ActiveOS: Virtualizing Intelligent Memory

Mark Oskin, Frederic T. Chong, and Timothy Sherwood*
Department of Computer Science
University of California at Davis

Abstract

Current trends in DRAM memory chip fabrication have led
many researchers to propose “intelligent memory” architec-
tures that integrate microprocessors or logic with memory.
Such architectures offer a potential solution to the growing
communication bottleneck between conventional microproces-
sors and memory. Previous studies, however, have focused
upon single-chip systems and have largely neglected off-chip
communication in larger systems.

We introduce ActiveOS, an operating system which demon-
strates multi-process ezecution on Active Pages [OCS98], a
page-based intelligent memory architecture. We present re-
sults from multiprogrammed workloads running on a proto-
type operating system implemented on top of the SimpleScalar
processor simulator. Qur results indicate that paging and
inter-chip communication can be scheduled to achieve high
performance for applications that use Active Pages with min-
imal adverse effects to applications that only use conven-
tional pages. Querall, ActiveOS allows Active Pages to ac-
celerate individual applications by up to 1000 percent and to
accelerate total workloads from 20 to 60 percent as long as
physical memory can contain the working set of each indi-
vidual application.

1 Introduction

Microprocessor performance continues to follow phenomenal
growth curves which drive the computing industry. Unfor-
tunately, memory systems are falling behind when “feeding”
data to these processors. Processor-centric optimizations to
bridge this processor-memory gap [WM95] [Wil95] include
prefetching, speculation, out-of-order execution, and mul-
tithreading. Unfortunately, many of these approaches can
lead to memory-bandwidth problems [BGK96].

DRAM memory technology, however, is growing signif-
icantly denser. The Semiconductor Industry Association
(SIA) roadmap [Sem94] projects mass production of 1-gigabit
DRAM chips by the year 2001. If we devote half of the area
of such a chip to logic, we expect the DRAM process to
support approximately 32 million transistors. This density
has led many researchers to propose intelligent memory sys-
tems that integrate processors or logic with DRAM. The
increased bandwidth and lower latency of on-chip commu-
nication promises to address many aspects of the processor-
memory gap [PT97] [KADP97].

These improvements, however, are limited to single-chip

Acknowledgments: Thanks to André Dehon, Matt Farrens,
Lance Halstead, Diana Keen, and our anonymous referees. This
work is supported in part by an NSF CAREER award to Fred
Chong, by NSF grant CCR-9812415, by grants from Altera, and
by grants from the UC Davis Academic Senate. More info at
http://arch.cs.ucdavis.edu/AP

*Now at University of California, San Diego

systems with limited memory requirements such as PDAs.
We expect that the memory demands of most systems will
scale with DRAM density, and multiple memory chips will
be required. We introduce Active Pages, a page-based archi-
tecture for intelligent memory systems (see Figure 1). Ac-
tive Pages consist of a superpage of data and a collection
of functions which operate on that data. Implementations
of Active Pages can execute functions for hundreds of pages
simultaneously, providing substantial parallelism.

To use Active Pages, computation for an application must
be divided, or partitioned, between processor and memory.
For example, we use Active-Page functions to gather operands
for a sparse-matrix multiply and pass those operands on to
the processor for multiplication. To perform such a compu-
tation, the matrix data and gathering functions must first
be loaded into a memory system that supports Active Pages.
Then the processor, through a series of memory-mapped
writes, starts the gather functions in the memory system.
As the operands are gathered, the processor reads them from
user-defined output areas in each page, multiplies them, and
writes the results back to the array datastructures in mem-
ory.
Previous work [OCS98] has shown that Active Pages are
a flexible architecture that can lead to dramatic performance
improvements (up to 1000X) in a single-process over conven-
tional memory systems. This paper evaluates Active Pages
in a multi-process environment. Active Pages fundamentally
change memory systems from a uniform storage resource to
a non-uniform collection of storage and computational ele-
ments that require both management and scheduling.

