
Copyright © 2005 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Low Power Electronics

Vol. 1, 1–11, 2005

Algorithm/Architecture Co-exploration for Designing
Energy Efficient Wireless Channel Estimator

Yan Meng,1�∗ Wenrui Gong,1 Ryan Kastner,1 and Timothy Sherwood2
1Department of ECE, University of California, Santa Barbara, CA 93106, USA

2Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

(Received: 25 August 2005; Accepted: 29 November 2005)

Wireless networks are making the vision of ubiquitous computing a reality: users will be able to
connect anytime and anywhere from anything. To achieve this vision, the next generation of wireless
devices must learn about, and adapt to, the transmission environment through a process called
channel estimation. In this paper, we describe a cross-cutting approach to explore the design space
to solve the channel estimation problem on reconfigurable devices. In particular we focus on the
matching pursuit algorithm, which is a fast and accurate iterative algorithm for multipath channel
estimation. Our methodology models modern reconfigurable devices as an array of Block RAM-
level operation blocks (“BLOBs”), which act as flexible data paths. With the model, we describe
design techniques and tradeoffs, resulting in novel optimizations at every level in building an energy
efficient MP core, from the theory and algorithms to the bit level. We present results from our design
space exploration over a number of different parameters, including both high level characteristics
of the application, data and computation partitioning schemes, and module- and bit-level low-power
techniques. The results demonstrate the effectiveness and efficiency of our approach to building a
high speed and low power channel estimator. The total power saving is 25.4%. We further show
that the local, distributed computation is, on average, 145% faster with minimum cost in power
dissipation, than the global, centralized computation.

Keywords: Low Energy, Channel Estimation, Reconfigurable Architectures, Design Methodol-
ogy, Register Transfer Level Implementation.

1. INTRODUCTION

Wireless communication systems are rapidly becoming the
preferred method of network access, and reconfigurable
devices will certainly play an important role in this new
era.1�2 There are many computationally challenging prob-
lems to be solved in this domain, and the extreme time-to-
market and rapidly shifting protocols and standards make
this an area ripe for a reconfigurable solution. To meet
the needs of performance with low energy consumption
for supporting ever increasing bandwidths demands and
increased connectivity from multiple users, performance
and energy efficient implementations are required and opti-
mized at all levels of wireless system design, from pro-
tocols to signal processing and from system level design
to physical design. At the heart of the next generation
wireless devices is the ability to accurately estimate char-
acteristics of the channel. Once these characteristics are
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determined, the device can correct for them to enable more
simultaneous users, higher bandwidth, and lower power
communications. In this paper, we focus on investigating
and applying optimization techniques in the algorithmic,
architectural, and bit levels to implement an energy effi-
cient channel estimator in a modern reconfigurable device
with high performance.

Channel estimation is a fundamental problem in com-
munication systems with the goal of characterizing the
media over which communication is propagating.3 Wire-
less communication channels typically contain multiple
paths due to scattering effects, and thus the received signal
is composed of many delayed and attenuated versions of
the transmitted signal. The received signals from multiple
paths may be either destructive or constructive. When there
is destructive interference, the signal may be corrupted.
The signal corruption problem may be alleviated by a pro-
cess called multipath channel estimation.4 It is used to
characterize all of the significant transmission paths, and
is the key to building high speed wireless networks.
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The overriding trend among the modern wireless com-
munication systems is that higher data rates and bandwidth
requires increasingly complicated physical and data link
layer approaches.4 As such, more computational power is
required from the hardware. In order to achieve high data
rates using these complicated transmission techniques, we
must enable efficient and flexible signal processing devices
starting with channel estimation algorithms. Unfortunately,
little work has been done on the hardware implementa-
tion. Rajaopal5 presented a multiprocessor implementation
of a multi-user channel estimator, which includes dual
DSPs to speed up the algorithm and incorporated FPGAs
to accelerate parts of channel estimation algorithms. While
there have been many theoretically-sound approaches pro-
posed for multipath channel estimation and multi-user
detection,4�6 these approaches have not yet been adopted
by hardware designers because of the complexity of the
algorithms involved and the cost associated with realizing
them in an actual implementation.

In order to realize high bandwidth wireless communi-
cation schemes, we must develop tools and methodologies
for efficient multi-user, multipath channel estimation. To
make the leap from theory to reality an efficient and flexi-
ble high performance platform is required. Reconfigurable
systems offer the necessary balance between flexibility and
performance by allowing the device to be configured to
the algorithm at hand.7 Reconfigurable systems allow for
the post-fabrication programmability of software with the
spatial computational style most commonly employed in
hardware designs and are becoming an attractive option for
implementing signal processing applications5�8–10 because
of their high processing power and customizability. The
inclusion of new features in the FPGA fabrics, such as
a large number of embedded multipliers, microprocessor
cores, on-chip distributed memories, adds to this attractive-
ness. One such example is software-defined radio (SDR),11

which attempts to provide an efficient and inexpensive
mechanism for the production of multimode, multiband,
and multifunctional wireless devices. The performance and
flexibility of reconfigurable devices make them viable and
ideal for implementing the SDR systems.

