogeneous nature of the computational layer
becomes more evident when support to mobile computations must be provided.
In this case there is a need for mechanisms that allow execution of the same code
on different platforms.

Network computing applications exploit the global-scale infrastructure pro-
vided by the communication and computational layer to provide services to
distant users and to access resources that are dispersed across a large set of
hosts. Based on a highly autonomous infrastructure, these applications tend to
be autonomous themselves. This means that either a service is delivered to a user
through the interaction of different autonomous components that are managed
by different authorities (the World-Wide Web follows this approach), or that an
application belonging to an administrative subdomain in the network can move
to other domains to achieve its goals. These kinds of mobile applications are
often called “mobile agents” or “software agents”.

The potential of this pervasive and ubiquitous infrastructure is enormous,
and it is quite difficult to anticipate the way it will evolve and how far it will go.
New applications and new services are announced almost every day. Although
in many cases they promise more than what they actually deliver, the speed and
complexity of the evolution are such that they are difficult to dominate. It is
therefore important to build a coherent framework of principles, abstractions,

104 C. Ghezzi and G. Vigna

methods, and tools that allow network computing to be understood and prac-
ticed in a systematic fashion [11]. We claim that these are the challenges that
software engineering must face in this context.

At the foundational level, we need to identify the theories that are needed to
describe, reason about, and analyze network computations, where the topology
and structure of the computing layer changes dynamically, while users and com-
putations can move. From a methodology viewpoint, we need to identify process
models that are suitable for describing and managing application developments
for the new computing infrastructure, where applications grow in a largely inde-
pendent way, no precise pre-planning is possible, and evolution/reconfiguration
are the norm in an inherently chaotic, self-regulating environment.

As far as technology is concerned, we need to define a common set of mech-
anisms and service infrastructures that enable exploitation of the potential of a
world-wide computing system in a effective, secure way. In addition, we need to
understand what are the new programming language abstractions and mecha-
nisms that are suitable for the implementation of network computing applica-
tions.

This wide spectrum of problems provides a real challenge for software engi-
neering research. A number of efforts are already in place, but much more focused
work is needed. In the next section we focus on the problem of supporting the
development of World Wide Web sites. In Section 4 we describe some work on
supporting developers of mobile code applications. The efforts we describe in
this paper are only a small sample of what could be done in this field.

3 Software Engineering for WWW Applications

From its introduction in 1990 [3], the World Wide Web (WWW) has been evolv-
ing at a fast pace. The number of WWW sites is increasing as Internet users
realize the benefits that stem from a globally interconnected hypermedia sys-
tem. Each site, in fact, provides structured information as an intertwined net
of hypertext resources; links can point both to local resources and to non-local
resources belonging to other Web sites, thus providing a way to navigate from lo-
cal to geographically distributed information sources. Companies, organizations,
and academic institutions exploit the WWW infrastructure to provide customers
and users with information and services.

The expectations of both providers and consumers are driving R&D efforts
aimed at improving the WWW technology. Examples are represented by the in-
troduction of active contents in static hypertext pages by means of languages like
Java [16] and JavaScript [10] and by the use of the Servlet technology [22] to cus-
tomize the behavior of Web servers. This technological evolution has promoted a
shift in the intended use of the WWW. The Web infrastructure is going beyond
the mere distribution of information and services; it is becoming a platform for
generic, distributed applications in a world-wide setting.

This promising scenario is endangered by the lack of quality of many ex-
isting WWW-based applications. Although there is no well-defined and widely

Software Engineering Issues for Network Computing 105

accepted notion of Web quality (and indeed, this would be a valuable research
objective in its own), our claim is based on the following common observations
that can be made as WWW users:

1. we know that a required piece of information is available in a certain WWW
site, but we keep navigating through a number of pages without finding it;

2. we get lost in our navigation, i.e., we do not understand where we are in our
search;

3. navigation style is not uniform (for example, the “next page in the list” link
is in the bottom right corner for some pages, and in the top left corner for
others);

4. we continuously encounter broken links;

5. the data we find are outdated (for example, we find the announcement of a
“future” event that has already occurred);

6. duplicated information is inconsistent (for example, in a university Web site
providing pages in two language versions, say English and Italian, the same
instructor has different office hours).

This is only a sample list. Items 4 to 6 of the list can be defined as flaws;
they affect “correctness” of the Web site. The others are related to style issues,
and affect usability. Furthermore, even if we start from a Web site that does not
exhibit these weaknesses, these are likely to occur as soon as the Web site under-
goes modifications. Thus, maintenance of legacy Web sites becomes increasingly
difficult, and Web site quality decreases. If we try to understand what the causes
of these inconveniences are, we realize that they all stem from the lack of appli-
cation of systematic design principles and the use of inadequate (low-level) tools
during development.

Most current Web site designs are not guided by systematic design method-
ologies and do not follow well-defined development processes. Rather, they pro-
ceed in a unstructured, ad hoc manner. Developers focus too early, and pre-
dominantly, on low-level mechanisms that enable, for example, particular visual
effects, without focusing on who the expected users are, what the conceptual
contents of the information is, and how the information should be structured.
In particular, they rarely focus on the underlying conceptual model of the infor-
mation that will be made available through the Web. The lack of a conceptual
model becomes evident to the users, who find it difficult to search the Web to
retrieve the data they are interested in. In addition, even if a conceptual model
of the information to be published has been developed, no design guidance nor
adequate abstractions are available to help Web developers move down system-
atically towards an implementation, possibly being supported by suitable tools.

