
2

Formulating and Implementing Profiling over
Adaptive Ranges

SHASHIDHAR MYSORE, BANIT AGRAWAL, RODOLFO NEUBER,
TIMOTHY SHERWOOD, NISHEETH SHRIVASTAVA, and SUBHASH SURI

University of California, Santa Barbara

Modern computer systems are called on to deal with billions of events every second, whether
they are executed instructions, accessed memory locations, or forwarded packets. This presents
a serious challenge to those who seek to quantify, analyze, or optimize such systems, because
important trends and behaviors may easily be lost in a sea of data. We present range-adaptive
profiling (RAP) as a new and general-purpose profiling method capable of hierarchically efficiently
classifying streams of data in hardware. Through the use of RAP, events in an input stream are
dynamically classified into increasingly precise categories, based on the frequency with which they
occur. The more important a class, or range of events, the more precisely it is quantified. Despite
the dynamic nature of our technique, we build upon tight theoretic bounds covering both worst-case
error, as well as the required memory. In the limit, it is known that error and the memory bounds
can be independent of the stream size and grow only linearly with the level of precision desired.
Significantly, we expose the critical constants in these algorithms and through careful engineering,
algorithm redesign, and use of heuristics, we show how a high-performance profile system can
be implemented for range-adaptive profiling. RAP can be used on various profiles, such as PCs,
load values, and memory addresses, and has a broad range of uses, from hot-region profiling to
quantifying cache miss value locality. We propose two methods of implementation of RAP, one in
software and the other with specialized hardware, for which we also describe our prototype FPGA
implementation. We show that with just 8KB of memory, range profiles can be gathered with an
average accuracy of 98%.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems

General Terms: Algorithms, Design, Measurement, Performance

Additional Key Words and Phrases: Profiling hardware, range adaptive, value locality

ACM Reference Format:
Mysore, S., Agrawal, B., Neuber, R., Sherwood, N., Shrivastava, N., and Suri, S. 2008. For-
mulating and implementing profiling over adaptive ranges. ACM Trans. Architec. Code Op-
tim. 5, 1, Article 2 (May 2008), 32 pages. DOI = 10.1145/1369396.1369398 http://doi.acm.org/10.
1145/1369396.1369398

Author’s address: Shashidhar Mysore, Banit Agrawal, Rodolfo Neuber, Timothy Sherwood,
Nisheeth Shrivastava, and Subhash Suri, Department of Computer Science, University of
California, Santa Barbara, California, 93106; email: {shashimc,banit,rodolfon,sherwood,nisheeth,
suri} @cs.ucsb.edu
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3566/2008/05-ART2 $5.00 DOI 10.1145/1369396.1369398 http://doi.acm.org/
10.1145/1369396.1369398

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:2 • S. Mysore et al.

1. INTRODUCTION

Many proposed runtime systems rely on profile information to make in-
formed design and optimization decisions. Procedure and data placement, trace
scheduling, value specialization, network load balancing, dynamic compilation,
and a whole host of power-management techniques can all be guided by an ac-
curate picture of what a program is doing and how it is interacting with the
system. A major problem in dealing with streams of profile data generated is
that we can only store a small amount of information, yet we need to be able
to accurately characterize the behavior of the entire stream. This is especially
problematic if the profile information is not completely dominated by a small
number of frequently seen, or “hot,” events.

A significant difficulty in gathering runtime profiles is keeping track of this
data in a manner that requires little storage, incurs limited or negligible slow-
down, and provides a consistent, accurate, and useful summary of the data.
Profiling a large program for an extended amount of time (minutes or even
hours), as required in a real system, results in the generation of huge amounts
of data. Dealing with these large profiles in software requires clever schemes
for adaptively sampling [Hirzel and Chilimbi 2001], compressing [Zhang and
Gupta 2004], and compacting [Larus 1999] profiles to reduce the impact on
memory.

The aim of our research is to explore a new profiling method capable of sum-
marizing profile data in a streaming fashion (one-pass) with only a small and
bounded amount of memory. Range-adaptive profiling (RAP) uses a small set of
counters to track ranges of profile data, such as blocks of data and IP addresses,
segments of code, or ranges of load values. Every piece of data fed into the sys-
tem is accounted for in some range (RAP merges the data rather than sample or
filter), but the ranges, which are chosen for profiling, are adjusted, dynamically
based on observed program behavior. While perhaps not every type of profile
can be merged easily into adaptive ranges, hot-code regions can be found to
guide optimization, ranges of values can guide encoding decisions and value
prediction, while ranges of data memory will correspond to instances of data
structures. Other types of profiles, such as edge profiling, can also be mapped
onto adaptive ranges with simple extensions to the method. In Section 5, we
describe three uses of RAP in more detail.

In particular, our paper makes the following contributions:

—We present the idea of range-adaptive profiling and show how it can be used
to generate online summaries of different types of profile data, including code,
load values, memory content, and narrow-width operands.

—We describe range-adaptive profiling Trees and show how optimizing the
branching factor and merging behavior can provide an implementable solu-
tion with guarantees on both summarization error and bounded memory.

—We describe the multi-bit trie-based software implementation and the APIs
provided, along with the open-source range-adaptive profiling software.

—We present a method by which range-adaptive profiling can be efficiently
pipelined if specialized hardware support is added and provide a detailed

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:3

analysis of the required hardware. We also elaborate on our prototype imple-
mentation of RAP on an FPGA.

—We quantify the range-adaptive profiling error and memory requirements
for hot-code regions and load-value ranges. With as little as 8 KB of memory,
accuracy of up to 98% is possible.

The rest of the paper is organized as follows. In Section 2, we begin by de-
scribing our online algorithm, while implementation details of our design are
discussed in Section 3. In Section 4, we describe the pipelined hardware imple-
mentation prototype of range-adaptive profiling on an FPGA. In Section 5, we
quantify the advantages of our scheme and provide some qualitative evidence
of its usefulness in the form of range profiles. We describe related prior works
in Section 6 and, finally, conclude in Section 7.

2. PROFILING WITH ADAPTIVE PRECISION

The first difficulty in building a runtime profiling system is in gathering the
raw data. Several software techniques, such as binary instrumentation [Buck
and Hollingsworth 2000; Luk et al. 2005; Srivastava et al. 2001; Srivastava
and Eustace 1994; Bus et al. 2004] and sampling [Arnold and Ryder 2001], can
be used to generate and analyze this profile information with only a moder-
ate amount of overhead [Arnold and Ryder 2001; Ball and Larus 1996; Calder
et al. 1997; Chilimbi 2001; Chilimbi and Hirzel 2002; Duesterwald and Bala
2000; Hirzel and Chilimbi 2001; Larus 1999]. Recently, several researchers have
proposed various forms of architectural support [Anderson et al. 1997; Conte
et al. 1996, 1994; Dean et al. 1997; Heil and Smith 2000; Narayanasamy et al.
2003; Peri et al. 1999; Sastry et al. 2001; Yang and Gupta 2002; Zilles and Sohi
2001] with the aim of increasing accuracy and further reducing the overhead
of software-based techniques. Value profiles can be exploited to perform code
specialization [Calder et al. 1997], value prediction [Lipasti and Shen 1996;
Zhou et al. 2003], and value encoding [Yang and Gupta 2002; Yang et al. 2000].
Operand profiles identify the potential to apply power and performance opti-
mizations [Loh 2002; Brooks and Martonosi 1999]. Address profiles have been
used for data layout optimizations [Rubin et al. 2002] data prefetching mecha-
nisms [Chilimbi and Hirzel 2002], and code profiling for focusing optimization
efforts on the most important regions of a program. Control-flow traces and
path profiles [Ball and Larus 1996; Larus 1999; Zhang and Gupta 2001] can
be used to perform path-sensitive optimizations [Gupta et al. 1998; Young and
Smith 1998] and predictions [Jacobson et al. 1997]. A general-purpose frame-
work for dealing with profile data has even been proposed [Zhang and Gupta
2004]. While gathering data is a difficult problem, it is not the end of the story.

To explain the concept behind range-adaptive profiling, let us start with a
simple example. Suppose we would like to know something about the regions
of code that gcc is spending its time in. The simplest and lowest precision way
to quantify this is to keep one counter, which counts all instructions executed
on behalf of gcc. The counter keeps a perfectly accurate count and covers the
entire program, but, of course, the profile has no precision and fails to provide
any information on which a subset of instructions is really the most important.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:4 • S. Mysore et al.

If two counters are available, the next logical step might be to have one count
the “top” one-half of gcc code and to have the second counter track the “bottom”
one-half of gcc code. In this example each counter is tracking a range of code in
gcc, although, as we discuss in Section 5, this works equally well for memory
addresses, values, and other range-based profile types. This idea of dividing
the code into N ranges for N counters could be easily extended to 4, 8, and 16
counters, and so on. Unfortunately, this quickly gets out of hand and, to track
the program at the precision of an instruction, we would need counters for each
and every basic block.

Our technique is based upon the realization that not all profile information
is equally valuable. The more frequently a set of events occurs, the more impor-
tant it is to precisely quantify and characterize this set of events. Specifically, it
may be sufficient to group profile data into ranges—where the most frequently
occurring ranges of events are identified and broken into more precise ranges,
while the least frequently occurring events are kept as larger ranges. If the pro-
filing ranges are properly managed over time, we can strike a balance between
profile resolution and overhead.

When a particular range of events constitutes a significant portion of the
total profile, then that range should be subdivided and profiled more precisely.
This recursive refinement of profile ranges maps nicely onto a tree, where the
root of the tree represents the entire range of events and each child of a node
represents a refinement of the profiling for a particular subrange. We formalize
this idea as range-adaptive profiling and show how we implement this idea in
a specialized hardware scheme.

2.1 Profile Trees

To gather profiles where the granularity is changing dynamically, we will need a
data structure in which we can store our profiles. The majority of the past work
in this area has assumed a flat storage of the profile. Whether the data was gath-
ered through hardware performance counters [Anderson et al. 1997], stratified
sampling [Sastry et al. 2001], or even potentially in fixed ranges [Zilles and Sohi
2001; Zhou et al. 2004], the end result is essentially a list of equivalent items
and their counts. While there exists some specialized software and hardware
systems that attempt to tightly compress particular types of traces [Anderson
et al. 1997; Conte et al. 1996, 1994; Narayanasamy et al. 2003; Sastry et al.
2001; Zilles and Sohi 2001], we believe that we are the first to present a general
hardware-based methodology for storing profiles in a hierarchical fashion.