Traditionally, the performance metrics for signal pro-
cessing and indeed, most processing in general, have
been latency and throughput. Yet, with the proliferation
of mobile, portable devices, it has become increasingly
important that systems are not only fast, but also energy
efficient. Currently, commercially available FPGAs either
do not have both millions of gates and low-power fea-
tures, or their support for low power feature is very lim-
ited. Purely relying on technology scaling will fall short
of computational capability for more advanced algorithms
which are demanded by wireless system in the near future.
Thus, instead of studying low-level optimization tech-
niques, in this paper, we investigate and apply algorithmic

and architectural level optimization techniques for mini-
mizing energy consumed by FPGAs in building a multi-
path channel estimator. Our techniques can also be used
for a next generation FPGA that has low power dissipation
feature as well as high computing power.

Our main contribution is a quantitative analysis of sev-
eral energy efficient techniques that has resulted in novel
optimizations at every level, from the theory and algo-
rithms to the architecture and bitwidth. We describe our
design and quantify the tradeoffs in terms of channel esti-
mation accuracy and the energy of our implementation.
We model the target reconfigurable device as an array of
BLOBs and study the data and computation partitioning
problem through different architectural schemes. Along
with exploring the clock gating technique, our final result
is an energy efficient MP core that has been mapped onto
a Virtex-II XC2V3000 FPGA, resulting in 25.4% of total
power savings.

The paper is organized as follows. Section 2 gives a
high level overview of the matching pursuit algorithm.
Section 3 describes our reconfigurable computation model.
In Section 4, different energy design techniques are pre-
sented for building the energy efficient channel estimator.
A summary and conclusions can be found in Section 5.

2. MATCHING PURSUIT ALGORITHM
FOR CHANNEL ESTIMATION

2.1. Multipath Channel Propagation

Wireless communication channels typically contain multi-
ple paths due to scattering effects, and thus the received
signal is composed of many delayed and attenuated ver-
sions of the transmitted signal.3 For outdoor communica-
tions, the scatters may be buildings, mountains, etc.; while
for indoor communications, the scatters may be walls, fur-
niture, etc. Path lengths may vary greatly. We assume delay
value � ∈ �0� T �, where T is the symbol duration, which
is reasonable in most cases.

In this paper, the multipath spread is assumed to be
at most one symbol duration, which is characteristic in
current DS-CDMA systems.12–14 The multipath channel
with continuous-valued delays is approximated by a sparse
tapped-delay-line (TDL) filter with discrete-valued delays
�i− 1�Ts , for i = 1�2� 	 	 	 �NS , where 1/TS is the Nyquist
sampling rate, and NS is the number of samples per sym-
bol duration T .3 Associated with each TDL path i is a
complex-valued channel coefficient fi, with the �fi� given
by interpolation of the true channel. A sparse channel
is one in which Nf � NS channel coefficients are non-
negligible. The TDL representation of an example 5-path
channel is shown in Figure 1 (solid line).

Consider the case of a single user transmitting on a mul-
tipath channel. The received signal after RF-to-baseband
down-conversion and A/D sampling is denoted by

r = Sf +n ∈ CMNs∗1 (1)
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Fig. 1. Multipath channel estimation with MP.

where M is the number of training symbols, n is
the sampled additive white Gaussian noise vector, f =
�f1� f2� 	 	 	 � fNs−1�

T ∈ CNs∗1 is the channel coefficient vec-
tor, and S ∈ �MNs∗Ns is the characteristic signal matrix. �
and C represent the real and complex numbers, respec-
tively, and �·�T denotes the transpose operation. The i-th
column Si of S is the received signal due to path i if fi = 1,
and in general fiSi is the received signal due to path i. S
is given in Ref. [6] and is known a priori, since it depends
only on the CDMA spreading sequence and the transmit
and receive filters. Referring to the received signal model
in Eq. (1), the multipath channel estimation problem is that
of computing an estimate f̂ of f , given S and the received
signal vector r containing noise n.

2.2. Matching Pursuit Algorithm

The Matching Pursuit (MP) channel estimation algorithm
has been shown very efficient6�15 for sparse channel esti-
mation. It provides a low complexity approximation to
the theoretical optimal solution, the Maximum Likelihood
(ML)6 solution. Matching pursuits uses a process of suc-
cessive cancellation and single-coefficient channel estima-
tion to simplify the process.