We introduce ActiveOS, a prototype operating system
which illustrates the interaction between an OS and Ac-
tive Pages. Our goal is to demonstrate that Active Pages
can perform correctly and efficiently in a multi-process en-
vironment. In such an environment, our results show that
while paging Active Pages to and from disk can be expen-
sive, opportunities to overlap memory and processor com-
putation increase dramatically. On mixed workloads of con-
ventional and Active-Page applications, Active Page single-
process performance translates well to a multi-process envi-
ronment as long as memory pressure is moderate. Note that
our current cycle-level simulation environment limits work-
load sizes in our experiments. Our applications are highly
scalable, however, and we expect our results to generalize to
larger workload sizes.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the three main services provided by Ac-
tiveOS to support Active Pages. Section 3 describes our
experimental methodology. Section 5 describes the appli-
cations in our workload. Section 6 presents our results.
Section 7 discusses related work. Finally, Sections 8 and 9
present future work and conclusions.

Figure 1: The Active Page architecture

2 ActiveOS

ActiveOS is a prototype operating system for which the pri-
mary goal is to demonstrates mechanisms which correctly
manage Active Pages in a multi-process environment. These
mechanisms fall into three key categories: process services,
interpage communication, and virtual memory.

2.1 Process Services

The first step in developing operating system support for Ac-
tive Pages involves providing basic services for user processes
to allocate pages and bind functions to them. Furthermore,
a process must be able to efficiently call these functions.

The Active Page interface is designed to resemble the in-
terface of a conventional memory system. Processes commu-
nicate with Active Pages through memory reads and writes.
Specifically, the interface includes:

e Standard memory interface functions:
write(address, data) and read(address)

e A set of functions available for computation on a par-
ticular Active Page: AP_functions

e An allocation function:
AP_alloc(group-id)

which allocates an Active Page in group group_id and
returns the virtual address of the start of the superpage
allocated. Pages operating on the same data will often
belong to a page group, named by a group_id, in order
to coordinate operations.

¢ A binding function:
AP_bind(group_id, AP_functions)

which associates a set of functions AP_functions with
group group_id of Active Pages.

e A set of synchronization variables which the A P_functions
and the processor use to coordinate activities between
the processor and Active Pages within the page group.

There are two important implications of this interface.
First, the synchronization variables are essentially memory-
mapped registers that allow a process to efficiently invoke
Active-Page functions without a system call. Second, the al-
location of Active Pages, which are significantly larger than
conventional pages, requires memory management of mixed
superpages and pages. This memory management will be-
come a significant issue as we discuss paging and our perfor-
mance results.

2.2 Interpage Communication

An application will generally use more data than will fit on
a single Active Page (each one is 512 Kbytes in our current
implementation). Such data will often reside in page groups,
a collection of Active Pages which work together to perform
functions on the data. For example, inserting an element
into the middle of an array that spans multiple pages would
require elements to move between pages.

Such data movement is accomplished entirely via explicit
interpage communication requests. Active-Page functions
can reference any virtual address available to their allocat-
ing process. For performance, applications should keep ref-
erences from functions to addresses on other pages to a min-
imum.

Our implementation uses a processor mediated approach
to satisfying inter-page memory references. Each Active
Page explicitly distinguishes between local and non-local ref-
erences by checking if a virtual address is between its start-
ing address, kept in a base register, and the starting address
plus the Active-Page size. When an Active Page reaches a
non-local reference it raises an interrupt and blocks. The
interrupt causes the processor to obtain the memory request
through a memory-mapped read and executes an OS han-
dler. The handler consults a per-process table which will
determine if the Active Page containing the reference is in
physical memory. If so, the page is located and the request is
satisfied. If not, a page fault occurs and the page is brought
in from disk. In practice, a large number of non-local ref-
erences from different pages can be satisfied upon a single
interrupt, substantially reducing overhead. We assume that
a single interrupt takes 3.5 ms.

Our processor-mediated approach makes inter-page com-
munication expensive, but greatly simplifies page faults and
reduces the complexity of Active Page chip implementations.
We assume that our memory chips can trigger processor in-
terrupts, but processor polling is also a possiblility.