As we mentioned above, the most natural way to store our hierarchical pro-
files is with a tree. This tree will keep a constantly current summary of the
data stream and, in this section, we describe the three types of operations on
the tree that we need to support. The first, and by far the most common, op-
eration is a simple update, where a counter in the tree is simply incremented
to track the incoming data. To refine the granularity of a sufficiently hot range
and to ensure precision, we have a split operation. Finally, we need merges to
combine together relatively unimportant data, which ensures that the tree is
carefully pruned to maintain the least number of counters necessary to capture

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:5

Fig. 1. A range-adaptive profiling tree (in this example, each node has two out edges). The diagram
on the left is the state of the tree just before a merge cycle begins. During a merge cycle, the tree is
walked and any set of nodes that have insufficient weight to warrant separate profiles are merged
(in this example, the cutoff is a cumulative weight of 13). Following this merge, an access to item 12
might occur, which will push the node that captures the range [12,13] to go over the split threshold.
This would cause the node to be split into two different nodes and subsequent accesses to item 12
or 13 will be recorded on an item-by-item basis.

all the important information. The splits and the merges change the structure
of the tree and, hence, dynamically remap profile events to the counters. While
at a high level, this simply sounds like a simple tree; in reality, each of these
three functions has been specially designed such that the overall data structure
is both implementable in an online and pipelined way and provides a type of
worst-case bound on error (the ε error discussed in Section 2.2). While all three
operations are discussed in detail, we begin with a discussion of the simple
update.

The profile tree is built of nodes, and each node corresponds to a particular
range of events that the profiler might see. As was mentioned earlier, the root
node represents the entire range of events possible and each child of a node
will capture a proper subrange of its parent. When an event enters the profiling
system, for example the PC of a cache miss, this event is matched into the range
that covers it. Because an event often matches several possible ranges, we need
to find the smallest range that includes that event and then increment that
node’s counter. This will ensure that profiling is done with as much precision as
possible without modifying the tree. (As an example, please see Figure 1). This
figure is a snapshot of the tree structure with each node in the tree tracking
a range of values [min range, max range] and a count to track the number of
times an event entering the profiler mapped to this node as the smallest range
covering the event. (Split and merge operations referred to on this figure are
explained in the following subsection). If an incoming event had a value of 12,
in the graph on the left-hand side, it would match the ranges of [0, 255], [0, 63],
and [12, 13], but only the node responsible for profiling [12, 13] (smallest range)
would have its counter updated.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:6 • S. Mysore et al.

2.2 Growing the Trees

While updates are the most common operation performed on a tree, updates
do not modify the structure of the tree to adapt to the input stream. The two
operations that actually modify the tree structure are split, which further re-
fines the profiling of a given range, and merge, which decreases the granularity
with which a range is profiled. The main idea behind a split is that if a range
is important enough, its counter will increase faster than average. Eventually
this node will grow so ripe that it makes sense to burst the node into a number
of subranges. In this way, the tree grows to increase precision where the profile
has more weight. If the counters from a set of ranges are no longer a sufficient
portion of the whole stream, they can be merged together with little impact.1

The key to applying the split and merge operations is knowing when they
should be applied. This can be done by setting a SplitThreshold and any node
that grows larger than this threshold should sprout children to more accurately
profile each of the subranges. The SplitThreshold is a function of the number of
events processed n and the maximum possible height of the tree logb(R), where
R is the maximum range to be considered and b is the branching factor of the
tree. If a range is not yet fully refined, an event occurrence will be accounted
for by one and only one range, which is the smallest superset of the newly
encountered event. This initial accumulation of the count along the path of the
RAP tree toward the fully refined range is the culprit, which gives rise to the
error in counting. If we build a hierarchy tree over a given maximum range R,
the height of this tree and, hence, the number of ancestors of any node is, at
most, logb(R). To minimize this error, we must limit the count of these ancestor
nodes by setting appropriate split threshold. Specifically we set

SplitThreshold = ε · n
logb(R)

where ε is a user defined constant between 0 and 1. If the SplitThreshold is set
in this way, the maximum amount of error possible, relative to the entire input
stream,2 is ε. For example, if the user sets ε to 1%, that means for any given
range the estimate for that range will never be off by more than 1% of the total
events processed. Further, it can be shown that the maximum amount of mem-
ory required by a tree built with this split threshold is O(logb(R)/ε) (For a more
formal and detailed treatment of the proofs please refer to Hershberger et al.
[2004]). The exact byte counts, overheads, and percentage errors are described
in Sections 3 and 5.

2.2.1 Split. Calculating when an update needs to be followed with a split
operation is actually a fairly straightforward task. We simply compare the value
of the counter with the split threshold described above. Any time a node grows
over this limit, we need to add a set of children to this node that cover and

1Counters are never decremented, which is why this is not a sampling scheme. Rather, merges
happen when the rest of the tree has outgrown a particular set of regions.
2The ε error is defined as a fraction of the total length of the input stream, while percentage error
is relative to the actual count of a range.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:7

equally subdivide its range. The original node keeps its counter and each of the
children have their counts initialized to zero.

2.2.2 Merge. While splitting is crucial to the adaptation of the granularity,
if all we ever did was update or split, it would be impossible to bound the
total amount of memory required. For example, a region of code may start
out “hot” and, as such, might have been split into many separate counters to
count every basic block within. Later, however, it may turn out to be relatively
unimportant and we may wish to release all counters associated with the basic
blocks and retain just one counter for the entire region. A way to un-split a set
of regions is to do a merge operation. Rather than simply throwing away the
range-profile information from each of the children nodes, we incorporate them
into the parent node. Because any count gathered for a child is equally valid
to be stored on the parent range (because it is a superrange), we simply sum
together the count of the child nodes and add them into the parent.

3. IMPLEMENTATION DETAILS

In order to build an effective profiling system around the algorithm described
in Section 2, there are several tasks that need to be performed at runtime.
First, we need a mechanism to gather profile data. In a purely software-based
approach, these profiles can be generated through either binary instrumenta-
tion [Buck and Hollingsworth 2000; Luk et al. 2005; Srivastava and Eustace
1994; Srivastava et al. 2001; Bus et al. 2004] or hardware performance coun-
ters [Anderson et al. 1997; Corporation 1995, 1997; Hewlett-Packard 1994; Inc
1995]. Even in a software-based approach, the input data should be buffered to
some extent and duplicate values should be merged together to help improve
performance. In the case of a hardware-assisted or hardware-only approach,
we assume that the profiles are generated using a preexisting or proposed pro-
filing structure [Conte et al. 1996; Dean et al. 1997; Heil and Smith 2000; Zilles
and Sohi 2001]. Specifically, we assume a structure similar to ProfileMe [Dean
et al. 1997] for collecting the input events (load values, PC, memory addresses,
etc.). The buffered events are processed one after another in the order the load
instructions (for value profiling) or branch instructions (for code profile) retire.
The buffer size and the sampling module will affect the overall accuracy of a
profile, but it has no impact on the way in which RAP summarizes the data
and, for this paper, we concentrate solely on the accuracy of the summarization
step.

Processing the gathered events and maintaining the RAP tree-based counter
structure can be time consuming if naively implemented. In this section, we
discuss ways of speeding up these tasks and describe the software implemen-
tation of RAP and also a hardware-based approach that operates with little or
no support from software.

3.1 Algorithm and Architecture Design Issues

To enable efficient storage and searches on the profile tree, a suitable branching
factor (b) must be used. The branching factor is the number of children that will

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:8 • S. Mysore et al.

Fig. 2. The two independent graphs plotted show the memory size requirement for different
branching factors b (lower graph) and merge-interval ratios q (upper graph). We choose b = 4,
as it is a better tradeoff between memory consumed and the height of the tree. With q = 2, we see
that the memory size is the least. (Note that R = 232)

be generated in a split operation. If b is too small, the ranges marked for profiling
will take longer to converge on the best set. For example, if one particular value
in a range is accounting for 100% of the profile data seen, it will take exactly
logb(R) splits to finally start profiling this item individually, which, in turn,
effects the error in the profile. On the other hand, if b is too large, the amount
of memory required to store the tree will grow. The higher the branching factor,
the more extraneous children will be kept around. To seek a balance between
these two constraints, we analyzed the effect of branching factor on the worst
case number of nodes that can appear in the tree. Figure 2 shows this tradeoff.
On the x axis we have a variety of different branching factors and on the y
axis is the worst-case number of nodes that could be generated for a branching
factor of b and an ε of 1%. We found that a branching factor of 4 provides a good
tradeoff between the required amount of memory and the effect on performance
and error. Note that the figure shows worst-case number of nodes and, as will
be shown in Section 5; in the common case, the number of nodes is a factor of
1000 less.

Another problem that shows up in an implementation is when to perform the
merges. Finding a node that needs to be split is easy. A counter is updated and
then we check if the counter is over the threshold. Finding the places where a
merge must be performed is much more difficult, as they, by definition, happen
away from where the updates are occurring. How does one detect when a merge
is needed? One approach is to build a secondary merge heap, which stores a list
of those nodes that are most in need of merging. While this approach is suitable
from a theoretical standpoint and for a software implementation, updating the
merge heap requires many extra tree operations and a full additional tree.
Furthermore, one merge can result in a new node which, in turn, needs to be
merged into its parent, and so on. Rather than detecting and handling merges
at the soonest possible time, we propose batching the merges together, enabling
an easier hardware implementation.

By performing merges periodically, instead of in a continuous manner, we
avoid the problem of having to continuously search the tree for valid sets of
nodes to be merged. In order to grow, the tree must split and, in order to split,
the counts of the nodes must grow past the split threshold. The key point to

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:9

Fig. 3. If merges are performed continuously, the tightest bound on the number of nodes required
can be maintained, but at the cost of continuously searching for merge opportunities every single
cycle. Instead, we can still have bounded worst-case memory requirements if we batch the merges
together with an exponentially decreasing frequency. (Note that R = 232)

see is that as the number of events processed grows, the relative rate at which
the tree can split must slow down. In fact, an un-merged tree can grow at a
rate that is, at most, logarithmic with the number of events processed. Instead
of having a fixed period for merges, we can have merges with an exponentially
increasing period and the worst-case bounds will still hold. This idea can be
seen most clearly in Figure 3.