The exact ML solution under the sparse channel con-
straint is given by

f̂ = arg min
f∈ANf

�
r −Sf 
2� (2)

where ANf
= �f � �f � = Nf �. Since the channel estima-

tion cost function minimized in Eq. (2) is non-convex, an
exhaustive search is required. The complexity (in terms
of the number of scalar multiplications) of the optimal
ML algorithm is O�MNSC

Nf

NS
Q2�NS−Nf �� real scalar mul-

tiplications and O�2MNSC
Nf

NS
Q2�NS−Nf �� real scalar addi-

tions/subtractions, where the binomial coefficient C
Nf

NS
=

�NS !�/�Nf !��NS −Nf �!� and 1/�2Q� is the precision of the
channel coefficient estimates. Clearly, real-time implemen-
tation of ML channel estimation is infeasible. By contrast,
the MP algorithm6 is highly efficient.

The matching pursuit algorithm is obtained by posing
the ML estimation problem in terms of sufficient statistics,
as follows.

−
r −Sf 
2 ∝ 2Re��V 0�Hf �− f HAf (3)

for signal parameter estimation and data symbol detection4

where V 0 = ST r ∈CNs∗1 and A= ST S ∈�Ns∗Ns . S is known
a priori, as mentioned in Section 2.1, and therefore S
and A are pre-computed once for all time and stored in
memory. The computation of V 0 can be parallelized as
NS vector inner products (correlations) V 0

i = ST
i r . Since

the columns Si of S are generated as filtered circular-
shifted versions of the same CDMA spreading sequence,
the computation of V 0 is equivalent to matched filtering
the received signal r using a filter matched to the spreading
sequence.

MP maximizes Eq. (3) iteratively, one channel coeffi-
cient f̂qj

at a time, using a greedy approach in which qj

and f̂qj
are selected such that the increase in Eq. (3) at each

stage j is the largest possible. That is, the multipath sig-
nal components are estimated via successive interference
cancellation. The algorithm is summarized in Figure 2.
To eliminate the need for division operations, the vectora,
with ak = 1/A�k�k� and A�k�k� denoting the k-th diag-
onal element in A, is pre-computed once for all time and
stored in memory.

Input (r, S, A, a)
Output(f̂)
// r : received signal vector, r ∈ CMNs∗ 1

// S : S= �S1� 	 	 	 �Si� 	 	 	 �SNs
�, S ∈ RMNs∗ Ns and

Si ∈ RMNs∗ 1

// A : A= �A1� 	 	 	 �Ai� 	 	 	 �ANs
�, A ∈ RNs∗ Ns and

Ai ∈ RNs∗ 1

// a : a = �a1� 	 	 	 � ai� 	 	 	 � aNs
�T, a ∈ RNS∗ 1 and ai ∈ R

// f̂ : estimated channel coefficients, f̄ ∈ CNs∗ 1

MP(r, S, A, a)
1 for i = 1�2� 	 	 	 �Ns

// compute matched filter (MF) outputs
2 v1

i = SH
i r

3 f̂i = 0
4 end for

// do successive interference cancellation
5 for j = 1�2� 	 	 	 �Nf

6 for i = 1�2� 	 	 	 �Ns

7 f̂
temp
i = v

j
i ai

8 Qi = �v
j
i �

∗f̂ temp
i

9 end for
10 qj = arg maxi �=q1�			�qj−1

�Qi�

11 f̂qj = f̂
temp
qj

// update MF outputs
12 vj+1 = jj − f̂qj

Aqj

13 end for
14 return �f̂�

Fig. 2. The Matching Pursuit algorithm for channel estimation.
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After each multipath successive interference cancella-
tion stage, V j is updated at the start of the next stage j as

V j = V j−1 − f̂qj−1
Aqj−1

(4)

Since the estimation of f̂ via Eq. (3) depends only on V 0

and A, with A fixed, effectively the sufficient statistic is
updated to reflect cancellation of the signal due to path qj .

The algorithm terminates after stage j =Nf . In practice,
Nf can be determined on the fly based on �f̂qj

� and/or the
SNR. For the example in Figure 1, Nf = 15, M = 1, and
the MP channel estimate is shown (dotted line) for an SNR
of 20 dB (ratio of energy per symbol to noise energy per
symbol duration).

