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Abstract

Power consumption, physical size, and architecture de-
sign of sensor node processors have been the focus of sen-
sor network research in the architecture community. What
lies at the foundation for these research is the hardware-
level design which determines the boundaries for achievable
utility and performance. Architecture design and evaluation,
however, cannot be accomplished independent of the appli-
cations and software that run on these sensor nodes. On one
hand, some researchers have proposed architectures that can
cater to a variety of application classes while trading off on
some performance improvements. On the other hand, a set of
application-specific architectures have been proposed which
perform certain operations extremely well but are not versa-
tile enough to run a variety of applications.

This paper provides a design space exploration and op-
timizations platform to characterize the processor and ISA
design tailored for a particular application or a class of ap-
plications. We collect a wide variety of sensor network ap-
plications to create a comprehensive benchmark suite called
the WiSeNBench. We then present a careful profiling of these
benchmark applications using an ARM simulator to identify
some of the key characteristic behaviors. This also opens up
avenue for a possible re-look at the classes of applications
that could be supported on next-generation sensor networks
and efficient architectural designs to enable these applica-
tions.

1 Introduction

Sensor network applications include environmental mon-
itoring, structural sensing, battlefield communication, traf-
fic, health, security monitoring, and other automation tech-
niques. Consequently, sensor network research involves ar-
chitecture, application optimization, communication proto-
col design, and developing efficient communication hard-
ware. Small form factor, low-power budget, low-resource
availability, and real-time requirements are some of the char-
acterizing factors of sensor nodes. Each of the above is an
additional constraint imposed on the designers of such net-
works. Given these various sites of improvement, in this
paper we focus on sensor network applications, their char-
acteristics, and explore ways in which they can influence the

design of the underlying architecture.

Knowledge of the underlying hardware aids in efficient
software development. A top-down approach towards soft-
ware development may be well suited in scenarios where the
processor architecture is already well defined and scope for
optimization, if any, is just on the software front. With sen-
sor applications and sensor network research, however, the
scenario is quite different. Sensor applications require a spe-
cial purpose hardware suitable to cater to a different set of
requirement. Medical applications for example, need highly
non-intrusive tiny sensors which are usually harmless to the
human body as foreign-bodies . Whereas sensors spread on a
military terrain have to be more tolerant to physical impacts
and wide operating temperature range. These physical char-
acteristics in which the sensors are placed and the difference
in their utility makes it important to do research on sensor
networks on a case by case basis.

Unique set of findings for a sensor application is good, but
the sheer number of applications sensor networks are find-
ing today rules out the feasibility of developing processors
unique to each and every application. This brings us to a
point where we will have to trade between the amount of
customization available on a processor and the performance-
cost benefits one would like to achieve. We believe that this
aspect needs to reflect on the research focus in this area. The
major contributions of this paper are a) To study some of the
most important applications for sensor networks, including
those in TinyBench [8] and SenseBench [27]. This includes
a careful profiling of application behavior and its microarchi-
tectural implications. b) To characterize the workload that is
prominently visible among sensor network applications. c)
To characterize the workload that is unique to a class of sen-
sor network applications. d) To propose optimizations to ex-
isting sensor network architectures based on the observations
made in (a,b,c).

In order for the characterization to be useful, the set of
applications used for the purpose should be representative of
the domain being analyzed. To this end, we present a thor-
ough survey on sensor network applications, classify them
based on the core functionality an application serves, and
characterize each class independently.

Microarchitectural characteristics of programs serves as
an important aspect in making architectural design decisions.
The code size of an application influences critical decisions



made based on the footprint of a program. The execution
pattern and the bottleneck region optimizations improve the
response time. The memory access patterns (both spatial and
temporal) provide avenues for various memory placement
and memory design related optimizations. Studying the com-
position of the dynamic instruction stream aids in instruction
set architecture optimization. Dynamic instruction execution
sequences help architects not only understand the behavior of
a program but also help in improving functional unit design
to reduce the overall area or even increase transistor utility.