In Figure 3, the x axis shows the number of events processed (instructions
executed, values profiled, etc.). The y axis is the worst-case bound on the num-
ber of nodes required to profile with an ε of 1%. At the beginning and after every
merge, the worst-case number of nodes is bounded to 384k. After a merge, the
worst-case size of the tree grows slowly, inching up at a logarithmic rate. If we
wait for some number of events e to pass before doing a merge operation, the
next time around we can wait a total of 2e events before the worst-case number
of nodes grows to the same point. In other words, if it took e events to force
a split in the first period, in the second period the tree will be twice as large
and it will require twice as many events in order for a split to be necessary.
While in this example, we double the interval between consecutive merges, in
general, we could increase the interval by a factor of q. In Figure 2, we show
that doubling the intervals is the most cost-effecting setting for q. Also, we need
to note that the error with which RAP profiles is purely based on the criteria to
split and has nothing to do with when we merge. Hence, the error guarantees
with a periodic merge remains the same, as the one where a merge happens on
every event.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:10 • S. Mysore et al.

3.2 Software Range Profiling

More often than not, system profiling involves gathering different types of pro-
file information, analyzing individual streams of profiles, and correlating and/or
deriving inferences about system behavior. These individual streams could be
program counter values, memory load addresses, load values, register values,
control flags, branch targets, or many others. Using the results from the pre-
vious sections, we have developed a software implementation of RAP that can
be called from software-only systems. We now describe some of the APIs the
implementation provides and how a range-adaptive profiler can be extended
for simultaneous profiling.

The three main methods - rap init(), rap add points(), and
rap finalize() can be used for both online and offline profile trace analysis.

—rap init(number of simultaneous profiles)—initializes the RAP tree with
an initial set of counters and appropriate range values. rap init also ini-
tializes data structures to enable simultaneously profiling multiple events.
For example, to find both hot regions in a code and the most frequently ac-
cessed memory locations, RAP tree can be initialized to profile both program
counters and load memory addresses. number of simultaneous profiles spec-
ifies the number of distinct types of profiles that needs to be simultaneously
analyzed.

—rap add points(profile event identifier, count, profile type)— Since RAP is
a dynamically allocated tree, rap add points looks up the appropriate
counter, updates the counter, and, when needed, calls the internal functions
rap split() and rap merge() to either split or prune the tree to maintain
adaptive precision with a limited set of counters. profile event identifier for a
given profile type is looked up in the RAP tree and its corresponding counter
is incremented by count.

—rap finalize()—Some feedback-directed optimization algorithms, such as
those for value specialization, would like to know of any changes in pro-
gram behavior. For this, they may want to query the profiler periodically or
on a event-driven basis to obtain the latest inference about the program.
rap finalize provides precisely this feature. In addition, the postprocessing
phase of deriving statistical inferences about the stream can also be done
through rap finalize. The RAP tree, which contains precise information,
can be dumped in an ascii format for further processing, such as identifying
hot spots, range coverage, phase identification, and so on.

3.2.1 Optimizing RAP. Given that runtime system profilers need to pro-
cess billions of events per second, it is very important to consider optimizations
that increase the effective throughput of RAP. In this section, we propose the
addition of a merging-event buffer and quantitatively examine the performance
advantages. For all experiments in this section, we choose to use a set of ap-
plications, which would be a good mix representative of integer, floating-point,
and multimedia benchmarks—gcc, gzip, vpr, applu, mpeg2 encode, mpeg2 de-
code with Minnespec inputs [KleinOsowski and Lilja 2002] and ran them all to
completion on a Pentium 4 (IA32) running Linux 2.4 (Fedora Core). We used

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:11

Pin [Luk et al. 2005] as a binary instrumentation tool to gather the profile
data. The RAP APIs were exercised by calls that were dynamically inserted
into the host application and the runtime of the complete system is examined.
The merging-event buffer has two significant advantages.

The first advantage of the merging buffer is that it reduces the behavior
switch overhead. For a high precision run of RAP, the trees can grow to be
quite large. The fact that every event in the host program is interleaved with
an estimated set of about 20 accesses to a recursive data structure wreaks
havoc on any locality in the original program. While this will not effect the
functional measurement of the stream (because Pin does not instrument itself),
it will certainly make the whole system execute much more slowly. Instead,
by buffering the updates (which requires walking over only a small amount of
memory) and committing them as a group, the impact on the memory hierarchy
is greatly reduced. In fact, because they are committed as a group, the total
number of walks through the tree can be reduced as well, while the precision
and behavior of RAP remains the same, since we check for the need to split a
node after every increment of a counter.

The second advantage is in exploiting locality of access in the profile events
themselves. While RAP is built to allow efficient profiling regardless of whether
there is any locality or not, the fact is that a few frequent event types are re-
sponsible for a strong majority of accesses. For example, in our observations of
value profiles for gcc, the value zero accounted for 34% of the loads in the sys-
tem. Clearly, calling RAP and traversing the tree to find the node for zero each
and every time a load returning the value of zero is found would be wasteful.
Instead, the merging buffer uses hashing to merge together identical events
for performance reason before they are inserted into RAP. If there is a con-
flict in the hash table, instead of pointer chaining, we evict the older entry
from the hash table and then insert it into the RAP tree. For frequently oc-
curring events, such as the zero value load in gcc, it will consistently be ser-
viced by the fast software buffer and will only be committed to the RAP tree
when there is a conflict or at program completion. We have found that even
small amounts of aggregation that occurs because of the buffer can signifi-
cantly improve the performance of the profiler, even when the profile stream
was not expected to have a significant amount of locality (for example, value
profiling).

Figure 4 shows the speedup achievable on different benchmarks shown on the
x axis. We can see that with just a 1 KB buffer, a speedup of more than 25 times
can be achieved on some benchmarks (gcc) with an average speedup of 13×.
With a 1 KB buffer, the RAP tree does not have to process every time a profile
event enters the system, but rather would process batches of identical events
aggregated together. We also wanted to measure the best possible speedup that
can be achieved by having a huge event buffer. To this end, we gathered the
profile as the programs executed and this trace was then compressed offline to
the maximum extent by aggregating all identical events across the entire trace.
RAP APIs were then called in to process these compressed traces. We observed
that for gzip, a speedup of more than 70× was possible and an average speedup
of 46× across all benchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:12 • S. Mysore et al.

applu

gcc
gzip

vpr
encode

decode

average

Benchmarks

0

20

40

60

80

Sp
ee

du
p

no_buffer
1k_buffer
inf_buffer

Fig. 4. The graph shows the speedup achievable because of a buffer to aggregate and collect events.
The x axis shows a set of benchmarks we choose to demonstrate the effects of a buffered RAP. The
y axis shows the speedup achievable in comparison with a nonbuffered version of RAP. The third
bar represents the possible speedup when all events are aggregated to the maximum extent (in
cases where we have huge buffers or while processing offline traces).

3.2.2 Mutlibit Trie Implementation. To efficiently implement a data struc-
ture that performs the job described in Section 2, we build on the idea of a
multibit trie [Sanchez et al. 2001; Lampson et al. 1999]. A trie is an ordered
tree data structure where the position of a node in the tree shows what key that
node is associated with. All the descendants of any one node have a common
prefix of the string associated with that node and the root is associated with
the empty string. A k-bit multibit trie is a trie defined over the alphabet {0, 1}k ,
where each node then has 2k children. If we are profiling over the set of 32-bit
integers, then a k-bit trie will have a maximum height of 32/k.

In order to use a multibit trie, we need to add some additional constraint
to the problem definition from Section 2. Specifically, we need to require (1)
that all of the ranges are of a size that is a power of two and (2) that all of the
ranges are properly aligned (that is range.start mod range.size = 0). If these
two properties hold, then we can use a multibit trie to store our nested ranges
and we can exploit the existing work on efficient software multibit tries from
the study of ip lookup [Sanchez et al. 2001; Srinivasan and Varghese 1999a] to
build a fast implementation.

As explained earlier in this section, the number of children counters a counter
splits into is called the branching factor (which is 2k for a k-bit trie). We can
easily see that a RAP tree with branching factor of two is nothing but a binary
trie where the path taken to find the counter responsible for an incoming profile
event is based on the bits in the event’s identifier. For example, a profile event
with identifier 0×10010110 will be accounted for by a counter, which lies in the
path with branch labels <10010110>. In Figure 5, the tree on the left shows
how the root node acts as a “match-all” node of the RAP tree and how each node
splits into two other nodes covering one-half the range of their predecessor. The
tree on the right, in Figure 5, shows RAP tree for branching factor of four, in

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:13

0*, 1 1*, 2

11*, 010*, 10

100*, 35 101*, 0

10*, 501*, 000*, 1

1000*, 0 1001*, 40

11*, 2

1011*, 01010*, 0

*, 2 *, 2

Fig. 5. The figure shows the trie-based implementation of the RAP tree. Every node of the tree is
a counter with a prefix and a count. Any time an incoming profile event’s identifier hits the longest
prefix match, the counter in the node, corresponding to the match, is incremented. The figure on
the left is a binary trie where for every incoming profile event the counter is chosen by traversing
down the RAP tree, considering one bit at a time. The multibit trie version of the same is shown on
the right-hand side. We can see how RAP adapts to the most frequently seen events. (In this case,
it is 0x10010110.)

which case the multibit trie chooses the path to traverse, based on two bits from
the identifier at every level. The counter with the smallest range matching the
incoming profile event is then incremented.

The distribution of our software implementation of RAP implements the
algorithms described in Mysore et al. [2006]. It also provides initialization and
postprocessing function to dump the RAP tree for further processing, such as
those used by optimization tools, or program characterization and visualization
tools. Our software version is available at: http://www.cs.ucsb.edu/~arch/rap

3.3 Hardware Support for Range Profiling

While a software-based approach has many applications, we are interested in
using this technique at high speed in runtime systems. For example, we could
use this method to analyze a front-side bus trace to see what memory is be-
ing accessed when a program runs for minutes or hours. We have purposefully
designed the algorithms to allow for an efficient and high-speed hardware im-
plementation, which can tap into any streaming source of profile information.
This source can be from a bus or debug port [fs2] off-chip, or plugged into the
back end of any number of proposed on-chip profiling schemes. We have devel-
oped an FPGA prototype of RAP that can be interfaced through a high-speed
network or PCI-X; this is explained in detail in Section 4. In this section, we
describe a hardware design. In Section 3.4, we quantify the design in terms of
performance, power, and area.