3. RECONFIGURABLE
COMPUTATION MODEL

3.1. Fine Granularity Scalability (FGS)

The reconfigurable device paradigm is similar to that of
software defined radio, in that devices can be easily re-
programmed for adaptive response to operating condi-
tions and applications. For instance, operating parameters
including inter alias, frequency range, modulation type,
and/or output power limitations can be set or altered. How-
ever, reconfigurable devices provide the additional benefit
of programmable hardware, which allows the flexibility of
software while yielding the high performance of a hard-
ware implementation.7 The performance and flexibility of
reconfigurable computing systems make them ideal for
implementing software defined radio systems.

Reconfigurable devices are a regular arrangement of
programmable computational elements and communica-
tion structures, whose functionality is determined through
configuration bits. There is a wide range of reconfig-
urable devices, which can be roughly classified by their
granularity.7 The granularity of a reconfigurable device
is the abstraction level used to program or configure
the device. FPGAs and CPLDs have logical level of
abstraction. Instruction level reconfigurable devices (e.g.,
PRISC,16 Chimaera,17 and Garp18) consist of computa-
tional units that perform arithmetic operations. Coarser
grain reconfigurable devices, e.g., PADDI,19 MATRIX,20

RAW,21 synchroscalar,22 and NAPA,23 have even larger
programmable computational units.

The granularity gives a notion of the underlying free-
dom of the device. A coarse grain device limits your flex-
ibility. For example, you may be forced to store data in
a specific register and choose from a prespecified set of
operations. A finer granularity level allows you to specify
arbitrary memory organizations and complex customized
functional units. These fine grain devices can be config-
ured to efficiently implement irregular functions. Further-
more, we can implement functions using any data width,
e.g., an 18 bit multiplier or 24 bit adder, which can be

customized to the application at hand. However, if we are
executing only common operations, a coarser grain device
will be the better option, since these operations are imple-
mented using fixed hardwired “ASIC” components. The
prespecified operations are built precisely for that opera-
tion and do not incur the overhead associated with build-
ing it using programmable logic elements. For example, a
DSP application that requires a lot of word-size addition
and multiplications would be best suited to a device with
instruction level granularity. If an application requires a
large number of Boolean operations, then a device with
logic level reconfigurability would perform the task most
efficiently. In general, the more closely the application data
is matched to the granularity, the more efficient the device
will execute the application.

We choose a computational model that logically and
physically divides the fine grain logic fabric into coarser
grain Block RAM-level operation blocks (BLOBs). Each
BLOB consists of a Block RAM, fixed multiplier, and
neighboring configurable logic blocks (CLBs). The CLBs
are equally divided across the BLOBs. For example,
the target chip in our experiments, Virtex-II XC2V3000
FPGA, has 3584 CLBs. Dividing by 96 (the number of
BRAMs and fixed multipliers) yields approximately 37
CLBs in each BLOB. A BLOB is capable of performing
any number of simple instructions, e.g., multiplication (on
the fixed multiplier), addition (on the CLBs), and any other
type of custom instruction that can be implemented on the
CLBs. Additionally, it has an 18-Kbit BRAM that can act
as a register file, mini cache, etc. Each BLOB is essen-
tially a fully customizable data path, which causes most
of the system energy consumption and delay.

Dividing the reconfigurable device into BLOBs has
many advantages. First, we allow application developers to
design using a higher level of abstraction. They can view
the reconfigurable device as a sea of processors, which
is an increasingly common method for developing com-
putational fabrics.7 Second, since the BLOBs are config-
urable at the logic level, we can program the fabric using a
variety of different data flow and control methods, includ-
ing SIMD and MIMD. Finally, the BLOB organization
maintains the spatial model of computation that allows the
reconfigurable device to perform a large number of parallel
operations, and therefore achieve high performance.

4. ENERGY EFFICIENT
DESIGN TECHNIQUES

Energy and power are often used interchangeably; how-
ever, they are not the same. Energy is the product of
average power dissipation and latency. Therefore, it is nec-
essary to understand power dissipation and its effect on
latency and vice versa in order to better understand energy
dissipation.

In this section, we will first briefly describe sources of
power dissipation in FPGA based reconfigurable devices.
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We will then discuss techniques for achieving low energy
dissipation by one of the three methods: lowering power
dissipation, lowering latency, or lowering the product
of the power and latency, at different abstraction levels,
from the arithmetic and architectural to the algorithmic
level. The result of our design is an energy efficient IP core
that can be readily tuned to the requirements of its appli-
cations and initiated in any number of wireless devices.