This situation reminds us of the childhood of software development when
applications were developed without methodological support, without the right
tools, simply based on good common sense and individual skills. WWW site
development suffers from a similar problem. Most Web site developers delve
directly into the implementation phase, paying little or no attention to such
aspects as requirements acquisition, specification, and design. Too often, imple-
mentation is performed by using a low-level technology, such as the Hypertext

106 C. Ghezzi and G. Vigna

Markup Language (HTML) [24]. Using the analogy with conventional software
development, this approach corresponds to implementing applications through
direct mapping of very informal designs (if any) into an assembly-level language.
Furthermore, the lack of suitable abstractions makes it difficult to reuse previ-
ously developed artifacts, or to develop frameworks that capture the common
structure of classes of applications and allow for fast development by customiza-
tion. Finally, the management of the resulting Web site is difficult and error
prone, because change tracking and structural evolution must be performed di-
rectly at the implementation level. This problem is particularly critical since
WWW sites, by their very nature, are subject to frequent updates and even
redesigns.

Software engineering research has provided methods for requirements acqui-
sition, languages and methods for specification, design paradigms, technologies
(such as object-oriented programming languages), and tools (e.g., integrated
development environments) that provide systematic support to the software de-
velopment process. In principle, their availability should help software develop-
ers to deliver quality products in a timely and cost-effective manner. A similar
approach has to be followed in order to bring WWW development out of its im-
maturity. The next two subsections discuss a possible solution to these problems
by analyzing the characteristics of Web site development process and by intro-
ducing a tool that aims at providing systematic support for the development
process.

3.1 A WWW Software Process

The benefits of a well-defined and supported software process are well known [14].
As for conventional software, the development of a Web site should be decom-
posed into a number of phases: requirements analysis and specification, design,
implementation. After the site has been implemented and delivered, its structure
and contents are maintained and evolved. By identifying these phases of the de-
velopment process we do not imply any specific development process structure.
Different process models (waterfall, spiral, prototype-based) can be accommo-
dated in the framework. Actually, the continuous and rapid changes in business,
which will be reflected in the evolution of the corresponding WWW sites, is likely
to favor flexible process life cycles, based on rapid prototyping and continuous re-
finement. In the sequel, we briefly and informally outline the possible objectives
of the different phases of WWW development, based on our own experience.

Requirements Analysis and Specification During requirements analysis,
the developer collects the needs of the stakeholders, in terms of contents, struc-
turing, access, and layout. Contents requirements define the domain-specific in-
formation that must be made available through the Web site. Structuring re-
quirements specify how contents must be organized. This includes the definition
of relationships and views. Relationships highlight semantic connections among

Software Engineering Issues for Network Computing 107

contents. For example, relationships could model generalization (is-a), compo-
sition (is-composed-of), or domain-dependent relationships. Views are perspec-
tives on information structures that “customize” contents and relationships ac-
cording to different use situations. Different views of the same contents could
be provided to different classes of users (e.g., an abstract of a document can be
made accessible to “external” users, while the complete document can be made
accessible to “internal” users). Access requirements define the style of informa-
tion access that must be provided by the Web site. This includes priorities on
information presentation, indexing of contents, query facilities, and support for
guided tours over sets of related information. Layout requirements define the
general appearance properties of the Web site, such as emphasis on graphic ef-
fects vs. text-based layouts. Based on our experience, we argue that existing tools
supporting requirements specification and traceability of requirements through
all development artifacts can be used in this context too. Further research is
needed to extend the above framework and to identify the additional specific
features that a tool supporting requirements for Web based applications should
exhibit.

Design Based on the requirements, the design phase defines the overall struc-
ture of a WWW site describing how information is organized and how users can
navigate across it. A careful design activity should highlight the fundamental
constituents of a site; it should abstract away from low-level implementation
details, and should allow the designer to identify recurring structures and nav-
igation patterns to be reused [13]. As such, a good design can survive frequent
changes in the implementation, fostered by —say— the appearance of new tech-
nologies.

Being largely implementation-independent, the design activity can be carried
out using notations and methodologies that are not primarily Web-oriented. Any
design methodology for hypermedia applications could be used; e.g., HDM [12],
RMDM [2], or OOHDM [25]. Our experience is based on the adoption of the
HDM (Hypertext Design Model) notation [12].

In designing a hypermedia application, HDM distinguishes between the hy-
perbase layer and the access layer. The hyperbase layer is the backbone of the
application and models the information structures that represent the domain,
while the access layer provides entry points to access the hyperbase constituents.
The hyperbase consists of entities connected by application links. Entities are
structured pieces of information. They are used to represent conceptual or phys-
ical objects of the application domain. An example of an entity in a literature
application is “Writer”. Application links are used to describe domain-specific,
non-structural relationships among different entities (e.g., an application link
from a “writer” to the “novels” he or she wrote). Entities are structured into
components, i.e., clusters of information that are perceived by the user as con-
ceptual units (for example, a writer’s “biography”).

Complex components can be structured recursively in terms of other com-
ponents. Information contained in components is modeled by means of nodes.

108 C. Ghezzi and G. Vigna

Usually, components contain just one node, but more than one node can be used
to give different or alternative views (perspectives, in HDM) of the component in-
formation (e.g., to describe a book’s review in different languages, or to present
it in a “short” vs. an “extended” version). Navigation paths inside an entity
are defined by means of structural links, which represent structural relationships
among components. Structural links may, for example, define a tree structure
that allows the user to move from a root component (for example, the data-sheet
for a novel) to any other component of the same entity (e.g., credits, summary,
reviews, etc.)

Once entities and components are specified, as well as their internal and
external relationships, the access layer defines a set of collections that provide
users with the structures to access the hyperbase. A collection groups a number
of members, to make them accessible. Members can be either hyperbase elements
or other collections (nested collections). Each collection owns a special compo-
nent called collection center that represents the starting point of the collection.
Examples of collections are guided tours, which support linear navigation across
members (through next/previous, first/last links), or indexes, where the naviga-
tion pattern is from the center to the members and vice versa. For example, a
guided tour can be defined to navigate across all horror novels; another one can
represent a survey of 14th century European writers.