3.3.1 Processor Design. The main features of our conceptual hardware de-
sign can be seen in Figure 6. The profiling engine is divided into five main stages.
In stages 0 and 1, the input events are first buffered and then all matching
ranges are found. In stage 2, the smallest matching range is determined, which
then causes the appropriate counters to be updated. Splits and merges are spe-
cial cases and require pipeline stalls. With the exception of the actual counter
increment, each update to the profile tree is independent from the previous one.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:14 • S. Mysore et al.

Fig. 6. Architecture for the pipelined RAP engine. Stage 0—Shows the event Buffer, which buffers
incoming events and the number of times it is seen, since it was previously processed by the RAP
engine . Stage 1—a TCAM range matching provides indices to all TCAM cells which match the in-
coming event identifier (IP address, PC, value, etc.). Stage 2—a priority arbiter chooses the longest
match by giving it the highest priority. Stage 3—a set of counters are maintained, each correspond-
ing to an entry in the TCAM array; a priority arbiter chooses the counter to be incremented for
the incoming event. Stage 4—for every counter incremented in Stage3, a comparator checks the
counter value against the current value of the split threshold and, if necessary, initiates a node
split to adapt the precision of the profile maintained.

Splits and merges require more work, because they create interevent depen-
dencies that must be satisfied before more events may be processed. However,
compared to updates, splits and merges are very small in number and, hence,
have little impact on the performance and the total number of stalls is small
and bounded.

—Stage 0. The small buffer shown at stage 0 in Figure 6 stores incoming points.
When the need to perform a merge occurs (periodically and at exponentially
decreasing frequency), the pipeline is stalled, while the counters are searched
for potential merge sets. During this time, events will stack up for an esti-
mated ten to a hundred cycles and we will need to keep them in a temporary
storage so they can be processed later. In the case of a split, the pipeline
will need to be flushed and reset to the point directly before where the split
should have occurred. In this case, the buffer will reenter those events into
the pipeline. It is quite possible to make this buffer preprocess the points by
combining identical events. We have observed that a 1 KB buffer can reduce
the throughput requirements on RAP by a factor of 10 for code profiling.

—Stage 1. For every point fetched from the buffer, we need to find the set of
ranges that include that point. This operation is very similar to the longest
prefix match and can be carried out in constant time with a ternary content
addressable memory (TCAM) [Pagiamtziz and Sheikholeslami 2004; Agrawal
and Sherwood 2006], as shown in Figure 6. Ternary CAM (TCAM) is a special
type of CAM [Pagiamtzis and Sheikholeslami 2006] which, because of its
special cell design, can store ranges. This is enabled by the fact that TCAM
can store don’t cares (“*”) besides “0” and “1”. It also provides support for
searching wildcard bits, which can match either “0” or “1”. Hence, wildcard

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:15

bits can be used in a search operation to indicate that some bits of the search
are don’t cares. In addition, wildcard bits stored with the data are not used
for determining a match. The TCAM sets the appropriate match line high,
for all ranges that match. In order to figure out the smallest range which is
also the longest prefix, the TCAM entries have to be partially sorted by prefix
length. There can never be matches from two different entries of the same
range width. Hence, this stage can be further pipelined by looking at nibble
or byte for each comparison [Li et al. 2004].

—Stage 2. After the potential matches are identified, we need to find the longest
prefix match, which should correspond to the last matching entry. Given N
match lines in order, sorted by prefix length, finding the longest match is
simply a matter of giving highest priority to longest matches and allowing
only one match to proceed. This is exactly the function of a fixed-priority N ×1
arbiter. The output of the highest priority line will trigger the word line of
the matching counter. Note that while in this paper, we assume a TCAM-
based approach, with a branching factor of b, the tree is really a multibit trie
and there are a variety of techniques that can be used to build high-speed
implementations from network algorithms [Srinivasan and Varghese 1999b].

—Stage 3. Once the smallest range match has been found, we simply need to
update the appropriate counter. To handle a continuous stream of data to the
array, one read and one write port is needed.

—Stage 4. The final stage compares the result of the updated counter with the
split threshold. If the counter is above the split threshold, then the node is
expanded to have four children (for branching factor (b) = 4), each initial-
ized to a zero count. The split and merge thresholds are stored in separate
registers and recomputed whenever the number of events (n) change. This
computation can be done in parallel with other operations as it depends only
on n and some predefined values. In our implementation, the split and merge
thresholds can be the same. Hence, just one computation and one register
is sufficient. If a split is encountered, the pipeline may need to be flushed to
properly account for these new nodes.

In our implementation a split requires making new entries in the TCAM
and SRAM data array. Four new children nodes are created and inserted in the
TCAM with the ranges set appropriately, covering one quarter of the parent
range. Corresponding entries in the memory are inserted storing the counter
and other information of the newly created nodes. A split node could be either a
leaf node or a parent. If the node is a leaf, then the split operation involves just
setting of a pointer from the parent to the newly created children. If the node
is already a parent, but its children do not cover the entire range of the parent
(this could be the case after an interior merge as described in Figure 1), then
the split also involves an extra operation of identifying the new parent of the
existing children and setting the children pointers. In terms of performance,
these splits are not a large problem as there can be, at most, 6400 of them in a
given interval in our implementation.

A merge operation is even more expensive compared to other operations, but,
by batching them together, we reduce the overhead significantly. Batch merges

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:16 • S. Mysore et al.

are initiated periodically and in every batch of merges entries in the TCAM
are scanned bottom-up to find candidate nodes to be merged. Corresponding
SRAM data array entries are then deleted. This recursive operation prunes the
RAP tree to provide compacted profile information. If there are 4 billion (232)
events to be profiled, and we assume that there will be at least a thousand (210)
events before we do our first merge, then there will only need to be 32−10 = 22
different batches of merges. Similarly, to profile 264 events, requires 64−10 = 54
batches of merges. If we wish to profile large amounts of data, any cost of doing
a merge is quickly amortized.

3.4 Analysis of Required Hardware

In this subsection, we estimate the power consumption, area overhead, and de-
lay of various hardware components involved in the hardware implementation
of RAP. We extract and modify the power models from Cacti-3.2 [Shivakumar
and Jouppi 2001/2] and Orion [Wang et al. 2002] tools to model the TCAM,
SRAM data array, comparator, priority arbiter, and registers. We then validate
our results against some of the published results from high-speed circuit de-
sign conferences. We assume a very conservative 0.18-μm technology and we
change the voltage supply and various other device parameters accordingly. In
particular, we present the worst-case maximum delay and energy consumption
by assuming the maximal switching for any particular operation.

Cacti is a widely used cache-modeling tool, which estimates the area, delay,
and maximum energy consumption in a cache. Cacti also provides various de-
vice parameters, which are utilized by Wattch [Brooks et al. 2000] to model
power consumption for a CPU model. The Orion [Wang et al. 2002] tool also
uses Cacti parameters to measure the power consumption in routers by mod-
eling individual components, such as FIFO buffers, crossbars, and arbiters. We
make use of all of these tools where appropriate and validate every estimate
that we can.

3.4.1 TCAM. In Pagiamtziz and Sheikholeslami [2004], a TCAM design
of 1024 × 144 is presented that consumes 2.89 fJ/bit/search and the delay is
7 ns in 0.18-μm CMOS technology. Based on these results from Pagiamtziz
and Sheikholeslami [2004], we estimate the area and energy consumption for a
4096 × 36 TCAM in 0.18-μm technology—the area requirement is 19.32 mm2

and maximum energy consumption is 0.426 nJ for a power-optimized TCAM
design.

3.4.2 Priority Arbiter. Orion only provides support for matrix arbiters and
round-robin arbiters, which are structurally very different than a priority ar-
biter. We use the result from Fung and Sachdev [2004] and Wang and Huang
[2000] to estimate the area, delay, and energy consumption of N × 1 priority ar-
biter. We take 256-bit priority encoder from Fung and Sachdev [2004] and apply
two-level lookahead to design the 4096-bit priority encoder. We use the result
of 256-bit priority encoder, which has a delay of 1.6 ns, and energy consumption
of 5 pJ in 0.6-μm technology. We scale these results and estimate the delay of
4096-bit priority arbiter in 0.18μm CMOS technology to be 1.16 ns and energy

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:17

consumption to be 63 pJ. We estimate the area using the result from Wang and
Huang [2000] in 0.18-μm technology and we find that 4096-bit priority arbiter
requires about 0.3 mm2 of area.

3.4.3 SRAM Data Array. The counters and pointers, as described in the
previous subsection, are stored in a block SRAM. This SRAM data array can
be modeled using the Cacti tool by extracting the data-array model of a direct-
mapped (DM) cache. We use the data-array component of the direct-mapped
(DM) cache in which only one wordline is enabled. This data array design is
similar to the design of our SRAM data array. We validate the area and energy
consumption of 4-KB SRAM by comparing it with the results extracted from a
memory compiler. A 16-KB SRAM in 0.18-μm technology requires an area of
about 3.17 mm2, takes 1.26 ns to access, and consumes 0.54 nJ.

3.4.4 Miscellaneous. We also model various other hardware components,
which do not significantly contribute to the total area or energy consumption.
By modifying Cacti, we can model a comparator by extracting the model used in
the set-associative cache. We find that for a 32-bit comparator, the area (0.00034
mm2)is very insignificant compared to other hardware components and the de-
lay and energy consumption are 0.572 ns and 0.0016 nJ, respectively. Building
again off of the device parameters from Cacti, we can model the pipeline regis-
ters. For each register, we find that area requirement is 0.0016 mm2, maximum
delay is 0.164 ns, and maximum energy consumption is 0.443 pJ. To control
the TCAM, some additional control registers and data registers are required.
We model these registers by the same approach adopted for modeling pipeline
registers. For a small TCAM of size 4096 × 36, one control register and two
data registers can be used. We model these TCAM registers and find the area
and energy consumption to be 0.0026 mm2 and 0.613 pJ respectively.

We model the data bus wires and control bus wires using the Orion tool. Using
8000-μm wire length, we find the energy consumption for 64-bit bus wires to be
0.94 nJ.We estimate the bus wire length from the area and aspect ratio of our
hardware design and, subsequently, provide the energy consumption result.

