# Automatically Characterizing Large Scale Program Behavior

Timothy Sherwood Erez Perelman Greg Hamerly Brad Calder



#### **Title**

- Ideal: To understand the effects of cycle-level events on full program execution
- Challenge: To achieve this without doing complete detailed simulation
- How: Build a high-level model of program behavior that can be used in conjunction with limited detailed simulation

#### Goals

- The goals of this research are:
  - To create an automatic system that is capable of intelligently characterizing timevarying program behavior
  - To provide both analytic and software tools to help with program phase identification
  - To demonstrate the utility of these tools for finding places to simulate (SimPoints)
  - Without full program detailed simulation

### Our Approach

- Programs are neither
  - Completely Homogenous
  - nor Totally Random
- Instead they are quite structured
- Discover this structure

- The key is the code that is executing
  - the code determines the program behavior

# Large Scale Behavior (gzip)



#### Some Definitions

#### Interval is

- A set of instructions that execute one after the other in program order
- 100 Million Instructions

#### Phase is

- A set of intervals with very similar behavior
- Regardless of temporal adjacency

#### Outline

Examining the Programs

Finding Phases Automatically

Application to Efficient Simulation

### Fingerprinting Intervals

- Fingerprint each interval in program
  - Enabling us to build high level model
- Basic Block Vector [PACT'01]
  - Tracks the code that is executing
  - Long sparse vector
  - 1 dimension per static basic block
  - Based on instruction execution frequency

#### **Basic Block Vectors**

| BB | Assembl | y Code of bzip  |
|----|---------|-----------------|
| 1  | srl     | a2, 0x8, t4     |
|    | and     | a2, 0xff, t12   |
|    | addl    | zero, t12, s6   |
|    | subl    | t7, 0x1, t7     |
|    | cmpeq   | s6, 0x25, v0    |
|    | cmpeq   | s6, 0, t0       |
|    | bis     | v0, t0, v0      |
|    | bne     | v0, 0x120018c48 |
| 2  | subl    | t7, 0x1, t7     |
|    | cmple   | t7, 0x3, t2     |
|    | beq     | t2, 0x120018b04 |
| 3  | ble     | t7, 0x120018bb4 |
| 4  | and     | t4, 0xff, t5    |
|    | srl     | t4, 0x8, t4     |
|    | addl    | zero, t5, s6    |
|    | cmpeq   | s6, 0x25, s0    |
|    | cmpeq   | s6, 0, a0       |
|    | bis     | s0, a0, s0      |
|    | bne     | s0, 0x120018c48 |
| 5  | subl    | t7, 0x1, t7     |
|    | gt t7,  | 0x120018b90     |
|    |         |                 |

#### For each interval:

```
ID: 1 2 3 4 5 .

BB Exec Count: <1, 20, 0, 5, 0, ...>

weigh by Block Size: <8, 3, 1, 7, 2, ...>
= <8, 60, 0, 35, 0, ...>
Normalize to 1 = <8\%, 58\%, 0\%, 34\%, 0\%, ...>
```

- One BBV for each interval
- We can now compare vectors
- Start with simple manual analysis
  - -Compare all N<sup>2</sup> pairs of intervals
- Enter the Similarity Matrix...

### Similarity Matrix



- Compare N<sup>2</sup> intervals
- Executed Instructions on Diagonal axis
- To compare 2 points go horizontal from one and vertically from the other
- Darker points indicate similar vectors
- Clearly shows the phase-behavior

### A More Complex Matrix - gcc



- Still much structure
- Dark boxes show phase-behavior
- Boxes in interior show recurring phases
  - Strong diagonal line indicates first half is similar to second half
- Manual inspection is not feasible or scalable

#### Outline

Examining the Programs

Finding Phases Automatically

Application to Efficient Simulation

### Finding the Phases

- Basic Block Vector is a point in space
- The problem is to find groups of vectors/points that are all similar
  - Making sure that all points in a group are similar to one another
  - And ensuring all points that are different, are put into different groups
- This is a Clustering Problem
- A Phase is a Cluster of BBVectors

### Phase-finding Algorithm

- Profile Program and track BB Vectors
- II. Use the K-means algorithm to find clusters in the data for many different values of K
- III. Score the likelihood of each clustering
- IV. Pick the best clustering

### Improving Performance

- K-means requires many manipulations
  - Basic Block Vectors are very long
    - > 100,000 for gcc; 800,000 for microsoft apps
  - Need to make the Vectors smaller
    - Still preserve relative distances
- Random Projection
  - Multiply the vector by a random matrix
  - Can safely reduce down to 15 dimensions
  - Reduce run-time from days to minutes

# Example: gzip Revisited



### gzip - Phases Discovered



## gcc - A Complex Example



### gcc - Phases Discovered



#### Outline

Examining the Programs

Finding Phases Automatically

Application to Efficient Simulation

#### **Efficient Simulation**

- Simulating to completion not feasible
  - Detailed simulation on SPEC takes months
  - Cycle level effects can't be ignored
- To reduce simulation time
  - Simulate only a subset of the program at cycle-level accuracy
  - What subset you pick is very important
    - For accuracy and efficiency

### Simulation Options

- Simulate Blind: no estimate of accuracy
- Single Point: problem with complex programs that have many phases
- Random Sample: high accuracy, but many sections of similar code, you will be doing a lot of redundant work
- Choose Multiple Points: by examining the calculated phase information

### Multiple SimPoints

- Perform phase analysis
- For each phase in the program
  - Pick the interval most representative of the phase
  - This is the SimPoint for that phase
- Perform detailed simulation for SimPoints
- Weigh results for each SimPoint
  - According to the size of the phase it represents

### Results - Average Error



#### Results - Max Error



#### Outline

Examining the Programs

Finding Phases Automatically

Application to Efficient Simulation

- Gap between
  - Cycle level events
  - Full program effects
- Exploit large scale structure
  - Provide high level model
  - Find the model with no detail simulation
  - In conjunction with limited detail simulation

- Our Strategy
  - Take advantage of structure found in program
  - Summarize the structure in the form of phases
  - Find phases using techniques from clustering
- Use this for doing efficient simulation
  - High accuracy
  - With orders of magnitude less time
- http://www.cs.ucsd.edu/~sherwood