In this paper, we architecturally characterize all sensor
network applications and compare the results for different
class of sensor network applications. First, we collect all
representative set of applications from TinyOS benchmarks
[10], TinyBench [8], and from [28] and we build some of our
own simple applications. We then classify them into various
classes of applications to compare the architectural findings
for different classes. Specifically, we study the following ar-
chitectural characterizations and optimizations.

o Find the most frequently executed instructions

o Find the most frequently executed pair and triple of instruc-
tions

e Instruction-set and footprint optimization by combining
frequently executed pair of instructions

e Memory behavior of the applications

2 Related Works

Wireless sensor network (WSN) has identified its appli-
cations in many disciplines including environmental engi-
neering, military/security applications, and civil engineering.
The main challenge is to make the sensor node a low-energy
device so that it can scavenge energy from various sources.
From an architectural perspective, the processor used inside
should be designed to consume less energy while coordinat-
ing with other components in a manner which minimizes
the total energy consumption. While initial microproces-
sors used in a Mote are of ATMEL (AVR) family, they were
synchronous processors and not specifically designed for the
sensor node applications. Past research [5, 9] have shown
that an asynchronous processor design is the ideal choice
for microprocessor to save energy, whereas in synchronous
design energy could be wasted in clocking the synchronous
processor and other components. ARM cores and variations
of ARM cores such as StrongARM and XScale have also
been used to see the energy-performance tradeoffs for sensor
node applications.

Ekanayake et al. [5] have designed a low-energy asyn-
chronous processor that only takes 24 pJ/instruction, whereas
ATMel or ARM family processors takes energy in the order
of nlJ/instruction. They design a new ISA, new coprocessors
which includes timers, radio units, and processor core for
low energy design. But they do not provide any motivation
or reasoning behind selecting this instruction set that could
help the architecture community to understand the ISA de-
sign better in tandem with sensor network benchmarks. Sim-
ilarly, Hemstead et al. [9] have also designed an event pro-
cessor along with some hardware accelerators to improve the
performance and energy consumption. Nazhandali et al. [28]
have designed a sub-threshold sensor network processor that

can run at very low voltage and hence at very low frequency.
This sensor network processor is a CISC architecture and it
consumes 1.6 pJ/instruction.

While these processors are very well optimized for all
sensor network applications, some key insights on design-
ing a particular ISA for these architectures would be very
helpful. Some past benchmarks such as MediaBench [25]
designed for multimedia applications, NetBench [26] , and
MiBench [7] for embedded applications, do exhibit an archi-
tectural characterization and provide some insight/platform
to build an optimized architecture. Ideally, ISA design or
other components design should result from the characteri-
zation of all sensor network applications on a base proces-
sor. There are two benchmarks for sensor network applica-
tions TinyBench [8] and SenseBench [27] for this purpose.
In TinyBench, all the applications are targeted for TinyOS
and does not scale well for a general study of architecture
exploration. While SenseBench provides a set of generalized
benchmarks, it does not cover all the applications and the ar-
chitectural characterization is limited to code size, energy per
benchmark and real-time performance requirement. Instead
we make our benchmark more comprehensive by extensively
scanning research literature and also performing a large set of
architectural characterization. Architectural characterization
will also vary from different class of sensor node applications
as we move from security/military applications to environ-
mental/structural monitoring applications where the compu-
tational requirements are different. Therefore, we present a
complete architectural characterization of the all sensor net-
work applications (which we call WiSeNBench) and we then
group them into different classes of applications and com-
pare our findings for these different classes of applications.

3 WiSeNBench:
Benchmark

Wireless Sensor Network

In this section, we describe our benchmark suite WiSeN-
Bench in detail. WiSeNBench consists of a large spectrum
of sensor network applications and core algorithms that are
mainly used inside sensor network applications. Identify-
ing and collecting this set of applications required non-trivial
efforts due to a plethora of wireless sensor network appli-
cations and many more applications which are not yet ex-
plored. To also make sure that these applications cover many
different classes of applications, we had to rigorously scan
the research literature in different domains of research in
wireless sensor network. Specifically, we look for various
cryptographic applications [24], security protocols [29], dig-
ital signal processing (DSP) applications [3], hashing tech-
niques [36], message digest [31], random number genera-
tor [33], compression techniques [30], routing [4], applica-
tions related to computational geometry [23], some basic al-
gorithms [27], and many pertinent survey papers [1, 22].

Based on this study, we identify the potential applications
that will run on the sensor network processor and collect the
optimized code for these applications. The main problem
in the collection phase was to find the optimized code for
one generic language instead of code written in a specialized
language (such as nesC [6]) or targeted for a very specific
architecture [8]. While we could find the optimized code



Table 1: WiSeNBench: Different classes of sensor network applications with its brief description and reference.