2.3 Virtual Memory

When insufficent physical memory is available to execute all
processes in the system, memory must be paged to swap
space. We define the maximum required swap space to exe-
cute a set of processes as the memory pressure. As memory
pressure increases, Active Pages will need to be paged out
to disk. This implies that the data, the functions, and any
active state must be written to disk. The choice of which
pages to swap in and out is critical to both the correctness
and performance of Active Pages. If the processor or an Ac-
tive Page in memory references a page on disk, a page fault
occurs. If no reference occurs, however, a page on disk may
still need to be swapped in to complete a computation for

a page group. Active Pages can only make computational
progress if they are in physical memory. Managing Active
Pages is more than traditional virtual memory management
[Den70]. It is also scheduling of computation.

To help the OS schedule Active Pages, we identify three
states in which an Active Page exists. These are initial (I),
dormant (D), and active (A). When a page is allocated, prior
to function binding, the state is initial (I). When functions
are bound to a page, but no function is currently executing
at the page, we identify the page as dormant (D). Finally,
when a function is executing at the page, we identify the page
as active (A). It is expected that an operating system will
provide mechanisms to control the allocation and binding of
functions to pages, but that userprocesses will transition a
page from the dormant to active states.

For performance reasons, we restrict the means by which
an Active Page can transition from the dormant (D) to active
(A) states. As shown in Figure 2, an operating system must
periodically schedule Active Pages residing in swap space
back into physical memory in order to ensure program cor-
rectness. This arises because an Active Page, X, may be
waiting upon a result that another page on disk, Y, is about
to write to the memory of X. Since there is no reference to
Y, the page will not be rescheduled without some external
mechanism.

If we restrict the mechanism by which an Active Page can
transition from dormant to active states, then an operating
system can periodically schedule only active Active Pages
back from swap, thus avoiding having to schedule dormant
pages. The restrictions are that an Active Page never tran-
sitions from the dormant to active states without processor
or inter-Active Page communication intervention. That is,
an Active Page never self-activates.

Our results indicate that performance is only marginally
affected by the scheduling quantum for periodically swap-
ping pages back in to physical memory, suggesting that as
small of a quantum should be used as possible such that per-
formance is not seriously degraded in order to improve user
response time.

ActiveOS currently implements a round-robin memory
page scheduler for Active Pages residing in swap space. For
page replacement, we adopted a Least Recently Used (LRU)
algorithm which was implemented by tracking a counter
value for each physical page available in the system. The
operating system maintains a counter that is incremented
each time a memory page is referenced by the memory man-
agement subsystem. The memory management subsystem
references pages when memory is allocated, upon direct ker-
nel access to process memory, and when a TLB miss excep-
tion occurs. Special processing is performed on this counter
to ensure it does not overflow and that the relative page ac-
cess times are maintained. When memory is to be swapped
to disk the LRU algorithm searches the entire page space
and returns a reference to the page with the lowest access
counter value.

3 Methodology

In order to demonstrate multi-process operation, a mixture
of Active-Page enhanced and conventional applications was
chosen. For the Active-Page applications, conventional-only
counterparts were implemented. The applications where
chosen to represent a mixed workload, as one might en-
counter in a multi-user system. A brief description of each
application is presented in Section 5. Both the conventional
and conventional/Active-Page mixed application workloads

[Parameter [Reference |
CPU Clock 500 MHz
L1 [-Cache 32K
L1 D-Cache 32K
L2 Cache 256K
Reconf Logic 50 MHz
Cache Miss 114 ns
Disk Access Time 10ms
Disk Transfer Rate || 10mb/sec

Table 1: Summary of simulator parameters

were executed under various page replacement policies and,
in the case of the mixed Active-Page/conventional applica-
tion suite, with various memory resource scheduling quanta.
The results of these measurements is presented in Section 6.

These measurements were taken on a prototype oper-
ating system, ActiveOS, running on a processor and mem-
ory system simulator. ActiveOS runs on the SimpleScalar
v2.0 [BA97] toolkit. This tool set provides the mechanisms
to compile, debug and simulate applications compiled to a
RISC architecture. The SimpleScalar RISC architecture is
loosely based upon the MIPS instruction set architecture.
The SimpleScalar environment was extended by replacing
the simulated conventional memory hierarchy with an Active
Page memory system. The new simulated memory hierar-
chy provides mechanisms which simulate a RADram mem-
ory system, an FPGA-based implementation of Active Pages
described in [OCS98]. Finally, the toolset was enhanced by
extensive modifications required to support the simulation
of an operating system and associated multi-program work-
loads. The simulated machine characteristics are shown in
Table 1.