Implementation The implementation phase creates an actual Web site from
the site design. As a first step, the elements and relationships highlighted during
design are mapped onto the constructs provided by the chosen implementation
technology. As a second step, the site is populated. The actual information is
inserted by instantiating the structures defined in the previous step and the cross-
references representing structural and application links among the elements. Col-
lections are then created to provide structured access to the hyperbase contents.
The third step is delivery. The site implementation must be made accessible
using standard WWW technologies, namely Web browsers like Netscape’s Nav-
igator or Microsoft’s Internet Explorer that interact with Web servers using the
Hypertext Transfer Protocol (HTTP). This can be achieved by publishing the
site implementation into a set of files and directories that are served by a number
of “standard” WWW servers (also called http daemons in the UNIX jargon).

The standard tools available today to implement Web sites are rather low-
level and semantically poor. The basic abstractions available to Web developers
are:

— HTML pages, i.e., text files formatted using a low-level markup language;

— directories, i.e., containers of pages; and

— references, i.e., strings of text embedded in HTML tags that denote a re-
source (e.g., an HTML page) using a common naming scheme.

There are neither systematic methods nor linguistic constructs to map the
types that define the semantics of the application domain (entities) onto implementation-
level types (pages). There are no constructs to define complex information struc-
tures, like sets of pages with particular navigational patterns, such as lists of

Software Engineering Issues for Network Computing 109

pages or indexes. These structured sets of information must be realized manu-
ally by composing the existing constructs and primitives. In addition, there is no
way to create document templates and mechanisms to extend existing structures
by customization. The development of a set of documents exhibiting the same
structure is carried out in an ad hoc manner by customizing sample prototypes
manually. There are no constructs or mechanisms to specify different views of
the same information and to present these views depending on the access con-
text. This hampers effective reuse of information. The only form of reuse is by
copy. Some authoring tools like Microsoft’s FrontPage [6] and NetObject’s Fu-
sion [18] try to overcome some of these limitations by providing a site-level view
on the information hyperbase. Nonetheless, these tools are strictly based on the
low-level concepts of HTML pages and directories. Therefore, the developer is
faced with a gap between the high-level concepts defined during design and the
low-level constructs available for implementation.

Maintenance The situation described above worsens in the maintenance phase.
Web sites have an inherently dynamic nature. Contents and their corresponding
structural organization may be changed continuously. Therefore, maintenance
is a crucial phase, even more than in the case of conventional software appli-
cations. As in conventional software, we can classify Web site maintenance into
three categories: corrective, adaptive, and perfective maintenance [14]. Correc-
tive maintenance is the process of correcting errors that exist in the Web site
implementation. Examples are represented by internal dangling references, er-
rors in the indexing of resources, or access to outdated information (as in the
case of published data with an expiration date). Adaptive maintenance involves
adjusting the Web site to changes in the outside environment. A notable exam-
ple is represented by verification of the references to documents and resources
located at different sites. Outbound links become dangling as a consequence of
events over which the site developer has no control. Thus, adaptive maintenance
is a continuous process. Perfective maintenance involves changing the Web site
in order to improve the way contents are structured or presented to the end
user. Changes may be fostered by the introduction of new information or by the
availability of new technologies. Perfective maintenance should reflect updates
to the requirements and design documents. Maintenance in general, and per-
fective maintenance in particular, is by far the activity that takes most of the
development effort.

Presently, Web site maintenance is carried out using tools like link verifiers
or syntax checkers that operate directly on the low-level Web site implemen-
tation. This approach may be suitable for some cases of corrective and adap-
tive maintenance, but does not provide effective support for tasks that involve
knowledge of the high-level structure of the Web site. For example, since reuse
is achieved by copy, modifying a reused component, like a recurring introduc-
tion paragraph for a number of documents, involves the identification of every
use of the component and its consistent update. In a similar way, modification
of the structure or style of a set of similar documents requires updates in all

110 C. Ghezzi and G. Vigna

instances. For example, if we decide that the background color of the summary
page of all “horror” novels must be changed to purple, this requires consistent
change of all files representing these summaries. More generally, since perfec-
tive maintenance may require modification of the structure and organization of
information, it should be supported by a structural view of the site and of the re-
lationships between design elements and their implementation constructs. These
relationships are of paramount importance because they allow the developer to
reflect design changes onto the implementation and vice versa. Standard Web
technologies do not provide the means to represent these relationships and the
high-level organization of information. Another problem concerns maintenance
of hypertext references. In the standard WWW technology, references are just
strings embedded inside the HTML code of pages; they do not have the status
of first-class objects. Therefore, their management and update is an error-prone
activity.

3.2 The WOOM Approach

A number of research efforts are currently being developed to improve the meth-
ods and tools supporting WWW developments, trying to solve some of the crit-
ical issues discussed in the previous section. It will not be possible to provide
a comprehensive view of such efforts here. Rather, we will bring to the readers’
attention what we are currently doing in our group to support Web design, as
an example of a research effort that tries to address some of the previously iden-
tified problems. In this project, we developed a WWW object-oriented modeling
framework, called WOOM — Web Object Oriented Model. WOOM provides con-
cepts, abstractions, and tools that help in the mapping from high-level design of
a Web site (e.g., in HDM) into an implementation that uses “standard” WWW
technology.

More precisely, WOOM offers three main modeling environments: a design
environment, an implementation environment, and a presentation environment.
In the design environment the developer designs the conceptual model of the
information to be published through the Web site. WOOM provides a set of
predefined classes that allow designs to be built following the HDM methodol-
ogy. In the implementation environment the developer implements a Web site
leveraging off of an object-oriented model. This model provides high-level con-
structs to implement the information architecture defined in the design environ-
ment. Relationships between design elements and implementation constructs are
maintained explicitly to allow for change tracking and consistent updating. In
the presentation environment the developer is provided with mechanisms to cus-
tomize and put into context the user’s view on the site contents. This is achieved
by means of a dynamic publishing process.

In the following, we provide some details of the Web site model and the
publishing process, which constitute the core elements of the implementation
and presentation environment, respectively.