3.4.5 Putting It All Together. Using 4096 × 36 TCAM and 16-KB SRAM
data array configurations and summing up the area of all hardware components
we find that our Pipelined RAP Engine requires 24.73 mm2 of area in 0.18-μm
technology. The clock frequency is determined by the maximum delay in any
pipeline stage and we find that it is governed by TCAM lookup stage. The
critical-path delay in TCAM lookup stage is 7 ns. We can aggressively pipeline
the TCAM stage by doing byte/nibble comparison at each pipeline stage [Li
et al. 2004] and make it comparable to the SRAM stage, which takes 1.26 ns
time. We also add up the maximum energy components of all the hardware
components and we find that a total of 1.272 nJ energy is consumed. It is also
true that an implementation of RAP that can handle 4K different ranges is
very aggressive and would most likely be applicable for off-chip profiling, but
that for a 400-node version the area and power would be more than a factor
of 10 times less. On average, RAP requires four cycles to process an event and
requires two cycles each for TCAM and SRAM accesses per event.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:18 • S. Mysore et al.

4. HARDWARE PROTOTYPING OF RANGE ADAPTIVE PROFILING

To demonstrate on-line profiling with our proposed hardware implementation,
we have implemented a prototype for our profiling technique on an FPGA board.
The microprocessor communicates with the FPGA board via a PCI bus con-
troller built for an Altera FPGA board (EP1S25F1020C5). This FPGA board
has a little over 25,000 logic elements and just under 1 million memory bits,
which is enough for our implementation. We use Altera Quartus II tool to syn-
thesize our overall design. Next, we describe how we implement each major
component including the queue, TCAM, SRAM, arithmetic logic unit (ALU),
and the controller.

4.1 Queue

We implement the queue as a synchronous memory module with the following
nine ports: write clock, read clock, write enable, read enable, data input, data
output, empty, full, and reset. Before the queue can be used, it must be reset to
set its internal address pointers to address zero. For simplicity, we implement
the queue as positive edge triggered with no negative logic. On the rising edge
of a clock, we can read or write, and on the falling edge of a clock we determine
if the queue is full or empty. Resetting occurs on the positive edge of the reset
signal. For the RAP processor, we implement the queue to hold 1024 values,
each one 32 bits in size. Our synthesis results show that the queue can run at
115 MHz while requiring only 46 logic elements and 32,768 memory bits on our
FPGA board.

4.2 TCAM

The TCAM is also implemented as a synchronous memory module and it has
the following ten ports: clock, write enable, read enable, search enable, select,
address input, data input, address output, data output, and found. Like the
queue, a TCAM must be reset before it can be used and it is also positive-
edge triggered with no negative logic. Reading and writing is performed at
the positive edge of the clock with their respective enable signals. We search
through its memory for the address of a matching data input in one clock cycle.
If there are multiple matches, the TCAM will select the match farthest away
from address zero, i.e., it will select the match with the largest address. When
a search is initiated, on a match, the found port produces a “1”; otherwise, it is
“0”.

In our implementation, the TCAM consists of a decoder module, various
memory cell modules, and a priority encoder module. Each memory cell module
contains a small amount of synchronous memory and some combinational logic.
The synchronous memory contains one address bit and a number of data bits.
The select port sends a signal to each memory cell to select between address
0 and 1. The content of the TCAM memory is encoded in a very specific way;
each memory cell breaks up its values in memory such that the upper one-half
of the bits represent a bit mask and the lower one-half represents a value. For
example, if the contents of a memory cell in the TCAM are “00111100,” then
the upper one-half “0011” is the bit mask and the lower one-half “1100” is a

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:19

value; together these translate into 11** for the TCAM. Another example is
10110011, which translates to *0**.

For a TCAM match operation, we need to perform the following operations
in some simple combinational logic. Let some memory cell in the TCAM contain
the value “00111100” (which translates to a TCAM entry of “11**”), and we are
trying to match the value “00001110” at the data input port. In this case, we
are actually searching for value “1110”, which is the lower half of the value
at data input port. The first step is to do bitwise-or between the value of the
data input with the bit mask of the memory content; we get 0011|1110 = 1111;
we then do the same for the memory contents and we get 0011|1100 = 1111.
The second step is to compare these two values and if they are equal, we have
a match. In the above example, we get a match as in both the cases we get
the output as “1111”. Similarly, if we search for “1000”, we get the output as
(0011|1000 = 1011) and for memory contents we get 1111 and, hence, we do not
get a match since they are unequal. On multiple matches, the priority encoder
finds the match with farthest address from address zero. For a complete search
operation, we do the above operation for each memory cell which stores the
encoded TCAM entry. Since each memory cell can be read individually and in
parallel, the search operation takes one clock cycle. Our synthesis results show
that a TCAM with 128 addresses and 64 bit memory cells runs at 51 MHz and
takes 10,969 logic elements and 16,384 memory bits. The larger the number of
memory addresses or data bits, the slower it runs and the more logic elements
and memory bits it takes.

4.3 SRAM

We implement SRAM as a standard synchronous dual port/dual clock memory
module and its seven ports are: write clock, read clock, write enable, write ad-
dress, data input, read address, and data output. We use the standard SRAM
with 128 addresses and 60 bits per address. We find that it runs quite fast at
290 MHz, taking no logic elements, and takes about 7980 memory bits.

4.4 Arithmetic Logic Unit (ALU)

Our ALU implementation is a piece of combinational logic module meant to
handle a large amount of data. It keeps track of the following: (1) the maximum
number of nodes, (2) current number of nodes, (3) the split and merge thresh-
olds, (4) the merge period, (5) the number of updates, splits, and merges, (6) the
number of events processed, (7) the execution count and address being updated,
(8) the logarithm of the maximum range in the tree, (9) the error approxima-
tion, and (10) the next instruction type, that is, whether the next instruction is
an update, split, or merge. When the ALU is reset, most values are initialized
to 0, but some values are initialized to 1, namely, the current and maximum
number of nodes. Yet others are initialized very differently.

4.5 Controller

We implement the controller as a state machine with a finite number of states.
There are three main states currently operational: (1) reset, (2) update, and (3)

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:20 • S. Mysore et al.

split. Each of these main states have substates, e.g., reset has eight total states:
reset, R1, R2,. . ., R7. Update is unique in that it only has one state; the pipeline
handles the rest of the update. The split operation has about 16 states: split,
S1, S2,. . ., S15. The first five states are used for flushing the pipeline, while
others manipulate reading and writing to and from the TCAM and SRAM.

5. EVALUATING RANGE ADAPTIVE PROFILES

In the sections leading up to this, we have presented the algorithms and de-
signs necessary to perform range-adaptive profiling. In this section, we analyze
the results of our effort by quantifying the memory requirements and errors
involved across several SPEC benchmarks, and describe several example use
scenarios.

5.1 Profiling with RAP

In trying to examine ranges in the code, values, addresses, or other parame-
ters of a running program, RAP should focus in on the hot ranges. A range is
considered hot if, and only if, the total count for that range and all its nonhot
subranges is above a certain threshold. Note that our definition excludes the
possibility that a range is considered hot simply because it has one or more hot
children. This is very useful, because with a small fixed number of hot ranges
we can accurately paint a picture of the distribution of events across the entire
range of possible events. For example, when running RAP on a trace of basic
blocks, our technique will automatically focus in on the most important regions
of code. Yet, it will provide a balanced overview of the code as a whole. For gcc,
we identify seven distinct regions of the program, where each region accounted
for more than 10% of the instructions executed.

In addition to code profiles, we also wanted to truly demonstrate the abilities
of our scheme by profiling a set of events that has significantly less locality than
code profiles. While it has been shown that a single value may account for the
top 20 to 40% of all load values, there is a large tail to this distribution, which
will stress our range-profiling system. By building a RAP tree over the set of all
values loaded by a program, we can calculate the ranges of values, which would
cover 50, 80, or even 95% of all loads. Figure 7 shows exactly this information
for gzip and identifies all ranges of load values, which are more than 10% hot.
In this figure, the hot ranges of load value are shown (with min and max) and
are annotated with their relative weight.

From this figure one can easily see that for gzip, load values in the range
of [0,e] account for 13.6% of all loads, while the range [0,fe] excluding [0,e],
accounts for 16.7%. Thus, the entire range [0,fe] (including the hot subrange)
accounts for 13.6 + 16.7 = 30.3% of loads executed. These summaries are com-
pletely computed online and in hardware and could be used to guide optimiza-
tions such as value range specialization or to assist in value prediction.

For any profiling system to be feasible, the theoretical and empirical error
and memory overheads need to be low. A theoretical analysis of RAP’s memory
use and error was overviewed in Section 2 and, in Sections 5.2 and 5.3, we
reevaluate these in the context of code and value profiling. We run our system

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:21

[0, ffffffffffffffff] 0.9%

[0, 3ffffffffffffffe] 12.4%

[0, 3fffe] 22.8% [11ffffffd, 12000fffb] 10.0% [12000fffc, 12001fffa] 12.2%

[0, 3ffe] 11.3%

[0, fe] 16.7%

[0, e] 13.6%

[0, ffffffffffffffff] 0.9%

[0, 3ffffffffffffffe] 12.4%

[0, 3fffe] 22.8% [11ffffffd, 12000fffb] 10.0% [12000fffc, 12001fffa] 12.2%

[0, 3ffe] 11.3%

[0, fe] 16.7%

[0, e] 13.6%

Fig. 7. Hot ranges among the load values in gzip as identified by RAP with ε = 1%. We see that
there are seven hot ranges, which were encountered for more than 10% of the entire load-value
stream. Note that this tree is a subset of the RAP tree, showing only the hot nodes.

on a set of programs from the SPEC benchmarks to completion, for reference
inputs. The choice of these two types of profiles was governed by factors, which
can stress test the RAP system. The locality present in code profiles will stress
the upper bounds on memory required for RAP. The heavy tailed distribution
of value profiles exercises the range adaptation aspects of RAP. In the rest of
this section, we present an analysis of RAP with respect to memory required
and error and illustrate advanced profiling applications of RAP.

5.2 Memory Analysis

As explained previously, range-adaptive profiling stores profiles hierarchically
in a tree structure (RAP tree). The number of nodes in the RAP tree will tell
us the memory requirement of this scheme. This section gives some practical
estimates for various benchmark programs, with each node requiring about 128
bits of memory.

Figure 8 shows different benchmarks on the x axis and the maximum and
average number of nodes required by RAP in evaluating these benchmarks is
shown on the y axis. The left-hand two graphs show the maximum and average
memory required for various benchmarks in identifying hot regions of a code for
ε = 10% (top) and ε = 1% (bottom). As the tree grows between merge intervals
and shrinks after a merge, the maximum memory is the largest of the tree
sizes just before the merge operations during the entire run of a benchmark; the
average number of nodes indicates the common-case memory requirement. The
two graphs on the right present similar parameters for value profiles. We see

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:22 • S. Mysore et al.