4 Limitations

A significant limitation to our methodology is the use of a
cycle-level processor-memory simulator. While our results
are extremely accurate, simulation speed limits the size of
our workloads. Consequently, our results primarly demon-
strate correctness of ActiveOS mechanisms. They also reveal
some interesting qualitative issues involving Active Pages on
disk and overlapping memory computations with multiple
processes. We note that our applications are highly-scalable
streaming applications, hence we expect our results to scale
to larger workload sizes. Since our processor-mediated com-
munication method has equal cost between on- and off-chip
inter-page communication, communication costs are not de-
pendent upon number or size of memory chips. Future work
will increase simulation capacity through the use of a higher-
level emulation system.

5 Multiprogrammed Workload

Our workload consists of three applications which use Ac-
tive Pages and three conventional applications which do not.
The Active-Page applications consist of: database inserts
and deletes using a C++ array class library, matrix multiply
of a large finite-element sparse matrix, and protein sequence
matching using dynamic programming. The conventional
applications consist of: the gcc compiler running on input
from a source file generated by the yacc parser generator,
gzip compression of a 510 kilobyte executable file, and perl
executing a prime-number finder. The conventional appli-

Process uses Operating System to
alocate an Active Page

Process uses
Operating System to
bind functions

Can safely
send to swap.

Can safely
send to swap.

Light-weight process invocations
are used to invoke AP functions,
or inter-page communication can
invoke an AP function on receive.

Processes can explicitly terminate an AP function or
an AP function can terminate itself.

Schedule pages
to/from swap space

Swap Space

Figure 2: State transition diagram for Active Page memory

cations are largely taken from the SPEC 95 suite, with the
exception of gzip, which we felt was more complete and up-
to-date than compress. Each of the Active-Page applications
was also implemented for a conventional memory system for
comparison.

Database is a synthetic benchmark which consists of a
sorted database of records, and requests on those records.
The requests arrive sporadically from users and consist of
inserts and deletes of individual records. The database was
stored in an STL style C++ class array object which pro-
vides O(1) lookup. Active-Page functionality is used to shift
data in parallel at the memory system.

Matriz is a matrix multiply application which multiplies
a matrix by itself. The input matrices were chosen from
the Harwell-Boeing benchmark suite [DGL92]. The normal
and Active-Page versions of this application operate using
sparse-matrices. Active-Page functionality is used to pre-
process the input matrix against the columns of the matrix
to be multiplied. The preprocessing consists of computing
the intersecting elements and reordering the memory such
that the values of the intersecting elements are compressed
into individual cache lines.

DNA is a protein sequence matching application which
takes in any number of input protein sequences of any length
and computes all pair-wise sequence alignments [Gus97] .
The result of the pair-wise alignments are values which in-
dicate the relative likeness of each protein sequence to every
other protein sequence in the input data-set. Active-Pages
are used for computation of the largest common subsequence
result matrices. This application makes use of inter-Active-
Page communication facilities.

gce: The ccl compiler is a standard component of the
SPEC 95 benchmark suite [SPE95]. The input file was a
1859 line size preprocessed C file generated from the yacc
parser generator.

perl: The characteristics of the perl interpreter are dis-
cussed in [RLV196] and [SPE95]. The input file was chosen
to execute in roughly the same period of time as it took the
gec compiler to execute.

gzip: We include the gzip file compression utility to repre-
sent an updated version of the standard SPEC 95 compress
utility. The input file was chosen to be a challenging 510

kilobyte size executable binary that compresses down to 133
kilobytes.

6 Results

In this section, we present our results from executing our
multiprogrammed workload using several physical memory
sizes. Our results indicate that Active-Page computations
tolerate moderate memory pressure well, but performance
degrades as physical memory size approaches the working-
set size. This degradation tends to happen at slightly higher
rates for Active-Page computations than conventional com-
putations. Finally, although not discussed, performance was
found to be relatively insensitive to the memory-resource
scheduling quantum.

