A note on combinations with repetitions

The purpose of this note is to give you a better understanding of how combinations with repetitions work. Let us deal with a problem of counting how many times a line of code executes:

```
for i = 1 to 20
    for j = 1 to i
        for k = 1 to j
            print("x")
```

of times this line executes - ?

The first part of the solution is to arrange all the variables:

\[1 \leq k \leq j \leq i \leq 20 \]

Now, the counting problem has narrowed down to counting the number of choices of i, j, i such that 1 \leq k \leq j \leq i \leq 20. One way of thinking about it is as follows:

We have a "pool" of numbers from 1 to 20, and we need to fill i, j, k using these numbers. Repetitions are allowed - it is filled with 5, then this 5 remains in the pool and can be used to fill other variables. The number of ways to fill i, j, k, by definition, is the number of combinations with repetitions:

\[
\binom{20+3-1}{3} = \binom{22}{3}
\]

Another way of thinking about it is to consider the following cell array:

```
  20
```

Now, let us cut this array into 4 pieces; we will need to do 3 cuts:

```
  \( 20 \)
```

The numbers of cells in the first 3 cuts are denoted with \(x_1, x_2, \) and \(x_3 \). Now, we will define i, j, k:

\[
i = x_1, \quad j = x_1 + x_2, \quad k = x_1 + x_2 + x_3.
\]

Note:
1) Cuts can repeat (if the first and the second cuts "coincide", it means \(x_2 = 0 \) and, hence, \(k = j \));
2) Cuts cannot occur at the left border of the array; because \(k \geq 1 \) (i.e., \(k > 0 \)).

Each such partition of a 20-cell array into 4 pieces corresponds to a legal choice of i, j, k. If we "expand" each of 3 cuts into a cell, then it is easy to count the number of ways to partition the array and, hence, the number of choices for i, j, k.
The number of such partitions is exactly the number of ways to choose 3 "cut-cells" out of 22 available cells: \(\binom{22}{3} = \binom{20+3-1}{3} \)

20 -- number of original cells (together, comprising integer 20)
3 -- number of special cells for cuts
-1 -- the first cell cannot be used as special

= how many ways to choose 3 special (cut) cells out of 20 + 3 - 1 available cells?

You can use the same cell-array visualization technique to count the number of integer solutions of the equation

\[x_1 + x_2 + x_3 + x_4 + x_5 = 100, \quad x_i \geq 0 \] (notice, \(x_i \) can be = 0)

Take 100 cells and partition them into 5 possibly empty parts with "cell-cuts":

For this particular example,
\(x_1 = 0, \ x_2 = 3, \ x_3 = 0, \ x_4 = 30, \ x_5 = 4 \)

The number of ways to select values for \(x_1, \ldots, x_5 \) is the number of ways to select 4 cut-cells out of 104 available cells (unlike in the problem with loops, the first cell is available for cutting, i.e., \(x_i \) can be = 0 in this problem): \(\binom{104}{4} \)