Software Engineering Issues for Network Computing 111

A Web Site Model According to WOOM, a Web site can be defined in terms
of components, links, sites and servers.

Components are the fundamental entities of the model. They model the con-
tents and structure of a collection of information. In WOOM there are many
types of components that differ in granularity, in the type of information they
represent, and in the role they play in the model. For instance, a component
can be the whole contents of a site, a single hypertext page, an icon, or even a
single word. In WOOM all the component types are organized by the inheritance
relationship in a class hierarchy, whose root is the Component class. The hierar-
chy can be extended by developers to define new types of components. WOOM
provides a predefined set of components types that can be distinguished into
resources, elements, and containers.

Resources are the units of information. They are distinguished into opaque
resources and hyper pages. Opaque resources are unstructured resources. Sub-
classes of this class are images, i.e., graphic objects, applets, i.e., programs that
are activated on the client side, scripts, i.e., applications that are activated on
the server side, and external. External resources are those types of information
that are not directly supported by the current Web technology and are man-
aged by means of external helper applications. These resources include audio
and video information, PostScript files, binaries, and other similar entities. Hy-
per pages are hypertext pages, which may contain text, anchors, and references
to pictures, sounds, and animations. HTML pages are a special kind of hyper
pages.

The contents of a hyper page are modeled by a ordered list of elements.
An element is an information fragment, like a text paragraph, an anchor, or a
dotted list. Elements can be simple or complex. Simple elements are atomic data
containers, while complex elements contain an ordered list of other elements.
WOOM provides a predefined set of elements that model the elements of the
HTML standard. For example, the image placeholder element (IMG) is a simple
element, while the BODY element may be composed of some paragraphs, a table,
etc.

Containers are collectors of resources. They are composed of an ordered list
of components that can be resources or other containers. Containers are used by
the site developer to define contexts or to organize other components in macro-
objects that can be managed as a whole. WOOM provides a number of prede-
fined container types: lists, trees, indexes, and sets. Lists organize the enclosed
resources in a linear fashion. They are used to represent a sequential relationship
inside a group of resources (e.g., the pages that compose a guided tour through
the novels of a given writer). Trees impose a hierarchical structure to the en-
closed resources. For example, the novels of a given writer can be classified into
genres: horror, science fiction, etc.; science fiction novels, in turn, can be classi-
fied into, say genetics, astronomy, etc. Indexes organize the contained resources
in two-level trees. For example, an author’s novels can be grouped into “youth”,
“maturity”, and “late” novels. Sets are simply used to group resources without
any specific relationship among them, but characterized by some common vi-

112 C. Ghezzi and G. Vigna

sual or semantic property. Each container type exports an interface that allows
other entities to access the enclosed resources without exposing the container’s
internal implementation details. Additional container types can be defined by
the Web developer by extending the WOOM framework.

The containment relationship among containers, resources, and elements de-
fines an ordered DAG in which compound components are nodes and atomic
components are leaves. In a given DAG, there is a component that is not en-
closed by others: it is called the DAG root. In general, a component can belong
to more than one component, and there cannot be circular containment rela-
tionships. This is different from the existing Web technology in which files can
be included in more than one directory only by using links in the file system. In
WOOM even a single word can be shared by different hyper pages.

Every component object has an identifier. Components belonging to the same
compound component cannot have the same identifier. Components are uniquely
identified a pathname. The pathname for a component is the description of the
path that must be followed to reach the component starting from the DAG
root. The pathname is a string obtained by concatenating the identifiers of the
components that constitute the path. This identification mechanism is similar
to the well-known naming scheme based on pathnames adopted by file systems.
A component can be identified by one or more pathnames. Each pathname is
a different chain of enclosing components and identifies a different context for
the component. As it will be explained later, contexts are an important concept
in the WOOM model. When the information consumer requests the contents of
a component, he/she specifies also one of the contexts for the component. The
publishing process that produces the external representation of the component
delivered to the user provides a different result on the basis of the chosen context.
Thus, the same component information is “contextualized” in different ways.

Links model the navigational connections between components. Links are ob-
jects that associate a source component with a destination component within a
particular context. Context information must be taken into account when creat-
ing links because a component in different contexts may assume different forms.
By keeping track of the context of the destination component, WOOM links may
lead to a particular version of the component. WOOM links are different from
standard HTML links in two ways. First, they are first-class objects whereas in
HTML links are just strings of text embedded in the HTML anchor element.
Second, links can reference any component, e.g., a hyper page or a text para-
graph inside a hyper page, whereas in standard HTML links may only refer to
files in the file system.

Sites and servers model the mechanisms that allow the information consumer
to access the components’ data. A site is composed of a component DAG and one
or more servers. The servers are used to define the network access points to the
site contents. A server corresponds, at run-time, to an HTTP daemon process
that replies to the end user’s requests for components belonging to the site. Each
server is characterized by a unique address and has an associated container and
context that limit the scope of the components that are accessible through the

Software Engineering Issues for Network Computing 113

server. For instance, the information contained in a Web site could be made
accessible by means of two servers that are associated with two containers such
that one is not the ancestor of the other in the site’s DAG. Therefore, they
provide access to resources that are in different contexts and the information
spaces served by the two servers are cleanly separated even if there may be some
components that can be accessed by both servers.

Delivering Information to the User The end-user accesses the Web site
contents by requesting a component from a server. The particular component is
specified by means of a path in the Web site’s DAG. The server replies providing
an external representation, or view, of the component’s contents. The external
representation is the result of a recursive publishing process that propagates
in a top-down fashion from the DAG’s root to the component to be published,
along the path specified in the request. Before detailing the process, two WOOM
mechanisms must be introduced: transformers and viewers.