4.1. Energy Dissipation in FPGA Based
Reconfigurable Devices

There are two primary areas of power consumption in
FPGAs. Static power comes from transistor leakage, and
dynamic power comes from voltage swing, toggle rate,
and capacitance. Both are important factors in meeting a
power budget and power optimization. Several studies on
power dissipation of reconfigurable devices have appeared
in recent works.24�25 These works review that power dis-
sipation in reconfigurable devices is primarily due to pro-
grammable interconnects. For instance, in the Virtex-II,
the dynamic power dissipated in interconnects is about
50% to 70%, while the remaining is being dissipated in
logic, clock, and I/O blocks. These results are different
from ASIC technology, where clock distribution typically
dominates power dissipation.26 The programmable inter-
connects consist of multiple pre-fabricated row and col-
umn interconnect wire segments of various lengths, with
used and unused routing switches attached to each wire
segment.

The second important factor that affects the power dis-
sipation in reconfigurable devices is resource utilization.
In typical reconfigurable system designs, a large number
of the resources are not utilized and only static power is
dissipated on those unutilized resources.

Switching activity is another important factor that is
used to determine the amount of dynamic power dissipa-
tion of each hardware resource. It depends not only on the
type of the design but on the input stimuli.

To obtain the power consumption information of the tar-
get Xilinx chip XC2V3000, we did low-level simulation
of the VHDL coding of our design with Mentor Graph-
ics Modelsim and generate simulation results (.vcd file).
The input vectors for the simulation was obtained from
the high level simulation of the MP algorithm. The design
was synthesized using Xilinx Synthesis Technology and
the place and route file (.ncd file) was obtained. These two
files were fed into Xilinx XPower tool to evaluate the aver-
age power dissipation. Energy dissipation was obtained by
multiplying the average power by latency.

With good understanding of the sources of the power
dissipation and the way to obtain the power dissipation,
we can now discuss design and optimization techniques to
achieve an energy efficient channel estimator, from the bit
level to the algorithmic level design.

4.2. Binding Energy Efficient IP Cores

As modern chips are increasingly providing high compu-
tational power with the fixed components,27 like micropro-
cessor cores, embedded multipliers and on-chip distributed
memory, a very important factor to consider in designing
systems is to choose energy efficient bindings and map
operations onto available hardware resources. Different
bindings affect energy consumption of the reconfigurable
device greatly. For example, embedded multipliers, such
as those in the Virtex-II and Altera Stratix families, can
be more energy efficient than the multipliers implemented
with CLBs. Our analysis shows that the energy consumed
by a CLB-based multiplier is approximately twice of the
energy consumption by an embedded multiplier core.

4.3. Bit Level Optimization—Bitwidth Analysis

Floating point functional units take much longer execu-
tion time and consume copious amount of power than their
fixed-point counterparts. Therefore, we employ the fixed
point representation in the rest of our study, which we
show can provide reasonably accurate results. An impor-
tant consideration for implementing the matching pursuit
algorithm is decision on the number of fixed-point bits.
The larger the bitwidth is, the more accurate the estimation
results will be. Conversely, bigger bitwidths lead to larger
and slower functional units, which have obvious negative
effects on the latency and power. Therefore, it is impera-
tive to find a good tradeoff between accuracy, latency, and
power.

To explore the design space in this dimension, we con-
ducted bit-width analysis.28�29 Figure 3 shows the results
for the average squared error (ASE) of the channel estima-
tion versus number of fixed-point bits for SNRs of −10,
0, 10, and 20 dB, where SNR is defined as the ratio
of the desired signal energy to the noise signal energy;
both are measured over one symbol duration. The results
are averaged over three different multipath channels, with

Fig. 3. The tradeoff of channel estimation accuracy versus the number
of fixed-point bits.
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30 ensemble runs (different noise realizations) per chan-
nel. Referring to Figure 3, it is clear that as SNR increases,
the accuracy gets better, and 8 bits is sufficient over all
SNRs to achieve accurate multipath channel estimation,
with averaged square error 3.37%. Fewer number of bits
(e.g., 6 bits will result in 4.8% error) can lead to minor
improvements in performance and power. This, however,
comes at the cost of the large system error. Conversely,
large bitwidth (16 bits) should not be used because it takes
longer execution and larger power consumption, and only
can improve the accuracy by a small degree (about 0.12%).
Therefore, a bitwidth of 8 is used in our study, which hits
a sweet spot between accuracy, performance and power.

4.4. Architectural Level Optimization—Data and
Computation Partitioning

Since reconfigurable devices provide the freedom to map
various architectures, choosing the appropriate architecture
affects the energy dissipation. Based on previous studies,
interconnect dissipates a large amount of power. Therefore,
minimizing the number of long wires or global communi-
cations between building logic blocks is beneficial. In the
following section, we discuss the importance of the data
and computation problem for on-chip communications and
evaluate different architectures based on different schemes
of partitioning the MP data and computations to meet the
needs of low energy consumption.