6.1 Application Characteristics

Table 2 lists the memory requirements, and access char-
acteristics of each application in our workload. The data
was acquired by operating the workloads in a simulated 256
Mbyte physical memory size environment to ensure that no
memory paging was required. Note that the DNA applica-
tion constitutes nearly half the working set of the workload.
Also note that the Active-Page version matriz trades extra
storage for parallelism, but Database actually saves space.
Total memory consumption is one and a half megabytes
larger for the mixed workload than for the conventional
workload.

Throughout our experiments, it was observed that the
TLB misses remained relatively constant as physical mem-
ory size varied. Note that the total TLB misses for the
Active Page mixed workload is lower than for the conven-
tional workload. Furthermore, a conventional application,
gce, makes up the dominant factor in both the conventional
and mixed workloads for TLB misses. Overall, Active Page
applications require fewer TLB misses, thus lowering the
TLB cache pressure.

Table 3 lists required swap space versus physical mem-
ory size for our conventional and mixed workloads under
various paging policies. The mixed workload as a whole re-
quires roughly four megabytes more physical memory than

[Application || Conventional | Mixed (AP/Conv) | Conventional TLB

| Mixed (AP/Conv) TLB |

Database 2512k 1720k 11121 1766
DNA 8032k 8384k 31230 623
Matrix 664k 2630k 14048 8620
GCC 2820k 2820k 202867 204827
Perl 1276k 1276k 16155 16758
GZIP 628k 628k 10914 12318
[Total: [15932k | 17508k | 286335 | 244912 |

Table 2: Memory requirements and number of TLB misses of conventional and Active-Page applications

[Memory Size [15360k | 13312k | 11264k | 9216k | 7163k]
Conventional/LRU Ok | 2052k | 4100k | 6148k | 8196k
Mixed/LRU 5768k 6640k 8400k | 10392k | 12472k

Table 3: Required swap space for conventional versus mixed workloads

the conventional workload. Referring back to Table 2, one
and a half megabytes of this difference comes from algorith-
mic restructuring in database and matriz. The remaining two
and half megabytes, however, come from fragmentation and
superpage effects during swaps. The current ActiveOS im-
plementation does not compact partially used conventional
pages to free up more super-pages. Furthermore, Active
Pages must be swapped out as entire super-pages even when
a single conventional page of storage is all that is needed. Fu-
ture versions of ActiveOS will be optimized to reduce these
effects and allow for better performance at higher memory
pressures.

Our simulation results show that ActiveOS can run our
mixed workload with high performance. Figure 3 plots appli-
cation time versus physical memory size for each application.
We note that Active Page applications take significant ad-
vantage of the Active Page memory system to enhance their
performance. Since each application is only charged pro-
cess time for when its process is scheduled in the processor,
each Active Page application gets a potential six-fold per-
formance advantage if its Active Pages execute while other
processes are scheduled. Referring to the wall clock times in
Figure 3, we can see that conventional applications in our
mixed workload benefit from the reduced time that Active
Page applications spend in the system.

The performance of the Active Page DNA application is
most affected by moderate reductions in physical memory
size. Also note a pathological case in which the interaction
of LRU with the access patterns of DNA cause 13 Mbytes
to perform better than 15 Mbytes of memory.

Further note that the Active-Page version of matriz per-
forms extremely poorly when physical memory is very low.
At 3 Mbytes, matriz performs an order of magnitude worse
than at 7 Mbytes. This occurs because of frequent and re-
peated access to each Active Page. Although each page is
touched repeatedly, the quantity of data used from them is
very small. Under extreme memory pressure, intense swap-
ping occurs with very little access to data by the processor.

Overall, we see that ActiveOS mechanisms can efficiently
virtualize Active Pages for light and moderate memory pres-
sures. Although our simulation infrastructure limits work-
loads to sizes smaller than those in future systems, the data-
intensive nature of our applications will scale well to large
sizes and we expect our results to be qualitatively similar for
larger workloads.