Class of Application Brief Description
applications [reference]
CRC [14] Cyclic redundancy check (CRC) generates a checksum to correct errors
for a block of data.
Compression/ RLE [15] Run length encoding (RLE) is a simple data compression technique which
Hash/Digest scans the data and then stores the data with associated count.
Hash algorithms [19] A set of hash algorithms to produce a fix-length data for indexing
and better search.
Bloom filter [18] Bloom filter consists of a set of hash algorithms and a hash table
to resolve containment queries.
MDS [31] Message digest algorithm 5 (MDS5) is a powerful hash function to create
a 128-bit key for integrity checking.
SMAC [37] S-MAC is an energy-efficient medium access control (MAC) protocol.
Routing/Radio Ad-hoc routing [34] A routing technique in a distributed multihop wireless network with
a shared wireless channel.
EnergyEff routing [32] Its an unidirectional level-hop routing algorithm to assign
each intermediate nodes a level to reach the sink node.
RC5[16] RCS is a fast block cipher for RSA data security and has variable key size and
rounds. We consider both encryption and decryption in this case.
TEA [20] Tiny encryption algorithm (TEA) is a block cipher which is very simple to
design and code size is also very small.
Cryptography/ Crypto [13] Crypto3 is a cryptographic technique to encrypt password in
Security an Unix based system.
RC6 [17] RC6 is an advanced version of RCS5 for data security.
SPINS [29] SPINS is a security protocol for sensor network which has two
components (1) SNEP (2) TESLA
Voronoi diagrams [12] Voronoi diagrams is a special decompostion of metric space using a set of
distinct points.
Computational || Delaunay triangulation [11] | Delaunay triangulation for a set of points is the triangulation of
geometry points with some specific property.
Localization [21] Localization algorithms for sensor node to approximate its position.
FFT Fast fourier transform (FFT) algorithm is a fast and efficient
algorithm to calculate DFT and IDFT.
Digital signal FIR Finite impulse response (FIR) is a type of digital filter and its
processing response finally settles down to zero.
IIR Infinite impulse response (IIR) filter has non-zero response
over a long period of time.
Speech filtering Some specialized filters such as Kalman filters for speech processing.
sorting algos This application contains 7 types of sorting algorithms with different
runtime complexity and implementation.
Fibonacci Fibonacci numbers are special numbers from a well defined recurrence relation.
MatrixMul This is a simple matrix multiplication algorithm for small sizes of matrix.
Basic core Binary search Binary search algorithm is a typical search algorithm for a sorted list.
algorithms Min-max finder Finds the minimum and maximum values in a list of values.
majority consenus Finds the majority value in a list of values.
Topl10 Finds the top 10 values in a list of values.
sum-array Provides the sum of all values present in a list.

for many applications (about 70% of those in the suite), we
also develop optimized code from scratch for various appli-
cations (about 30%) for which we could not find optimized
code written in a generic language (such as C).

After the identification and collection phase, we accom-
plish a good representative set of a wide variety of sensor
network applications. To characterize it better, we categorize
these benchmarks into various classes: 1) Compression 2)
Routing 3) Security 4) Computational geometry 5) DSP 6)
Basic algorithms. Table 1 shows different classes of bench-
marks with a brief description and the reference if applicable.

Although all the benchmarks can be run as a separate stan-
dalone binary, we preferred to combine all the applications
into one single binary and create a unified framework. The
motivation behind creating a this framework is to enable cen-
tralized control of inputs to these benchmarks, a simpler sim-
ulation platform, and easier statistics collection.

4 Experimental Setup

In this section, we explain our experimental setup which
includes the compilation of the unified benchmark, simula-
tion, and the statistics collection. We use the ARM Sim-
pleScalar simulator [35], which was extended from the orig-
inal SimpleScalar simulator [2]. We setup cross-gcc suites
for ARM processor to compile the benchmark and make a
single static binary as SimpleScalar ARM would not handle
the dynamic binary file with shared object files. Since we
are only interested in the architecture of a very simple RISC
processor with no out-of-order execution, and no caches, we
conservatively use sim-safe simulator for our experimenta-
tion. We modify the code of sim-safe simulator to extract
the related statistics which is explained in detail below along
with other implementation issues.

Using the gcc cross-compilation suites we first create the
binary and then make sure that we collect statistics based on



various functions in the binary . Although Some benchmarks
use multiple functions, we combined the results of all re-
lated functions. We use ARM disassembler in binutils toolset
to disassemble the generated binary and feed this disassem-
bled file to a PERL script which parses the disassembled file
and generates a C header file containing a large structure
with all the function initialization. Each function initializa-
tion mainly consists of following three entries: <function-
name,start-pc,end-pc>. This header file is used with the sim-
safe simulator. Since we intend to do architectural charac-
terization based on each function, we identify every function
range in the sim-safe execution loop and do relevant process-
ing required to collect the statistics. At the end of simulation,
the simulator prints all the related statistics to a file. Specifi-
cally, we consider the following statistics:

e Codesize - This is the footprint of the application and a
crucial factor in the design of a resource constrained sensor
node processor.

e Memory accesses - We characterize the memory access be-
havior by finding out number of load/stores instructions ex-
ecuted by a particular application.

e Loads - Percentage of loads in the memory accesses is an-
other important factor in terms of energy consumption for
sensor network device.

e Frequent instructions - To make some instructions power-
conscious during their execution, it is important to under-
stand the distribution of frequently executed instruction.
Architects can optimize these instructions for energy sav-
ings and performance.

e Frequent pair of instructions - We also find the frequent pair
of instructions while executing a specific function. This
will give us an idea about the quantitative improvement we
can achieve in energy savings and performance. This can
also be done statically to improve the code size by combin-
ing frequent instruction pairs into a single instruction.