4.4.1. Data and Computation Partitioning Problem

Clock frequency has risen exponentially over the years and
the fraction of the chip that is reachable by a signal in
a single clock cycle has decreased exponentially.30 Archi-
tectures that rely on global signals are quickly becoming
infeasible.31 Therefore, care must be taken to distribute
the data and operations onto reconfigurable systems in a
manner that limits the amount of global communication.

We formalize the data and computation partitioning
problem using the following architectural assumptions.

• The programmable logic contains C configurable
logic blocks (CLBs).
• There are B BRAMs. Local BRAM can be utilized

by architectural synthesis tools for local intermediate data;
however, it is only used for this purpose.
• The CLBs and BRAMs are equally distributed across

the chip. Furthermore, we assume that the CLBs and
BRAMs are equally divided into B BLOBs where each
group consists of 1 BRAM and C/B CLBs.
• CLBs can read/write data in the BRAM of the same

group, which is called local access with a total latency of l
clock cycles. If CLBs access data stored in BRAMs from
another group (called a remote access), it takes a total r
clock cycles (r = l+d) since we assume an average of d
clock cycles will be taken because of the longer r outing

distance. Note that d is dependent on the distance of the
BRAM that is being accessed.

4.4.2. Data and Computation Partitioning

Before going into details of the specific data and compu-
tation distributions schemes, we provide a stripped down
overview of the matching pursuit algorithm presented in
its full, formal, mathematical glory in Section 2. MP com-
pares the received signal vector r with time delayed ver-
sions of a known training sequence that it expects to
receive from a transmitting user. The S matrix represents
these time delayed training sequences. The i-th column in
the S matrix corresponds to the training sequence delayed
by i samples. The training sequence can be viewed as
the transmitting device signature. The transmitting device
sends its signature before sending data, so that the receiver
can characterize the wireless channel between the transmit-
ting device and itself. It then uses this channel estimate to
demodulate future unknown data that it receives from that
transmitting user. The data in the S is calculated using the
signature (training sequence), CDMA spreading sequence
and transmit and receive filters, all of which are known a
prior (see Ref. [6] for exact method to calculate the values
of the S matrix).

Matched filtering boils down to multiplying each sample
of the received vector r with the corresponding sample of
a column in the S matrix. Then, we accumulate all of these
multiplied values to get a single value. This value repre-
sents the correlation of the received signal vector (r) with
a time delayed version of the training sequence Si. The
correlation value between r and column Si corresponds to
the likelihood that the received signal has been delayed by
i samples. However, it is important to note that multipath
may cause destructive or constructive interference. There-
fore, a high correlation value does not necessarily mean
that the received signal has a path delayed by that number
of samples.

Matching pursuits works by performing matching filter-
ing of the received signal with all of the delayed training
sequences (again, corresponding to the columns of the S).
It takes the delay with the highest correlation and subtracts
that signal from the received signal vector. The algorithm
iterates, continually canceling more signals, until it finds
a sufficient characterization of the channel. Matched fil-
tering takes a large majority of the computation time in
MP; hence we focus on data and computation distribution
for the filter. We evaluate different data and computation
partitioning schemes for trading off energy and delay, and
apply the optimal partitioning scheme into building the
energy efficient MP core.

An important consideration for implementing the match-
ing pursuit algorithm is the distribution of the data and
computation. The matching pursuit algorithm and, in par-
ticular, the matched filtering, exhibits enormous oppor-
tunity for parallelization. Each matched filter operation
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can be performed in parallel. This corresponds to com-
puting the received signal and path delays correlations in
parallel. Furthermore, each multiplication of the matched
filter can be performed in parallel. This corresponds to
computing the samples of the received vector and path
delay in parallel. However, we must then accumulate all
of these sample correlations. The fastest method of doing
this would be through the use of an adder tree. This would
allow us to compute the matched filter in O�log2 �r �� time
at the expense of O��r �2� multipliers. While the number
of samples varies depending on the spreading sequence,
typically, you need around 100 samples for the training
sequences (we use 88 samples in our experiments). This
would require approximately 10000 multipliers, which is
far more resources that are available on even the largest
reconfigurable devices. Even if such a device did exist,
and we can easily extrapolate Moore’s Law a few years
to where such a device exists, we can rarely afford to
devote the entire system to matched filtering. Therefore,
it is imperative that we study the relationship of perfor-
mance and design parameters between different data and
computation partitioning schemes.

Seeing how the fully parallel scheme is infeasible, we
must look to alternative schemes to serialize parts, if not
all, of the operations to different tradeoff design metrics,
e.g., delay, throughput, area, power, etc. Matched filters
involve a quite large amount of data. A poor data distri-
bution will result in large data transfer times, which can
eliminate all of the benefits gained through the paralleliza-
tion. Therefore, it is necessary to carefully distribute the
data onto the target device to achieve good performance.
The two-dimensional nature of the S matrix guides us to
the following two schemes for data distribution.