7 Related Work

Active Disks, as proposed by Riedel and Gibson [RG97],
provide a mechanism for doing application specific compu-
tation at the disks. This work is in a similar vein, in that
it is offloading some of the work to the disk, with similar
consequences. A small embedded processor is inserted into
the disk controller which then executes portions of the user
code. Reidel and Gibson argue that by moving this com-
putation to the other side of the disk interconnect, more
efficient use of disk and host resources can be achieved. It is
then further argued that Filters, Real-Time, Batching, and
High-level support are some of the applications which should
benefit from Active Disks. Two applications, a database se-
lect and a parallel sort, are then looked at in greater depth.

The idea of using multiple page sizes is well established.
Many commodity processors support the use of multiple
page sizes, such as the DEC Alpha, SPARC, Intel, and HP
PA-RISC [TH94]. A discussion of the use of multiple page
sizes is done by Talluri et al. [TKHP92]. Further work is
done by Tallurri and Hill to expand placement algorithms to
support superpages [TH94]. Active Pages, however, involve
both superpage management and computation scheduling.

There has been a fair amount of work in the design of ac-
tive memory systems, most notably are the SWIM project
[ACK94] and the PAM project [VBR'96]. Asthana et al.
proposed and built an active memory system for network
applications known as SWIM. SWIM is a memory system
built out of SRAM with small processing elements on each
chip. The memory system then has a back end on it which is
interfaced to communication lines and disk subsystems. The
Programmable Active Memories Project (PAM) at Digital’s
Paris Research Laboratory focused on the performance of a
memory mapped FPGA coprocessor on compute intensive
applications. The FPGA coprocessor was linked to a high
bandwidth SRAM bank in order to keep up with the in-
creased demand for data in the FPGA. Other groups have
also proposed computation in memory [SS95], but none, to
the authors’ knowledge, have examined the operating system
ramifications of doing such.

8 Future Work

Although ActiveOS has shown promising results in virtual-
izing Active Pages for a multi-process environment, many
issues remain. A major effort is underway to automate the

1.00E+10

9.00E+09
8.00E+09
7.00E+09
6.00E+09

O Conventional

5.00E+09 " vired
ixe:

Cycles

4.00E+09

3.00E+09

3mb ljmb
2.00E+09
0.00E+00

Database DNA Matrix GCC GzZIP Perl

Application

3.50E+10

3.00E+10

2.50E+10 © Conventional
" Mixed
2.00E+10

150E+10 3mb 1T’”b

1.00E+10

- WW I"WH-H-‘ I-"-Iw hI"W
0.00E+00
GCC

Database DNA Matrix GZIP Perl

)

<
]
>

O

Application

Figure 3: Conventional vs. mixed workload times for each application for LRU page replacement. Process time is given on
the left and wall-clock time on the right (bars are for 3, 5, 7, 9, 11, 13, and 15 Mbytes of physical memory).

application partitioning process. The number of applica-
tions in the multi-program workload needs to be increased,
and the working set size of each application also needs to be
expanded. Furthermore, virtual memory paging and mem-
ory resource scheduling techniques need to be investigated
in more detail. Operating system support for Active Page
memories with hardware communication facilities will need
to be addressed. Finally, support for multiple sizes of Active
Pages may prove useful.

For Active Pages to become a successful commodity ar-
chitecture, the application partitioning process must be au-
tomated. Current work uses hand-coded libraries which can
be called from conventional code. Ideally, a compiler would
take high-level source code and divide the computation into
processor code and Active-Page functions, optimizing for
memory bandwidth, synchronization, and parallelism to re-
duce execution time. This partitioning problem is very sim-
ilar to that encountered in hardware-software co-design sys-
tems [VG95] which must divide code into pieces which run
on general purpose processors and pieces which are imple-
mented by ASICs (Application-Specific Integrated Circuits).
These systems estimate the performance of each line of code
on alternative technologies, account for communication be-
tween components, and use integer programming or simu-
lated annealing to minimize execution time and cost. Active
Pages could use a similar approach, but would also need to
borrow from parallelizing compiler technology [HAAT96] to
produce data layouts and schedule computation within the
memory system.