5 Results

Having described the complete benchmark suite in Sec-
tion 3 and the experimental setup in Section 4, we now
present some characterization results based on the parame-
ters discussed in the previous section.

5.1 CodeSize

Codesize or the footprint of a program is a very impor-
tant parameter as it directly signifies the amount of memory
required for a particular application. We statically compute
the codesize for ARM ISA and present the results in Fig-
ure 1. We can see that most of the DSP applications have
much larger code size, whereas most of other applications
have code size less than 500 bytes except MDS5 and RCS.

5.2 Memory Accesses

A whole host of program optimization techniques are
aided by the knowledge of memory access behavior of a pro-
gram. We compute the total memory accesses to signify the
memory intensive behavior of each benchmark. We present
the results as percentage of memory accesses (load/stores) as
a percentage of total executed instructions. Figure 2 shows
the percentage of memory accesses for all of the benchmarks.

We can see that most of applications have 40-60% memory
accesses, while some of the applications such as DSP appli-
cations, Fibonacci numbers accesses memory through more
than 60% of the executed instructions.

5.3 Load accesses

To characterize the memory accesses further, we calcu-
late the percentage of loads in the memory accesses. As
we can clearly see from the Figure 3, percentage of loads
is larger than 50% for almost all applications which signifies
that there are more loads than stores (which is also intuitive).
We also find that basic algorithms have higher percentage of
loads (specially sorting algorithms), whereas for DSP appli-
cations loads and stores are almost evenly distributed.

5.4 Frequent instructions

We find the frequent instructions for each application in
WiSeNBench to get an idea if any particular instruction is
suitable for optimization in terms of energy or performance.
Although we gather results for all the benchmarks, due to
space constraints we only present the results for two appli-
cations. These two applications represent a class of applica-
tions: 1) TEA - from cryptographic class 2) FIR - DSP class.
We present the frequent instructions as the percentage of to-
tal instructions. For TEA, the results are shown in the graph
on the left in Figure 4 and we find that almost 7 frequent in-
structions account for 95% of instructions, with load and add
instructions at the top of the list. Similar results are presented
for FIR application in graph on the right in Figure 4. We find
that for FIR applications instructions are widely distributed
with load and branch instructions at the top of the list with
about 28% and 10% respectively of total instructions .

5.5 Frequent pairs of instructions

We also find the frequent pairs of instructions to further
characterize the application behavior to seek any possible
optimization of combining frequent pair of instructions. Al-
though there is a tradeoff in combining the instructions, it
can certainly result in lower code size, possibly lesser en-
ergy consumption and possibly improved performance. Once
again, for this analysis we present the results for only TEA
and FIR applications and they are shown in Figure 5. We see
a very similar behavior found in frequent instructions analy-
sis. For TEA applications, frequent pairs are attributed to a
small number of pairs, whereas for FIR applications it is dis-
tributed to many pairs of instructions. Interestingly, the 2nd
and 3rd frequent pairs < mov, load > and < load, mov >
are same in both FIR and TEA applications. In TEA, we
find that < add, load > instruction pair is found to be more
frequent (may be due to array accesses), whereas in FIR
< load, br > is found to be more frequent at about 9%.

6 Conclusion

Sensor networks, though classified under one umbrella,
have varied requirements and utilities. To efficiently design
protocols, architectures, and applications, it is important to
characterize the applications and categorize them based on
their effects at the microarchitectural-level. We present a new
set of comprehensive benchmarks called the WiSeNBench in
a unified framework. We show that WiSeNBench effectively
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Figure 2: Memory access behavior of all applications in WiSeNBench. The y-axis shows the memory accesses as a percentage of total

instructions for each benchmark on x-axis.

characterizes the myriad application set sensor network often
deal with and provides insights into the behavior of each of
these. Architectural characterization was performed using
ARM SimpleScalar Simulator. We find that the code size of
MD?5, RC5 and DSP applications is larger compared to other
categories. On the instruction stream composition front, we
find that the set of basic algorithms execute larger percentage
of loads and that the DSP applications. Also, we believe that
there is a potential for further research on ISA design based
on the results presented on frequent instructions and frequent
pairs of instructions.
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