The local scheme distributes the S matrix into BLOBs
by column (see Fig. 4). Additionally, the received vec-
tor r is replicated and distributed to each BRAM. There-
fore, each BLOB computes a matched filtering of r and a
delayed training sequence. This sequentializes the compu-
tation of the individual matched filters, but computes all
of the filters in parallel.

The BLOB is configured as a multiply-accumulate
(MAC) data path, using the fixed multiplier and an adder
implemented on the CLBs. This scheme uses distributed
local control logic, i.e., each BLOB is controlled locally.
This requires a BLOB for each filter, which is equal to the
number of samples (88 in our case).

One could also imagine distributing multiple columns
into the same BLOB. This provides a tradeoff between
execution time and area. Since the BRAM has limited
number of ports, we would have to sequentialize the
matched filtering for each column in the BLOB in all but
the smallest column sharing schemes. For example, if two
columns Si and Si+1 are distributed in the same BLOB,
then the computation of the matched filter ST

i+1r follows
the computation of matched filter ST

i1r .

Fig. 4. The local scheme for computing matched filter outputs. Matrix
S are partitioned into columns, which are then distributed into block
RAMs. Each matched filter shares an embedded multiplier and an adder,
and its output is from a multiplication and accumulation (MAC) unit.

The global scheme distributes the S matrix into the
BLOB by row (see Fig. 5). Here, matched filters are com-
puted in parallel, while the path correlations are computed
sequentially. More precisely, the matched filter sample
multiplications are computed in parallel, and the accu-
mulate stage requires an adder tree. The adder tree is
fully pipelined to allow overlapping execution of multiple
matched filter accumulate stages.

Each sample of the received vector r is divided into the
BRAM of the BLOB. The BLOB is simply configured to
perform multiplication. The accumulate stage is computed
separately and requires global control logic and data trans-
fers of the multiplied samples from each BLOB.

Once again, we can tradeoff execution time for area by
assigning multiple rows to each BLOB. This corresponds

Fig. 5. The global scheme for computing matched filter outputs. Matrix
S are partitioned into rows, which are then distributed into block RAMs.
Each match filter uses NS number of multipliers and its output is from
the pipelined adder-tree, which combines the multiplication results.
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Fig. 6. The tradeoff of performance versus power by using both the
local and the global scheme.

to sequentializing the matched filter operations. Each sam-
ple present in the BLOB would be executed in paral-
lel, since we are limited by the number of ports on the
BRAM and the number of multipliers that we implement
in the BLOB. This would still require a separate adder-
tree, however, we can start performing MACs within the
BLOB. Once again, consider the case where we parti-
tion two rows Sj and Sj+1 onto the same BLOB. In this
case, we could perform two multiplications, corresponding
to the two samples from every path delay from S. How-
ever, we could also accumulate these two samples locally
and send the two sample accumulated result to the adder
tree for accumulation of the full delayed path. The BLOB
data path here would resemble the data path from the
local scheme. As both schemes move towards more serial
implementations, we would indeed reach a point where
the global and local schemes are equivalent. This would
happen when both schemes become fully sequentialized.

Figure 6 shows the results of performance and power
consumption versus granularity (number of columns or
number of rows partitioned into each block RAM for the
local scheme and the global scheme, respectively). The
figure illustrates that for both schemes as the number of
columns/rows of the S matrix packed into the same block
RAM increases, the execution time increases linearly and
the power consumption of hardware resources decreases
exponentially. This observation can be explained by under-
standing that each matched filter is sequentially executed if
multiple columns/rows are within one block RAM, which
takes less power consumption but longer execution time.
Depending on different system requirements, designers can
follow the curve to implement the matched filters opti-
mally. In the situation where high data rate is required,
the best implementation is to employ the local scheme and
distribute every column into each block RAM to achieve
the best performance.

Comparing Figure 6 and Figure 7, we can make the fol-
lowing observations. The results presented are based on the
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Fig. 7. The energy consumptions by using both the local and the global
schemes.

distribution of only one column or row per block RAM,
though other similar distributions exhibit similar behav-
ior. First, after placement and routing, the local scheme
can achieve the best performance (925.73 ns), which is
about 376 ns faster than the global scheme (1311.4 ns).
Second, the local scheme achieves less energy consump-
tion (4143 nJ less) than the global scheme. These can be
attributed to the fact that the pipelined adder-tree requires
a large amount of global communication across the chip,
which degrades the system performance and further leads
to large energy consumption. The overriding theme is that
architectures using the local scheme take less time than
that of using the global scheme, in terms of RTL synthe-
sis and placement and routing time. This is due to the
fact that the local scheme uses functional units and control
logic that are distributed locally to the block RAMs, while
the global scheme uses centralized control which requires
tools taking longer time to figure out the detailed place-
ment and routing. Therefore, the local scheme with one
column in each BLOB is employed in our design, which
can achieve the least amount of global communications
and the lowest energy consumption.