Transformers are objects with an associated state and a transform operation
that takes as parameter a component object. The transform operation modifies
the component passed as parameter and eventually returns it. Transformer ob-
jects are associated with component objects in the site’s DAG. A transformer
associated with object O influences the publishing process of O and of all its sub-
components. WOOM provides a set of predefined transformers, e.g., transformers
to publish only specific parts of a component, or to add some navigational gar-
nishment to components that are part of containers such as lists or indexes. The
set of available transformers can be extended by the Web site developer.

Viewers are responsible for building the external representation of compo-
nents. When a component is passed to a viewer, the viewer uses the compo-
nent’s data (i.e., the values of its attributes) and the external representation of
its sub-components to create the component view that will be delivered to the
user. WOOM provides several generic viewers that are able to produce a sim-
ple external representation for WOOM’s predefined components. The Web site
developer must provide viewers for any new component types introduced in the
component hierarchy.

Transformers and viewers are the key mechanisms in the two phases of the
publishing process, namely the transformation process and the translation pro-
cess.

The transformation process is responsible for modifying the information
structure according to the user’s access context. Let us consider a user request
for a component, say C, identified by the path A — B + C in the component
DAG. For the sake of simplicity, we assume that the server that received the
request is associated with the DAG root (A). The publishing process starts by
applying the transformation process to A. A recursively invokes the process on
B, and finally B invokes the process on C. Transformers are propagated as pa-
rameters in the chain of invocations. Suppose that a transformer ¢ 4 is associated
with A, and transformers t}; and ¢%, are associated with B. Therefore, A invokes

114 C. Ghezzi and G. Vigna

the transformation process on B passing t 4 as a parameter. Then, B invokes the
transformation process on C passing as parameters t 4, tk, and t%5.

The transformation process for a component follows a fixed schema. First,
a shallow copy of the component is created. This copy is passed to the first
transformer in the list received during the transformation invocation. The trans-
former modifies the copied object depending on its own state and the values
of the object’s attributes. The modified object is then passed to the transform
method of the next transformer, until the last transformer has been applied. If
the returned object is non-null then the transformation process is propagated to
every contained component object. This way, the publishing process takes into
account the context (i.e., the path) in which the object is accessed.

Once the transformers have modified the DAG' according to the context, a
similar process is performed to translate the requested component object into
an external representation. The translation process starts from the DAG root
(A) and is recursively invoked until it reaches the requested component (C).
The chain of invocations propagates the viewers from the root to the specified
component. From that point on the process is invoked on any subcomponent
to produce the corresponding external representation. These representations are
then used to produce the external representation of the requested component.
For example, suppose that C' has two sub-components D and E. In addition,
suppose that B is associated with viewer vg and C' is associated with viewer
vo. Then the translation process is the following: A invokes the translation
on B. B invokes the translation on C passing as parameter its viewer, vg. C
invokes the translation on D and E passing as parameters vg and ve. Since D
and E are leaves of the DAG, the recursion stops and one viewer is applied to
obtain the external representation. The most specific viewer is chosen among
those that have been propagated by the publishing process. If no viewers are
present, the default one is used. Then, the external representations of D and F
are returned. A viewer is then applied to C, passing as parameters the external
representation of D and E. The result is the external representation of C'. This
result is passed back to the chain of recursive invocation without modifications,
and it is eventually delivered to the user that requested the component.

This general publishing mechanism is used to contextualize and customize
the presentation of information. For instance, consider a hyper page describing
a novel (e.g., Primo Levi’s La Tregua) that is placed in two containers. The first
container is a list enclosing all the novels of a particular genre (e.g., “holocaust”
novels). The second is a set collecting the novels of the same writer (e.g., Levi’s
books). In the first context the page must be modified to include information
that highlight the relationship between the novel and the genre, and links to
navigate inside the list. In the latter context, the resource must be modified to
include references to the author’s biography. This is achieved by associating two
different transformers with the two containers. Depending on the access context
(the publishing path) only one of the transformers will be applied to the hyper

! Note that since transformers are applied to copies of resources and elements, the
original entities defined by the site developer are not modified.

Software Engineering Issues for Network Computing 115

page, resulting in the “customized” version. Since this done automatically by
the publication tool, consistency is automatically preserved (only one instance
of the writer’s data is kept), and maintenance is greatly facilitated.

An important result of this approach is that it clearly separates the descrip-
tion of the data from the way the data are presented to the user. The same data
can be presented differently in different contexts. This separation not only helps
in designing the application, but also provides support to Web site evolution.

WOOM CLASSE FRAMEWORE
RSV NI
DESIGN MODULE / / \
CONTROL || WOOM
APPLICATION AFT SITE A SITEB
Class extensions Class extensions
MModel nstance Model mstance
7 7
g ? b £/D b
O
EEPORITORY

Fig. 1. The WOOM-based authoring tool.

A Tool for Web Development We developed a prototype authoring tool,
written in Java, that implements the WOOM model. The tool allows the de-
veloper to use WOOM constructs to create the components in a Web site, to
perform complex management operations, and to customize the publishing pro-
cess that delivers a particular view of the site’s information to the user. The
main components of the tool are presented in Figure 1. A first component is
the WOOM class framework. The framework provides the definitions of basic
WOOM entities and provides some predefined constructs. The class framework
provides support for representing Web site design elements into the model. This
is achieved by means of an integrated, yet separate, design module. The design
module is a plug-in component that provides support for a specific design nota-
tion. Currently, the HDM notation is supported. As a preliminary step in Web

116 C. Ghezzi and G. Vigna

site implementation, the WOOM class framework is imported into the develop-
ment application. Then, the developer uses the instances of the classes provided
by the design module to represent the entities defined during the design phase.
Once the design elements have been represented, the developer chooses which
type of component will be used to implement a particular design element. To
do this, the developer may use the predefined constructs offered by the WOOM
class framework or may create new application-specific constructs using inheri-
tance and composition. After suitable constructs have been identified, relation-
ships that associate a design element with the corresponding implementation
construct are created. These relationships are used in tracking changes in the
implementation to the site design and vice versa. The next step consists of pop-
ulating the site, by instantiating component objects of the appropriate classes,
and creating application links. Structural links are automatically managed by
the semantics of structured objects that implements structured design elements.
Once the site has been populated, the developer specifies how contents must be
presented by defining transformers, viewers, and by configuring the servers that
provide access to the site’s information.