Fig. 8. The number of nodes in the RAP tree, which is an indication of the memory required by
our profiler, is plotted on the y axis. The left-hand two graphs show the maximum and average
memory required for various benchmarks in identifying hot regions of a code for ε = 10% (top) and
ε = 1% (bottom). The two graphs on the right present similar parameters for value profiles.

that a maximum of 500 nodes is sufficient to evaluate code profiles, with ε = 10%
for the set of benchmarks. In Section 5.3, we show that with this many nodes
we can, on average, provide 98% accurate information on hot code profiling.
We can also observe that gcc, which has the highest number of distinct basic
blocks, requires a maximum of 453 nodes in the RAP tree for code profiling.
The graphs on the right of Figure 8, show similar trends for value profiling.
parser, which has the largest number of load values, requires a maximum of
733 nodes and an average of 203 nodes in the RAP tree (Figure 8 for ε = 10%).
Similarly, the RAP tree requires an average 300 nodes to provide 99% accurate
information on load profiles.

An important observation to make is that RAP judiciously allocates counters
only if it is sure it is worth allocating them. For example, since the locality
among values is less, value profiling with RAP uses less memory (average 300
nodes) compared to code profiling (average 450 nodes), which has more locality.
This advantage of being able to provide such accurate information using a small
amount of memory, is attributed to the splits and merges we do on the RAP tree
(as described in Section 2).

In Figure 3 we described the bounds on memory requirements as they
change over time. To test what happens in a real implementation, we gen-
erated Figure 9, which shows the variations of tree size for one such run of gcc.
The x axis represents the number of basic block vectors seen and the y axis is
the number of nodes in the RAP tree. We see a similar pattern to the theoretical
expectation, which is the slow building of memory marked by periodic merges
which maintain the overall bounds on resource consumption.

5.3 Error Evaluation

While the theoretical bounds on error are very useful, if our device is
to be used to characterize dynamic program behavior in a real operating

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:23

0 20 40 60 80 100

Number of Points (in billions) - gcc

0

100

200

300

400

500

N
u

m
b

er
 o

f
N

o
d

es

Fig. 9. Number of nodes required to track the basic blocks of gcc with ε = 10%. While the number
of nodes is far less than the worst-case bounds that we estimated, the pattern of growth (because
of splits) and rapid reduction (because of batched merging at points marked by dashed lines) can
be clearly seen.

environment, the average and worst-case percentage errors are extremely
important.

Because of the way the algorithm is designed, the counts for a range in the
tree is always a lower bound on the actual count. Hence, if RAP identifies a
node as hot, then that node is guaranteed to be hot. A hot node means that a
set of individual events in that range is hot. In cases where the range is a single
event, we have identified a hot range with most precision.3

The split threshold is set in such a way that as soon as a node counts events
more than a proportion of the total events seen, the node splits into subranges.
A merge, similarly, never merges ranges, which are hot enough to warrant
precise profiling. This ensures that RAP always profiles with the smallest ranges
possible. Hence, for a given ε, we can guarantee that RAP always identifies all
hot ranges with the greatest precision possible.

Not only is it important to identify the most frequently observed ranges in
a profile stream, but it is equally important to measure how accurately these
ranges are quantified. For every hot region identified by RAP,4 the estimated
counts of the events that contributed to the hot regions were used to compute
the percentage error. The numbers presented in Figure 10 are a comparison of
the estimates that RAP made online, with the actual count that was gathered
by making multiple passes through the program’s execution, tracking one hot
range at a time (as a perfect offline profiler would). Figure 10 shows the per-
centage error in estimating the counts on the hot ranges for each of the different
benchmarks. Maximum 10 and Maximum 1 is the maximum of the percentage
errors among all the hot regions for a benchmark, identified in a RAP tree with
ε = 10 and ε = 1%, respectively. Similarly Average 10 (Average 1) is the aver-
age of the percentage errors for all the identified hot ranges within a benchmark
with ε = 10% (ε = 1%). The y axis in Figure 10 shows the percentage error
for various benchmarks. The graph on the left is a measure of accuracy when

3By precision we mean the ability to zoom into profile ranges as narrow as possible, and by accuracy
we refer to error in the quantitative profile information estimated by RAP with respect to a perfect
profiler. A perfect profiler is one which can gather event counts with 100% accuracy.
4For experiments in this section, a region is considered hot if it accounts for more than 10% of
the total events. Also, if the hotness threshold is 10%, then the number of hot ranges is atmost 10.
Similarly, for 1% hotness threshold, the maximum number of hot ranges is 100. In our experiments,
we had a 10% hotness threshold; hence, the number of hot ranges were always less than 10.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:24 • S. Mysore et al.

gcc gzip mcf parser vortex vpr
0

5

10

P
er

ce
n

ta
g

e
E

rr
o

r Maximum_10
Maximum_1
Average_10
Average_1

gcc gzip mcf parser vortex vpr
0

5

10

15

20

P
er

ce
n

ta
g

e
E

rr
o

r Maximum_10
Maximum_1
Average_10
Average_1

Fig. 10. Percentage error for the hot events identified by RAP for various benchmarks is shown
in this figure (for ε = 1 and 10%). The graph on the left is a measure of accuracy when identifying
hot regions of the code. The graph on the right shows similar values for load value analysis.

identifying hot regions of the code; the graph on the right shows different errors
for load-value analysis.

In the graph on the left in Figure 10, the benchmark gcc shows the highest
maximum percent error of 13.5% with ε = 10%. This error of 13.5% was from
a hot range of the code, which was quite narrow and deep in the RAP tree;
however, excluding this hot range, the second maximum percentage error in gcc
is just 3.1%. An important point to draw from this graph is that with ε = 10%,
the average percentage error is still just about 2%.

Load-value analysis, however, was more complex than code profiling, because
of the wide range of values within which incoming load events could be. With
load-value analysis (graph on the right in Figure 10), we see that vortex has
the maximum percentage error of around 20%, which was a result of the hot-
value 0 (note, however, that this is still less than 10% error with respect to the
entire stream). We also see a negligible percentage error with ε = 1%; and with
ε = 10%, an average of just 3.4% over all benchmarks. As can be observed, on
average, RAP can provide 98% accurate information about code profiles and is
96.6% accurate on value profiles. Trends about program behavior, hot regions,
value distribution, and memory access patterns are some of the characteristics
which can be easily and accurately detected with RAP.

To build a useful and feasible profiler, the error and memory requirements
should be bounded absolutely, without reference to the stream length and the
type of profile being analyzed. As we have just seen in this subsection, RAP
not only precisely identifies range information on a stream of profile events
efficiently, but also provides very accurate information.

5.4 Additional Applications of RAP

Thus far we have discussed how RAP can be used to track code and value pro-
files, and use these to stress test and evaluate our system. Here we describe
several different scenarios where the capabilities of RAP would be useful in-
cluding: cache-miss value profiling, and narrow-width operand profiling, and
zero-load memory ranges.

5.4.1 Cache-Miss Value Profiling. While we have shown how RAP can be
used to profile value locality in a more general sense than simply quantifying
“hot values,” architects typically need to target cache misses, rather than simply

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:25

16 32 640 10 20 30 40 50 60
log(range-width)

0

10

20

30

40

50

60

70

80

90

100

C
ov

er
ag

e

dl1_misses
dl2_misses
all_loads

Fig. 11. This figure shows how RAP can be used to extract insightful information about value
localities. The x axis shows the number of bits required to represent the hot ranges of values; the
y axis represents the percentage of values profiled.

all loads. Some have hypothesized that while value locality might be present,
it may be greatly diminished when only the cache misses are examined. By
simply building a RAP tree over the set of all load values, which were subject to
a cache miss, we can quickly quantify this effect. Figure 11 shows the results of
performing this analysis, averaged over a set of benchmarks. The x axis shows
log(range width) of the different hot regions captured by RAP. The y axis shows
the coverage of all events, either loads, DL1 cache misses, or DL2 cache misses
(depending on the curve). Take for example, DL1 misses. Hot ranges (those
ranges accounting for 10% or more of all DL1 misses) with a size of 216 or less
account for about 56% of all DL1 misses. Looking at this figure, it is clear that
in fact the value locality of cache misses is more than the value locality of all
loads.

5.4.2 Narrow Operand Profiling. Another application of RAP would be
finding regions of code with narrow operands. Finding these regions might ben-
efit operand width prediction and/or bit-width optimized compilation methods.
We could build a RAP tree over the set of all instruction PCs, which have a nar-
row operand (for example less than 16 bits). We profiled gcc and observed that
the narrow-width operations were concentrated in very specific code regions,
such as the file flow.c, which accounted for 38.7% of all narrow-width opera-
tions. Within this file, the procedure propagate block accounted for 31% and a
small block in this procedure, which processed the live registers, accounted for
6.4%.

5.4.3 Zero-Load Memory Ranges. A different, but related, type of profile
is to find out which regions of the data memory are responsible for load of
a particular value, for example, zero. This memory-value profiling could be

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:26 • S. Mysore et al.

Fig. 12. Memory-value profile characterized by RAP for gcc, which identifies from which regions of
the memory most zeros are being loaded. The horizontal axis represents the entire memory space.
The hot nodes are labeled 1–4 and hot regions are shown as pattern-filled boxes. This representation
shows a partial RAP tree with hot nodes identified by the solid boxes. The actual RAP tree contains
much finer granularity information, while this figure shows just those ranges identified by RAP as
more than 10% hot.

used to guide bus compression schemes or track potentially inefficient data
structures. Figure 12 shows a RAP tree for gcc built over the set of all memory
addresses from which a zero was loaded. If the optimizers goal was to reduce the
number of zero loads, these memory ranges would be the best place to target.
The horizontal axis represents the entire range of data memory (0-ffffffffffffffff).
We focus on the hot nodes identified by RAP (labeled 1–4) . We have zoomed
in to show how RAP precisely identified distinct ranges, which accounted for
16.9 (Node 2), 54.6 (Node 3), and 13.7% (Node 4) of the zero loads. For example,
the address ranging from 11fd00000–11ff7ffff (Node 3) accounts for a total of
13.7 + 54.6 = 68.3% of all zero loads in gcc. In fact, it was also observed that
any load to this region has about 38% chance of being a zero.