The current application workload operates within a con-
fined memory range. The required memory core size for the
normal application mix requires 16 megabytes of memory,
not counting the operating system. Extending the memory
size of this workload naturally implies extending the length
of the execution time for each application. Future work will
study applications with larger memory sizes. Furthermore,
more Active-Page applications will be implemented provid-
ing an opportunity for a better understanding of Active-Page
application and OS interaction.

With more applications available, a better understanding
of their paging characteristics can be achieved. Future work
will focus on characterizing Active-Page program behavior
in more detail, and then designing efficient paging policies

to support both Active-Page and conventional applications.
Furthermore, work will address active Active-Page priorities
and memory resource priority scheduling. All current paging
policies rely upon access information generated by the pro-
cessor. However, Active-Pages degrade the quality of this
information because activity can be occurring solely inside
the memory system. This activity is currently not tracked
by the current processor access statistics.

Future work will expand on this notion of an information
gap and provide solutions for it. Currently, we suggest a so-
lution of Active-Page addressable per-page priorities. This
extends the notion of the tri-states for an Active-Page. Thus
an Active-Page exists in either the initial (I), dormant (D),
or active(A) with some priority (K) states. The priority
based mechanisms would ensure a contract between the op-
erating system and a user process. The contract is that
if a process properly varies the priorities of its associated
Active-Pages, then the operating system can more efficiently
execute the application under low-memory conditions. This
new information of Active-Page priorities can then be used
to offset the lack of information the operating system cur-
rently has about the Active-Page activity. Fairness between
Active Page and conventional processes, however, will be an
important issue.

Nothing restricts an Active-Page memory from contain-
ing a hardware-based communication network. However,
without hardware mechanisms in place to restrict inter-page
communication, potential security and safety holes are cre-
ated. For this reason, hardware assisted communication in
Active-Page memory devices must have mechanisms to iden-
tify Active-Pages as belonging to a particular process. The
user-level function must be restricted from changing this
process identification without sufficient operating system in-
tervention. Furthermore, all communications must be con-
fined to within the same process or to processes defined in
a restricted fashion. Inter-process communication occurring
within a hardware assisted communication network must be
restrictable by the operating system. Finally, errant and ma-
licious application functions bound to an Active-Page must
be restricted from affecting other super-pages in the memory
system.

Current work has focused on the RADram [OCS98] Ac-
tive Page memory system. It is anticipated that future Ac-

tive Page memories will include hardware support for inter-
Active Page communication. The techniques developed in
this paper to provide virtual memory support for Active
Page memories are still applicable. However, hardware com-
munication networks for inter-Active Page memory accesses
will pose additional operating system challenges in order to
minimize communication delay, ensure process protection,
and maximize overall application performance.

Finally, an investigation into multi-grain Active-Page im-
plementations and associated operating system support is re-
quired. Research into application partitioning suggests that
one method of tuning an application partition to a particular
problem size is to vary the size of the Active Page. Rather
than choose a fixed overall page size, it is proposed that by
providing two to four sizes of Active Pages, the maximum
possible speedup can be extended and maximized across a
broader range of problem sizes. Multi-grain Active-Page
support extends the Active-Page memory model but poses
new hardware and software design challenges.

9 Conclusion

ActiveOS demonstrates that intelligent memory systems can

be virtualized to achieve high multiprogrammed performance.

Active Pages provide a page-based intelligent memory archi-
tecture that makes this virtualization possible. In fact, mul-
tiprogramming increases the opportunities for overlapping
processor and memory computation. The fact that memory
performs computation, however, means that some reason-
able amount of physical memory must be available. Con-
sequently, our results show high performance from zero to
moderate memory pressures, but performance degrades sig-
nificantly as available memory falls below the working set
size of any one Active-Page application.

References
[ACK94] Abhaya Asthana, Mark Cravatts, and Paul Krzyzanowski.
Design of an active memory system for network applica-
tions. In International Workshop on Memory Technol-
o9y, Design and Testing, pages 58—-63. IEEE Computer
Society Press, 1994,

D. Burger and T. Austin. The SimpleScalar tool set, ver-
sion 2.0. Computer Architecture News, 25(3), June 1997.

D. Burger, J. Goodman, and A. Kagi. Quantifying
memory bandwidth limitations in future microprocessors.
In International Symposium on Computer Architecture,
Philadelphia, Pennsylvania, May 1996. ACM.