Web site maintenance and management operations are performed on the
WOOM model instance. The WOOM framework provides support for a set of
predefined tasks like syntax checking, link updating, resource restructuring, con-
sistency checks, shared resource management, and design change management.
Web site instances, composed of site-dependent schema extensions (classes and
transformers) and component objects are persistently stored in a repository mod-
ule. The control application accesses the WOOM schema and instances by means
of the WOOM API. The control application is a Java application that uses the
primitives and services offered by the API. We are currently working on a graph-
ical interface that allows the developer to access WOOM services in an intuitive
and user-friendly way.

4 Mobile Code Applications

The global computing infrastructure realized by the Internet is still in its in-
fancy. Even though there exist efforts to realize mechanisms to distribute the
computations on a large scale (for example, CORBA [23]) there is still the need
for a general-purpose, flexible, programmable infrastructure that applications
can exploit to access the computing power and the resources of the hosts con-
nected to the network. One of the most promising approaches to providing this
infrastructure is represented by Mobile Code Systems (MCSs). MCSs allow an
application to relocate part or all of its code on remote hosts, possibly together
with the corresponding execution state.

MCSs are based on a common conceptual framework. In this framework, the
computational infrastructure is composed of a world-wide distributed environ-
ment with several autonomous sites that support the computations of agents,
that are threads of execution. Agents may change their execution site and even

Software Engineering Issues for Network Computing 117

their code dynamically. Several MCSs, like Telescript [28], Agent Tcl [17], and
Java Aglets [21] have been implemented.

The idea that software can migrate is not new. In particular, it has been
exploited by several distributed systems to support load balancing. Mobile code,
however, differs from distributed computing in many respects [11]. First, tra-
ditional distributed computing systems deal with a set of machines connected
by a local area network, whereas in the mobile code framework mobility is ex-
ploited at a much larger scale (the Internet scale). Hosts are heterogeneous, they
are managed by different authorities, and they are connected by heterogeneous
links. Second, mobility is seldom supported in distributed systems. In the par-
ticular cases where it is supported, it is not provided as a feature given to the
programmer to be exploited to achieve particular tasks. Rather, it is used to
allow components to be automatically relocated by the system to achieve load
balancing. Component relocation is not visible to the applications’ programmer,
since a software layer is provided on top of the network operating system to hide
the concept of physical locality of software components. On the other hand, in
the mobile code framework programming is location aware and mobility is under
the programmer’s control. Components can be moved to achieve specific goals,
such as accessing resources located at remote sites.

This powerful concept originated a very interesting range of technical results
recently. What is still lacking, however, is both a conceptual reference framework
to describe and compare the various technical solutions and a methodological
framework to support a sound development process of Mobile Code Applications
(MCAsS). In particular, we envision a process by which developers of MCAs are
equipped with methods, notations, tools, techniques, and guidelines that support
every phase of the development process. But much research is needed to reach
this ideal stage from the current state of knowledge.

In the sequel, we illustrate some initial work done by our group in the areas of
architectural design and implementation of MCAs. These phases are particularly
critical because the distinction between design paradigms [5] and implementation
technologies [8] is often blurred and not well understood. The goal here is to
identify which are the concepts that are characteristic of architectural design,
which are the issues that must be addressed during implementation, and what are
the relationships between design choices and implementation choices. This way,
it is possible to develop guidelines that allow the developers to select the most
appropriate design paradigm for a specific application, and the most appropriate
technology to implement the resulting software architecture.

4.1 Design

In the design phase the developer creates a software architecture for an ap-
plication that must deliver a specified functionality. A software architecture is
the decomposition of a software system in terms of software components and
interactions among them [26]. Software architectures with similar patterns of
interaction can be abstracted into architectural styles [1] or design paradigms,

118 C. Ghezzi and G. Vigna

which define architectural schemas that may be instantiated into actual soft-
ware architectures.

The design of MCAs is a complex task. These applications are highly dynamic
from the point of view of both code and location and therefore it is necessary to
take into account these concepts at the design level. We identified three proto-
typical design paradigms that involve code mobility: Remote Evaluation (REV),
Code on Demand (COD), and Mobile Agent (MA). Although we cannot claim
that these paradigms cover all possible design structuring styles for network-
centric applications, they can be viewed as the most typical representatives.

Given two interacting components A and B of a distributed architecture,
these paradigms differ in how the know-how of the application, i.e., the code
that is necessary to accomplish a computation, the resources, i.e., the inputs
of the computation, and the processor, i.e., the component responsible for the
execution of the code, are distributed between the involved sites. In order to let
this computation to take place, the know-how, the resources, and the component
that will process the resources using the know-how have to be present at the same
site. Let us assume that component A is located at site S4 and component B is
located on site Sp. In addition, let A be the entity that causes the interaction
and the one that is interested in its effects. Table 1 shows the distribution of the
different elements before and after the interaction. The table also lists the Client-
Server (CS) paradigm. Although CS is not a paradigm for mobile computations
(no mobility of code takes place), it has been included because it is often used
in designing network computing applications.

Paradigm Before After
& Sa | SB Sa | SB
know-how know-how
Client-Server A resources A resources
B B
Remote|| know-how | resources A lzz;’:"io;:
Evaluation A B]1;
Code on| resources | know-how || - 20"
know-how B
Demand A B
A
Mobile|| know-how | B /izsﬂ:oezs
Agent A "

Table 1. Mobile code paradigms. This table shows the location of the components
before and after the service execution. For each paradigm, the component that is the
processor is in bold face. Components in italics are those that have been moved.