4.5. Algorithmic Level Optimization—
Module Disabling

At the algorithmic level, a lot of optimizations can be
conducted,7 with a strong impact on the system’s power
consumption. The MP algorithm is designed to be easily
parallelized, i.e., the BLOB-level computation of each path
can run independently of others. This enables the clock
gating technique to disable BLOBs that are not in use or
have been detected during the computation. By disabling
the unnecessary computation modules, the power dissipa-
tion can be reduced. In MP, for instance, after canceling
a significant path, the computation of this path is useless
but still consumes power. With the BLOB model of the
execution of each path, the implementation can exploit
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Fig. 8. Percentage of power savings with the algorithmic level
optimization.

clocking gating to disable the computation modules of
those detected paths.

As discussed in Ref. [32], for radiolocation applications
the MP stopping criterion can not only ensure that the
most significant paths are accurately detected, but guaran-
tee detection of the direct path, which can be consequently
used to measure the line of sight distance from the trans-
mitter to the receiver using the TOA-based method. When
the stopping condition is met based on the stopping cri-
terion, the MP core can be simply switched off to further
save power.

In FPGAs, clock gating can be realized either by using
primitives such as BUFGMUX to switch from a high fre-
quency clock to a low frequency clock2 or by introducing
a sleep transistor to switch the unnecessary modules off.33

To study the power consumption of the total on-chip
hardware resources, we divide the resources into three
types: unused, active, and disabled parts. The unused part
is the amount of hardware resources that are not con-
tribute to building the MP core, and thus it only consumes
static power, which is proportional to the resource utiliza-
tion. The active part includes the resources that are always
actively executing, which contribute to both dynamic
and static power dissipation. The disabled part has no
dynamic switching and thus only contributes to static power
consumption.

Figure 8 shows the percentage of the total power con-
sumption as the paths are detected and canceled by dis-
abling the unnecessary modules during the computation.
From the figure, we can see that the unused part con-
sumes 1.67% of total chip power consumption, i.e., there
is 1.67% of unused on-chip resources. When we apply the
algorithmic level optimization for achieving low power,
the power consumption decreases linearly as the detected
paths are successively canceled, and for each cancellation
the power saving is about 1.69% compared with leaving
all the canceled paths active. After detecting 15 paths, the
MP terminates, resulting in a total power saving of 25.4%.
Our MP core runs at about 200 Kbps, which is 216 times

faster than executing the MP algorithm on an 2.17 GHz
AMD Athlon XP microprocessor with 1 GB RAMs.1

5. CONCLUSION

Wireless connectivity is playing an increasingly important
role in communication systems. To meet the demands of
higher data rate and higher multi-user capacity, channel
estimation has been employed as the key to modern com-
munication algorithms. Given the frequency with which
new wireless protocols are developed and deployed, an
ASIC based approach is a poor option due to it’s lack
of programmability. On the other side, with the computa-
tional demands that the current generation of signal pro-
cessing algorithms place on a device, a microprocessor
simply could not provide enough throughput. A reconfig-
urable device provides an excellent balance between these
two extremes, and also presents a unique opportunity to
designing and optimizing the signal processing algorithms
in concert with the actual hardware implementation. In this
paper, we described a cross-cutting approach to explore
the design space to solve the channel estimation problem
on reconfigurable devices.

As high performance and energy efficient implementa-
tions remain as a design challenge, we focused on build-
ing a high speed and energy efficient matching pursuit IP
core, which has been optimized at all levels of the system
design: bit, architecture, and algorithm levels. At the bit
level, we have studied the tradeoff of energy consumption
versus accuracy. At the architectural level, we have inves-
tigated many different data and computation partitioning
schemes, and found that an effective way of partitioning
an application is to treat the reconfigurable device as a
collection of computational blocks, where each block has
a single block of memory and an associated set of com-
putational abilities. We call each of these logical units
a BRAM-level operational block, or “BLOB.” We have
demonstrated that by keeping both the control and the data
signals local to each BLOB to the greatest extent possible,
the implementation can achieve the highest performance
and the least energy consumption. At the algorithmic level
where the decision has the strong impact on the system
power consumption, we have employed the clock gating
technique to disable the unnecessary computation mod-
ules, achieving 25.4% of total power savings, which can
execute 216 times faster than running the algorithm on a
state of the art microprocessor.
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