Peter J. Denning. Virtual memory. Computing Surveys,
2(3):153-189, September 1970.

Ian S. Duff, Roger G. Grimes, and John G. Lewis. User’s
guide for the Harwell-Boeing sparse matrix collection.
Technical Report TR/PA/92/86, CERFACS, 42 Ave G.
Coriolis, 31057 Toulouse Cedex, France, October 1992.

D. Gusfield. Algorithms on Strings, Trees, and Se-
quences. Cambridge University Press, University of Cali-
fornia, Davis, 1997.

[HAA196] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maxi-
mizing multiprocessor performance with the suif compiler.
Computer, December 1996.

[KADP97] Kimberly Keeton, Remzi Arpaci-Dusseau, and David A.
Patterson. IRAM and SmartSIMM: Overcoming the I/O
bus bottleneck,. In Workshop on Mizing Logic and
DRAM: Chips that Compute and Remember, Denver,
Colorado, June 1997.

Mark Oskin, Frederic T. Chong, and Timothy Sher-
wood. Active pages: A computation model for intelli-
gent memory. In Proceedings of the 25th Annual Interna-
tional Symposium on Computer Architecture (ISCA’98),
Barcelona, Spain, 1998. To Appear.

[BA97]

[BGK96]

[Den70]

[DGLY2]

[Gus97]

[0CS98]

[Pt97]

[RG97]

[RLV*96]

[Sem94]

[SPE95]

[SS95]

[TH94]

[TKHP92]

[VBRT96]

[VG95]

[Wil95]

[WMO5]

D. Patterson et al. The case for intelligent RAM: IRAM.
IEEE Micro, April 1997.

Erik Riedal and Garth Gibson. Active disks - remote ex-
ecution for network-attached storage. Technical report,
School of Computer Science, Carnegie Mellon University,
Pittsburgh PA 15213-3890, December 1997.

Theodore H. Romer, Denis Lee, Geoffrey M. Voelker, Alec
Wolman, Wayne A. Wong, Jean-Loup Baer, Brian N. Ber-
shad, and Henry M. Levy. The structure and performance
of interpreters. In Proceedings of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems ASPLOS-VII, pages
150-159. ACM Press, October 1996.

Semiconductor Industry Association. The national tech-
nology roadmap for semiconductors.
http://www.sematech.org/public/roadmap/, 1994.

SPEC. Spec benchmark specifications. SPEC95 Bench-
mark Release, 1995.

Steven Van Singel and Nandit Soparkar. Logic-enhanced
memories for data-intensive processing (extended ab-
stract). In International Workshop on Memory Technol-
09y, Design and Testing, pages 88-94. IEEE Computer
Society Press, 1995.

Madhusudhan Talluri and Mark D. Hill. Surpassing the
TLB perfomance of superpages with less operating system
support. In Architectural Support for Programming Lan-
guages and Operating Systems V, pages 171-182. ACM
Press, 1994.

Madhusudhan Talluri, Shing Kong, Mark D. Hill, and
David A. Patterson. Tradeoffs in supporting two page
sizes. In 19th annual International Symposium on Com-
puter Architecture, pages 415-424. ACM Press, 1992.

J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati,
and P. Boucard. Programmable active memories : Recon-
figurable systems come of age. IEEE Transactions on
VLSI systems, 4(1), March 1996.

F. Vahid and D. Gajski. SLIF: A specification-level in-
termediate format for system design. In Proceedings of
the European Design and Test Conference, pages 185—
189, Washington, March 6-9 1995. IEEE Computer Soci-
ety Press.

M. Wilkes. The memory wall and the CMOS end-point.
Computer Architecture News, 23(4), September 1995.

W. Wulf and S. McKee. Hitting the memory wall: Im-
plications of the obvious. Computer Architecture News,
23(1), March 1995.