In general, any event (cache misses, 0-loads, exceptions, . . .) can be mapped
using RAP, to the code that caused them, the memory address that was referred
to, or the value on which an instruction operated. While the above profiling
scenarios are not complete optimizations, they provide evidence that RAP has
the potential to be both general purpose across many different types of profiles
and powerful enough to encourage new types of profiling.

5.5 Multidimensional RAP

Among the thousands of microarchitectural events that can be observed during
a program execution, the ability to profile a couple of the most important ones
(code profiles, value profiles, memory access profiles, etc.) would be very useful.
Optimizations, often rely not just on inferences drawn from a single profile
stream but on a combination of inferences drawn from multiple profile streams,
even better from a correlation of these different streams. For example, it may

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:27

0
x
b

fffc
0

0
0

0
x
b

ffc
0

0
0

0

0
x
b

fff8
0

0
0

0
x
b

fffe
0

0
0

0
x
8

3
8
0

0
0

0

0
x
8

3
0

0
0

0
0

0
x
b

fff7
0

0
0

0
x
4

0
0

0
0

0
0

0

0
x
8

2
8

0
0

0
0

0
x
b

fffd
c
0

0

0
x
0

0
x
c
0

0
0

0
0

0
0

0
x
b

fff4
0

0
0

0
x
b

ff0
0

0
0

0

0
x
b

fff0
0

0
0

0
x
8

4
0

0
0

0
0

0
x
8

3
4

0
0

0
0

0
x
8

2
c
0

0
0

0

0
x
8

2
4

0
0

0
0

0
x
8

2
2

0
0

0
0

0
x
8

2
1

0
0

0
0

0
x
8

2
0

0
0

0
0

0
x
8

1
c
0

0
0

0

0
x
8

1
0

0
0

0
0

Memory

0x8200000

0x8040000

0x80e0000

0x8158000

0x8170000

0x8188000

0x8130000

0x80c8000

0x8150000
0x8144000

0x80f8000

0x80c0000

0x0

0x80f1000

0x8184000

0x8080000

0x80fc000

0x8180000

0x80f0000

0x80d0000

0x8125c00
0x8120000

0x8126000

0x80f4000

0x8114000

0x810c000

0x8124000

0x40000000

0x8100000

0x8118000

0x8110000

0x8154000

0x8050000

0x80f2000

0x80cc000

0x8160000

0x80ec000

0x8128000

0x8140000

0x811c000

0x80fb000

C
o

d
e

Fig. 13. Multidimensional RAP profile for gcc, identifying all the hot-code regions (represented
on the y axis) and the hot-memory addresses accessed (represented on the x axis) by a particular
code region. In this figure, the hot regions are represented by the rectangles and, the darker the
color of a region, the hotter it is.

be very useful to understand which regions of the code are hot and what are
the hot values loaded within this code region, or what are the most frequently
accessed memory locations within this code region.

While simultaneous profiling of multiple profile streams with RAP helps
point out the hot spots in each stream independently of each other, with multidi-
mensional RAP, we introduce the capability to profile different profile streams
while still maintaining the correlation among these streams. At the heart of
multidimensional RAP is the same algorithm as explained in Section 2, except
that the nodes in the RAP tree now store N -dimensional ranges (two in the
case of 2-D RAP tree) instead of a 1-dimensional range. To demonstrate the
usefulness of multidimensional RAP, we show a simple example of a 2-D pro-
filing of gcc in Figure 13. In this case, every node in the RAP tree stores two

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:28 • S. Mysore et al.

ranges, one for the code region and one for the memory region accessed within
that code region. The code region is represented on the y axis and the memory
accessed is represented on the x axis. For example, the bottom left-hand rect-
angle identifies a hot-code region as [0x804000, 0x808000] and the hot-memory
regions accessed by this region as [0x8200000, 0x8240000]. The shaded rect-
angles represent the hot regions identified by RAP; the darker the shade of a
rectangle, the hotter it is. In general, multidimensional RAP can be applied
to obtain summary information about the correlation between different profile
streams and their hot regions.

6. RELATED WORK

Range-adaptive profiling is a novel method to provide hierarchical summary
information on a stream of events. While we present a hardware-based frame-
work for dealing with vast amounts of profiling data, our technique builds on
the profiling work of many other researchers. In this section we briefly summa-
rize some of this work and relate it to our own contributions. We classify our
related work into two broad categories:

6.1 Software-Based Profiling

Software systems can be either statically instrumented with instrumentation
tools, such as ATOM [Srivastava and Eustace 1994] or dynamically through
just-in-time compilers [Krall 1998]. In software profiling, most of the effort
has been spent on reducing the performance overhead of instrumentation,
such as through sampling [Arnold and Ryder 2001] or bursty tracing [Hirzel
and Chilimbi 2001]. Dynamic hot-path prediction techniques are described
in Duesterwald and Bala [2000]. Value profiles are another important form
of profiles [Calder et al. 1997], which identify value invariance and proposes
optimizations through convergent profiling. There is software work on sam-
pling more intelligently and even on compressing trace information to reduce
the overheads involved. Larus [1999] provides a technique to capture, in a
compressed form, a program’s dynamic control flow. The idea of using soft-
ware to extract a hierarchy of information using grammars, has been used
to implement efficient data-prefetching mechanisms [Chilimbi 2001; Chilimbi
and Hirzel 2002]. A general-purpose software framework for dealing with com-
pressed profile data is proposed in Zhang and Gupta [2004]. While these are
powerful software mechanisms, they are not directly applicable to the prob-
lem of managing a very small number of hardware counters to enable high-
throughput hardware-only profiling.

6.2 Hardware-Assisted Profiling

The current industrial practice in hardware-performance monitoring is
performance counters and several modern machines now support this
idea [Corporation 1995, 1997; Inc 1995]. These simple counter-based schemes,
while useful, suffer from a lack of flexibility and require significant software
management in order to extract useful information [Anderson et al. 1997].
Many researchers have examined the next steps that hardware-assisted

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:29

profiling should take. Proposed schemes range from those which use existing
hardware on the processor to gather information, which is later processed by
a software program [Anderson et al. 1997; Conte et al. 1994; Peri et al. 1999],
to programmable profiling coprocessors [Zilles and Sohi 2001]. Conte et al.
[1996] uses profile buffers to collect and analyze information. Sastry et al.
[2001] provide a framework for designing a variety of stream compressors and
propose the stratified sampling scheme. An extension of the stratified sampling
scheme is proposed by Narayanasamy et al. [2003], which aims at reducing the
cost of delivering gathered profile and proposes multihash and interval-based
profiling. Although these schemes provide efficient ways to process data, they
are not flexible enough to accommodate general queries. ProfileMe [Dean et al.
1997] and relational profiling architecture are flexible and versatile schemes
for gathering profile information. Zilles and Sohi [2001] in their coprocessor
approach, design hardware to analyze the stream and compress it to provide
concise and distilled profile information to the main processor. It has the ability
to consider only a subset of the instructions for profiling and refocus resources
after an instruction has been sufficiently characterized.

Our approach is orthogonal to most of the above approaches, because RAP
concentrates on building a useful online summary of the data, no matter what
method is used to gather the data. RAP can be completely implemented in
hardware and has the ability to efficiently identify the most important ranges of
the profile and provide accurate information on the entire profile with very low
overheads. We believe that there are important similarities between profiling
a program executing billions of instructions per second and trying to monitor
and analyze high-speed networks [Hershberger et al. 2004; Estan et al. 2003;
Kruegel et al. 2002] and that there is potential for further research along these
lines. Indeed, RAP has been designed to be adaptable to a variety of different
data streams that need to be processed at very high speed and may even be
applied in analyzing network traffic.

7. CONCLUSIONS

Amdahl’s law shows us that the common case is most important to perfor-
mance so it makes sense to bias allocated resources toward the common case.
The problem is that the common-case changes as the program executes and
we end up with a chicken-and-egg type of problem. In this paper, we present
range adaptive profiling, a novel scheme to efficiently, adaptively, and intelli-
gently summarize high bandwidth streams of profile data. It allows users to
specify a parameter (ε), which bounds the error with respect to the size of the
input stream and also provides guarantees on worst-case memory bounds inde-
pendent of the size of the input stream in a fully streaming fashion (with only
one-pass). This method can be applied to software profiling and, with the use
of a specialized pipelined architecture, can be accelerated with hardware.

While it is not yet clear whether RAP will be general purpose enough to cover
all profile types of interest, we have shown that it can make sense for summa-
rizing at least three profile types: load values of cache misses, instruction PCs of
narrow width operands, and memory addresses of zero loads. The applicability

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:30 • S. Mysore et al.

of RAP can be further extended with multidimensional profiling, which allows
adaptive ranges over two or more variables. With this extension it is possible
to handle edge profiles, data-code correlation studies, and general tuple space
profiles, the details of which are beyond the scope of this paper. It may fur-
ther be possible to unify our proposed techniques with existing sampling-based
schemes to create a single general-purpose profiling system. While this future
work may prove fruitful, to guide our initial algorithm and hardware design we
have used load values and code profiling to measure the overheads of RAP and
also to show the versatility of the scheme.

While some have shown the frequency of the top 50 individual loaded values
in a program, which might cover 40% of the program, our technique can au-
tomatically generate range summaries, which include every value loaded in an
entire SPEC benchmark, and we believe this type of analysis to be the first of
its kind. This information could be used to drive many runtime optimizations,
including code specialization, value prediction, and bus encoding. While RAP
has good worst-case bounds, in the common case it is even better. For a set
of benchmark programs from SPEC, we can provide 98% accurate information
about hot-code regions with only 8 KB bytes of memory and 99.73% accurate
information with 64 KB bytes of memory. The RAP method is suitable for intel-
ligent processing of the many different profile streams that may be generated
from either a processor or computer network, and our future work will extend
this technique to handle new forms of profiling in the processor.

ACKNOWLEDGMENTS

The authors would like to thank Cliff Young, Prof. Rajiv Gupta, and the anony-
mous reviewers for their helpful feedback. This research was funded in part
by National Science Foundation Grants CCF-0514738, CCF-0702798, and NSF
Career Grant CCF-0448654.

REFERENCES

AGRAWAL, B. AND SHERWOOD, T. 2006. Modeling tcam power for next generation network devices. In
Proceedings of IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), Austin, TX.

ANDERSON, J., WEIHL, W., BERC, L., DEAN, J., GHEMAWAT, S., HENZIGER, M., LEUNG, S., SITES, R., VANDE-
VOORDE, M., AND WALDSPURGER, C. 1997. Continuous profiling: Where have all the cycles gone?
ACM Trans. Comput. Syst. (TOCS) 15, 4 (Nov.), 357–390.