Software Engineering Issues for Network Computing 119

In the CS paradigm, a server component (B in Table 1) exports a set of
services. The code that implements such services is owned by the server com-
ponent; thus, we say that the server holds the know-how. It is the server itself
that executes the service; thus it is the processor. The client (A in Table 1) is
interested in accessing some entity managed by the server, and therefore it is
the server that has the resources.

In the REV paradigm, the executor component (B) offers its computational
power (i.e., it is the processor) and its resources, but does not provide any
“specific” service. It is A that sends the service code (the know-how) that will
be executed by B in its location.

In the COD paradigm, component A initially is unable to execute its task.
It is B that provides the code (i.e., the know-how). Once the code is received
by A, the computation is carried out on A’s location, thus, A is the processor.
The computation involves only local files and local devices; thus, A holds the
resources.

In the MA paradigm, A has the know-how and it is the component responsible
for the execution of the task. The computation must access the resources that are
located at B’s site. Therefore, A migrates to Sp and performs the computation
there.

Usually, an application (or parts thereof) may be designed following different
paradigms. In principle, it would be helpful to be able to analyze the tradeoffs
among the different solutions based on different paradigms at the design level,
before proceeding to an implementation. For example [5] discusses a set of possi-
ble designs and evaluates their tradeoffs in the case of a distributed information
retrieval application. The tradeoffs are evaluated in terms of a simple quantita-
tive measure: network traffic. The case study shows that, in general, there is no
definite winner among the different paradigms, but rather the choice depends on
a number of parameters that characterize the specific problem instance.

Therefore, the developer that approaches the design of an MCA should select
some parameters that describe the application behavior, together with some cri-
teria to evaluate the parameters values. For example, one may want to minimize
the number of interactions, the CPU costs, or the generated network traffic.
Given different possible architectural designs, the developer should analyze the
selected parameters looking for the design that optimizes the chosen criteria.
This way it is possible to determine which is the most reasonable design.

4.2 Implementation

Having designed an MCA according to some paradigm, one has to choose a tech-
nology to implement it. Given a particular paradigm, which technology should
be used?

We identify three classes of technologies [7]:

Message-based These technologies enable the communication between remote
processes in the form of message exchange. They do not provide any native
mechanism for the migration of code. A typical example is RPC [4].

120 C. Ghezzi and G. Vigna

Weakly mobile These technologies provide mechanisms that enable an agent
to send code to be executed in a remote site together with some initialization
data or to bind dynamically code downloaded from a remote site. Examples
of such technologies are the rsh facility in UNIX, and languages like MO [27]
or Java [16].

Strongly mobile These technologies enable agents to move with their code
and execution state to a different site. An example is represented by the
Telescript technology.

In principle, it is possible to implement applications developed with any
paradigm by using any kind of technology, given that such technologies allow
for the communication between agents. However, we have found that some tech-
nologies are more suitable to implement applications designed using particu-
lar paradigms [15]. Unsuitable technologies force the developer to program, at
the application level, some mobility mechanisms or force an inefficient, counter-
intuitive use of the existing ones.

Paradigms
Technologies CS | COD/REV | MA
Messsage-based Well suited Code as data Code and state as data

Program interpretation|Program state restoring
Program interpretation

Weakly mobile Code is a single Well suited State as data
instruction Program state restoring
Creates unnecessary
execution threads

Strongly mobile|| Code is a single Manage migration Well suited
instruction Move state back
Creates unnecessary and forth

execution units
Move state back
and forth

Table 2. Relationships among paradigms and technologies.

As shown in Table 2, message-based technologies are well suited for imple-
menting architectures based on the CS paradigm. If they are used to implement
COD-based or REV-based architectures, they force the implementation to use
the basic message exchange mechanism to transfer code (viewed as data) and
to program the evaluation of such code explicitly. Even worse, if message-based
technologies are used to implement MA-based architectures, the programmer
also has to explicitly manage state marshalling, transfer, and unmarshalling;
i.e., auxiliary variables must be used to keep the state of the computation and
unnatural code structures must be used to restore the state of a component after
migration to a different site.

Software Engineering Issues for Network Computing 121

Weakly mobile technologies that allow segments of code to be executed re-
motely are naturally oriented towards the implementation of applications de-
signed according to the REV and COD paradigms. These technologies provide
inefficient implementations of CS architectures since they force the remote ex-
ecution of segments of code composed of a single instruction. Therefore, a new
thread of execution is created in order to execute this “degenerate” code. On
the contrary, in order to implement applications based on the MA paradigm, the
programmer has to manage, at the program level, the packing/unpacking of the
variables representing the state and the restoring of the agent execution flow?.

Strongly mobile technologies are oriented towards MA-based applications
while they are not suited for implementing applications based on the CS and
REV/COD paradigms. In the former case, the programmer has to “overcode”
an agent in order to have it moved to the server site, execute a single operation
and jump back with the results. Such implementations could be rather inefficient
since the whole thread state is transmitted back and forth across the network. In
the latter case, in addition to the code to be executed remotely, the implementor
has to add the migration procedures. Furthermore, the state of the execution
thread is to be transmitted over the network.

Summing up, technologies may reveal to be too powerful or too limited to im-
plement a particular architecture. In the first case resources are wasted, resulting
in inefficiency. In the second case, the programmer has to code all mechanisms
and policies that the technology does not provide. It is therefore important to
select an appropriate technology that can implement an architectural design in
a natural way.

5 Conclusions

Network computing is a rapidly evolving field, which is raising much interests,
both in industry and in research institutions. Indeed, it is a very promising field.
Unfortunately, however, at its current stage of maturity, it is perhaps raising
too many unjustified expectations. We see many interesting things being done
in practice which are not backed up by adequate methods and tools. A challenge
exists for software engineering research to evaluate critically how things are done
today in order to identify systematic approaches to the development of network
computing applications. The “just do it” approach that seems to be behind
the current efforts is simply inadequate to reach the desired levels of quality
standards of network applications, for example in terms of reliability and ease of
change. We must, of course, keep into account what makes network applications
different from most traditional applications. In particular, their intrinsic levels
of flexibility, autonomy, decentralization, and continuous change that cannot be

2 This is a very common situation. In fact, most existing mobile code technologies
are weakly mobile, because weak mobility is easier to implement. Nonetheless, prac-
titioners tend to think in terms of the MA paradigm. Therefore, there are many
examples of mobile code applications that use awkward conditional structures to
restore, at the logical level, the computational flow after migration.

122 C. Ghezzi and G. Vigna

pre-planned centrally. These properties must eventually be combined with the
necessary discipline that allows the desired level of reliability to be reached in a
measurable and economical way.

In this paper we tried to identify a possible research agenda for software
engineering research in the area of network computing. We also summarized
some initial work that has been done in the past few years by the Software
Engineering Group at Politecnico di Milano. The work described here is the
result of the joint work of several people: Antonio Carzaniga, Francesco Coda,
Gianpaolo Cugola, Alfonso Fuggetta, Franca Garzotto, Gian Pietro Picco, and
the authors of this paper. The results described here are only representative
of some initial steps in the direction of providing systematic support for the
development of network computing applications. More research is needed before
we can identify a comprehensive, integrated set of useful methods and techniques,
and provide tools to support them.

The authors wish to thank the participants at RTSE’97 in Bernried for very
stimulating discussions and comments on the work reported here. The reviewers
of the initial version of this paper provided further insightful suggestions.

References

1. G. Abowd, R. Allen, and D. Garlan. Using Style to Understand Descriptions of
Software Architecture. In Proc. of SIGSOFT’93: Foundations of Software Engi-
neering, December 1993.
2. V. Balasubramanian, T. Isakowitz, and E.A. Stohr. RMM: A Methodology for
Structured Hypermedia Design. Communications of the ACM, 38(8), August 1995.
3. T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk Nielsen, and A. Secret. The
World Wide Web. Communications of the ACM, 37(8), August 1994.
4. A. Birrell and B. Nelson. Implementing Remote Procedure Calls. ACM Trans. on
Computer Systems, 2(1):29-59, February 1984.
5. A. Carzaniga, G.P. Picco, and G. Vigna. Designing Distributed Applications with
Mobile Code Paradigms. In R. Taylor, editor, Proceedings of the 19" International
Conference on Software Engineering (ICSE’97), pages 22—-32. ACM Press, 1997.
Microsoft Corp. FrontPage Home Page. http://www.microsoft.com/FrontPage/.
7. G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna. A Characterization of Mobility
and State Distribution in Mobile Code Languages. In M. Miihlaiiser, editor, Special
Issues in Object-Oriented Programming: Workshop Reader of the 10" European
Conf. on Object-Oriented Programming ECOOP’96. dpunkt, July 1996.
8. G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna. Analyzing Mobile Code Lan-
guages. In J. Vitek and C. Tschudin, editors, Mobile Object Systems: Towards
the Programmable Internet, volume 1222 of Lecture Notes on Computer Science.
Springer, April 1997.
9. E.W. Dijkstra. GOTO Statement Considered Harmful.
10. D. Flanagan. JavaScript — The Definitive Guide. O’Reilly & Ass., 2"¢ edition
edition, January 1997.

11. A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. IEEE
Transactions on Software Engineering, 24(5), May 1998.

12. F. Garzotto, L. Mainetti, and P. Paolini. Hypermedia Design, Analysis, and Eval-
uation Issues. Communications of the ACM, 38(8), August 1995.

o

13.

14.

15.

16.
17.
18.
19.
20.
21.
22.
23.
24.

25.

26.

27.

28.

Software Engineering Issues for Network Computing 123

F. Garzotto, L. Mainetti, and P. Paolini. Information Reuse in Hypermedia Ap-
plications. In Proceedings of ACM Hypertext '96, Washington DC, March 1996.
ACM Press.

C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.
Prentice Hall, 1991.

C. Ghezzi and G. Vigna. Mobile Code Paradigms and Technologies: A Case Study.
In K. Rothermel and R. Popescu-Zeletin, editors, Proceedings of the 1°! Interna-
tional Workshop on Mobile Agents (MA ’97), volume 1219 of Lecture Notes on
Computer Science. Springer, April 1997.

J. Gosling and H. McGilton. The Java Language Environment: A White Paper.
Technical report, Sun Microsystems, October 1995.

R.S. Gray. Agent Tcl: A transportable agent system. In Proceedings of the CIKM
Workshop on Intelligent Information Agents, Baltimore, Md., December 1995.
NetObjects Inc. Fusion Home Page. hitp://www.netobjects.com/.

IEEE Internet Computing Magazine. IEEE Computer Society, 1997.

A. Kambil. Doing Business in the Wired World. IEEE Computer, 30(5):56-61,
May 1997.

D.B. Lange and D.T. Chang. IBM Aglets Workbench—Programming Mobile
Agents in Java. IBM Corp. White Paper, September 1996.

Sun Microsystems. The Java Servlet API . White Paper, 1997.

Object Management Group. CORBA: Architecture and Specification, August 1995.
D. Ragget, A. Le Hors, and I. Jacobs. Hypertext Markup Language 4.0 Specifica-
tion. W3C Recommendation, April 1998.

D. Schwabe and G. Rossi. From Domain Models to Hypermedia Applications:
An Object-Oriented Approach. In Proceedings of the International Workshop on
Methodologies for Designing and Developing Hypermedia Applications, Edimburgh,
September 1994.

M. Shaw and D. Garlan. Software Architecture: Perspective on an Emerging Dis-
cipline. Prentice Hall, 1996.

C. Tschudin. An Introduction to the MO Messenger Language. Univ. of Geneva,
Switzerland, 1994.

J.E. White. Telescript Technology: Mobile Agents. In Jeffrey Bradshaw, editor,
Software Agents. AAAI Press/MIT Press, 1996.