ARNOLD, M. AND RYDER, B. 2001. A framework for reducing the cost of instrumented code. In
SIGPLAN Conference on Programming Language Design and Implementation. 168–179.

BALL, T. AND LARUS, J. R. 1996. Efficient path profiling. In International Symposium on Microar-
chitecture. 46–57.

BROOKS, D. AND MARTONOSI, M. 1999. Dynamically exploiting narrow width operands to improve
processor power and performance. In Proceedings of the 5th International Symposium on High-
Performance Computer Architecture. IEEE Computer Society, Los Alamitos, CA. 13.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level
power analysis and optimizations. In ICSA. 83–94.

BUCK, B. AND HOLLINGSWORTH, J. K. 2000. An API for runtime code patching. Intern. J. High
Perform. Comput. Appl. 14, 4, 317–329.

BUS, B. D., CHANET, D., SUTTER, B. D., PUT, L. V., AND BOSSCHERE, K. D. 2004. The design and
implementation of fit: A flexible instrumentation toolkit. In PASTE ’04: Proceedings of the 5th

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

Formulating and Implementing Profiling over Adaptive Ranges • 2:31

ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering.
ACM Press, New York. 29–34.

CALDER, B., FELLER, P., AND EUSTACE, A. 1997. Value profiling. In International Symposium on
Microarchitecture. 259–269.

CHILIMBI, T. 2001. Efficient representations and abstractions for quantifying and exploiting data
reference locality. In Conference on Programming Languages Design and Implementation.

CHILIMBI, T. AND HIRZEL, M. 2002. Dynamic hot data stream prefetching for general-purpose pro-
grams. In Conference on Programming Languages Design and Implementation.

CONTE, T. M., PATEL, B. A., AND COX, J. S. 1994. Using branch handling hardware to support
profile-driven optimization. In International Symposium on Microarchitecture. 12–21.

CONTE, T. M., MENEZES, K. N., AND HIRSCH, M. A. 1996. Accurate and practical profile-driven
compilation using the profile buffer. In International Symposium on Microarchitecture. 36–45.

CORPORATION, D. E. 1995. Alpha 21164 Microprocessor Hardware Reference Manual.
CORPORATION, I. 1997. Pentium(r) Pro Processor Developer’s Manual. McGraw-Hill, New York.
DEAN, J., HICKS, J., WALDSPURGER, C., WEIHL, W., AND CHRYSOS, G. 1997. ProfileMe: Hardware sup-

port for instruction-level profiling on out-of-order processors. In International Symposium on
Microarchitecture. 292–302.

DUESTERWALD, E. AND BALA, V. 2000. Software profiling for hot path prediction: Less is more. In
Architectural Support for Programming Languages and Operating Systems. 202–211.

ESTAN, C., SAVAGE, S., AND VARGHESE, G. 2003. Automatically inferring patterns of resource con-
sumption in network traffic. In SIGCOMM ’03: Proceedings of the 2003 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe,
Germany.

fs2. First Silicon Solutions. Home page. http://www.fs2.com.
FUNG, W. W., AND SACHDEV, M. 2004. High performance priority encoder for content addressable

memories. In Micronet R&D Annual Workshop.
GUPTA, R., BERSON, D., AND FANG, J. 1998. Path profile guided partial redundancy elimination

using speculation. In IEEE International Conference on Computer Languages (ICCL). 230–239.
HEIL, T. AND SMITH, J. E. 2000. Relational profiling: enabling thread-level parallelism in virtual

machines. In International Symposium on Microarchitecture. 281–290.
HERSHBERGER, J., SHRIVASTAVA, N., SURI, S., AND TOTH, C. 2004. Adaptive spatial partitioning for

multidimensional data streams. In International Symposium on Algorithms and Computation
(ISAAC).

HEWLETT-PACKARD. 1994. PA-RISC 1.1 Architecture and Instruction Set Reference Manual.
HIRZEL, M. AND CHILIMBI, T. 2001. Bursty tracing: A framework for low-overhead temporal profil-

ing. In Proceedings of the 4th ACM Workshop on Feedback-Directed and Dynamic Optimization
(FDDO-4).

INC, M. T. 1995. Mips R10000 Microprocessor User’s Manual.
JACOBSON, Q., ROTENBERG, E., AND SMITH, J. 1997. Path-based next trace prediction. In Proceedings

of the 30th IEEE/ACM International Symposium on Microarchitecture (MICRO).
KRALL, A. 1998. Efficient JavaVM just-in-time compilation. In International Conference on Par-

allel Architectures and Compilation Techniques. 205–212.
KRUEGEL, C., VALEUR, F., VIGNA, G., AND KEMMERER, R. 2002. Stateful intrusion detection for high-

speed Networks. In IEEE Symposium on Security and Privacy. 285–293.
LAMPSON, B., SRINIVASAN, V., AND VARGHESE, G. 1999. Ip lookups using multiway and multicolumn

search. IEEE/ACM Trans. Netw. 7, 3, 324–334.
LARUS, J. 1999. Whole program paths. In Conference on Programming Languages Design and

Implementation (PLDI). 259–269.
LI, X., LIU, Z., LI, W., AND LIU, B. 2004. SCP-TCAM: A power-efficient search engine for fast IP

Lookup. In ISBN Proceedings.
LIPASTI, M. H. AND SHEN, J. P. 1996. Exceeding the dataflow limit via value prediction. In Proceed-

ings of the 29th IEEE/ACM International Symposium on Microarchitecture (MICRO). 226–237.
LOH, G. H. 2002. Exploiting data-width locality to increase superscalar execution band-

width. In MICRO 35: Proceedings of the 35th Annual ACM/IEEE International Sym-
posium on Microarchitecture. IEEE Computer Society Press, Los Alamitos, CA. 395–
405.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

2:32 • S. Mysore et al.

LUK, C. ET AL. 2005. Pin: Building customized program analysis tools with dynamic instrumen-
tation. In Conference on Programming Languages Design and Implementation (PLDI).

MYSORE, S., AGRAWAL, B., SHERWOOD, T., SHRIVASTAVA, N., AND SURI, S. 2006. Profiling over adaptive
ranges. In Proceedings of the Fourth International Symposium on Code Generation and Opti-
mization (CGO-4). IEEE Computer Society, Los Alamitos, CA. 147–158.

NARAYANASAMY, S., SHERWOOD, T., SAIR, S., CALDER, B., AND VARGHESE, G. 2003. Catching accurate
profiles in hardware. In International Symposium on High-Performance Computer Architecture.
269–280.

PAGIAMTZIZ, K. AND SHEIKHOLESLAMI, A. 2004. A low-power content-addressable memory (CAM)
using pipelined hierarchical search engine. IEEE J. Solid-State Circuits.

PAGIAMTZIS, K. AND SHEIKHOLESLAMI, A. 2006. Content-addressable memory (CAM) circuits and
architectures: A tutorial and survey. IEEE J. Solid-State Circuits. 41.

PERI, R. V., JINTURKAR, S., AND FAJARDO, L. 1999. A novel technique for profiling programs in
embedded systems. In ACM Workshop on Feedback-Directed and Dynamic Optimization.

RUBIN, S., BODIK, R., AND CHILIMBI, T. 2002. An efficient profile-analysis framework for data layout
optimizations. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL).

SANCHEZ, M., BIERSACK, E., AND DABBOUS, W. 2001. Survey and taxonomy of IP address lookup
algorithms. IEEE Netw. Maga. 15, 2, 8–23.

SASTRY, S., BODı́K, R., AND SMITH, J. 2001. Rapid profiling via stratified sampling. In Annual
International Symposium on Computer Architecture. 278–289.

SHIVAKUMAR, P., AND JOUPPI, N. 2001/2. Cacti 3.0: An Integrated Cache Timing, Power and Area
Model.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program analysis
tools. In Conference on Programming Languages Design and Implementation. 196–205.

SRINIVASAN, V. AND VARGHESE, G. 1999a. Fast address lookups using controlled prefix expansion.
ACM Trans. Comput. Syst. 7, 1 (Feb.), 1–40.

SRINIVASAN, V. AND VARGHESE, G. 1999b. Fast address lookups using controlled prefix expansion.
ACM Trans. Comput. Syst. 7, 1 (Feb.), 1–40.

SRIVASTAVA, A., EDWARDS, A., AND VO., H. 2001. Vulcan: Binary transformation in a distributed
environment. Technical report msr-tr-2001-50. Microsoft Research., Redmond, Washington.

WANG, H., ZHU, X., PEH, L., AND MALIK, S. 2002. Orion: A power-performance simulater for Inter-
connection networks. In Proceedings of the 35th International Symposium on Microarchitecture,
Istanbul, Turkey.

WANG, J. AND HUANG, C. 2000. High-speed and low-power CMOS priority encoders. IEEE J. Solid-
State Circuits 35, 10 (Oct.), 1511–1514.

YANG, J. AND GUPTA, R. 2002. Frequent value locality and its applications. In ACM Transactions
on Embedded Computing Systems.

YANG, J., ZHANG, Y., AND GUPTA, R. 2000. Frequent value compression in data caches. In Interna-
tional Symposium on Microarchitecture. 258–265.

YOUNG, C. AND SMITH, M. 1998. Better global scheduling using path profiles. In IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). 115–123.

ZHANG, Y. AND GUPTA, R. 2001. Timestamped whole program path representation and its applica-
tions. In Conference on Programming Languages Design and Implementation (PLDI). 180–190.

ZHANG, X. AND GUPTA, R. 2004. Whole execution traces. In Proceedings of the 37th International
Symposium on Microarchitecture. IEEE Computer Society, Los Alamitos, CA. 105–116.

ZHOU, H., FLANAGAN, J., AND CONTE, T. M. 2003. Detecting global stride locality in value streams.
In Proceedings of the 30th Annual International Symposium on Computer Architecture. ACM
Press, New York. 324–335.

ZHOU, P., QIN, F., LIU, W., ZHOU, Y., AND TORRELLAS, J. 2004. iWatcher: Efficient architectural support
for software debugging. In Proceedings of the 31st Annual International Symposium on Computer
Architecture (ISCA’04).

ZILLES, C. AND SOHI, G. 2001. A programmable co-processor for profiling. In the 7th International
Symposium on High Performance Computer Architecture.

Received March 2007; revised August 2007 and November 2007; accepted November 2007

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 2, Publication date: May 2008.

