
IP CACHING FOR TERABIT SPEED ROUTERS

Bryan Talbot, Timothy Sherwood, Bill Lin
University of California San Diego

9500 Gillman Dr., La Jolla, CA 92093
{btalbot,tsherwoo,billlin}@ucsd.edu

Abstract

As network speeds continue to grow, current meth-
ods of translating destination IP addresses to output
port numbers during routing become inadequately slow.
Eventhough this lookup is often performed in hardware,
it may still be limited by DRAM access latencies. We
present a method of speeding up access to DRAM based
lookup mechanisms by more than a factor of 10 using
CPU style memory caches. Real IP router traces are
used to validate the caching scheme as well as study
some IP address properties that may affect caching per-
formance.

1 Introduction

An IP router must perform an IP routing table lookup
every time a packet is to be forwarded to the next hop.
This lookup table serves to translate the destination
IP address into an output port number onto which the
packet is to be transmitted.

A possible naive approach is to simply enumerate the
entire table in memory, however with IPV4 there are
232 possible IP address, and with the advent of IPV6
this number increases to 2128. Even the smaller of these
address spaces is too large to simply enumerate, thus
clever methods are needed.

Another point to note is that the IP lookup mecha-
nism lies directly on the critical path for IP routing, and
as networks begin to reach terabit speeds the IP lookup
time can quickly become a bottleneck. A terabit capa-
ble router must be able to make over two-hundred mil-
lion lookups per second assuming IP packet sizes of 500
bytes. This means that IP lookups must be completed
on the order of nanoseconds rather than hundreds of
nanoseconds. The use of DRAMs for table lookup in
the common case ceases to be feasible at these speeds.
This is due to the fact that DRAM access speeds are on

the order of 50 ns and decrease only a few nanoseconds
per generation. Indeed at terabit speeds even going off
chip without the use of highly tuned bus transceivers
is unlikely to be realistic. However by changing some
basic assumptions we may be able to avoid both of the
above problems.

We believe that destination IP address lookup speeds
can be increased by taking advantage of temporal lo-
cality of the IP addresses. If an address is referenced,
it will likely be used again soon. We attempt to show
that real packet traces exhibit temporal locality of their
destination addresses, and that this locality can be ex-
ploited to provide very fast IP lookups in real network
routers. To take advantage of the temporal locality, we
propose specialized caches to capture commonly refer-
enced addresses for fast lookup. We examine the timing
ramifications of our cache design using the cache simu-
lator “Dinero IV” [3] as well as show some interesting
characteristics of large packet streams.

The rest of the paper is laid out as follows: section 2
is an overview of related IP routing work and section 3
is a description of our proposed scheme. Section 4 de-
scribes our experimental methodology including trace
descriptions. Sections 5 and 6 present the results, and
section 7 draws final conclusions.

2 Related Work

There has been a great deal of work done towards high
speed routers as of late [11][6][5][2], some of which was
directed at fast IP lookup. Two of the schemes which IP
Caching draws heavily upon are the Stanford Lookup
scheme [4] and IP Switching [10].

2.1 Stanford Lookup

The Stanford lookup scheme [4] is built on the idea that
when doing a histogram of the actual sizes of bits used



in the routing table, only the least significant 24 bits of
the 32 bit IP address are used in 99.3% of the routing
table. The authors argue that by simply enumerating
those 224 possible entries in DRAM, which would only
take approximately 16 million entries, the common case
could be satisfied with a single DRAM access and little
other overhead. This method works quite well for cur-
rent networks with 32 bit address and at slow enough
speeds, however the Stanford method is quite limited by
the fact that one DRAM access per lookup is required.

2.2 IP Switching

Lin and McKeown present work relevant to IP Caching
in the form of arguments for IP switching [5]. The
basic idea of IP switching is to characterize the stream
of IP packets into flows, which can then be assigned, to
virtual circuits. To make this work two criterion must
hold true: a significant portion of the packet stream
must be comprised of logical flows, and the number of
flows has to be small enough such that the flows can be
stored efficiently on the routers. Lin and McKeown go
on to show that this solution may be feasible for several
packet traces. However we claim that if the above two
conditions hold true then there may be a simpler way
to speed IP lookup, simply cache the IP address.

3 IP Caching

We propose that by building a special IP lookup cache
we can increase the throughput and decrease the la-
tency of the lookup operation in the Stanford scheme.
Lookup requests would be checked in the cache before
an access out to memory. One interesting thing to note
is that since there is no spatial locality in the packet
stream, large cache line sizes give you nothing in return
for their increased access time. Because of this we use
only one entry per cache line, and a cache line size of 1
byte.

Upon access to the cache, the IP address is split (as a
virtual address would be in a microprocessor) into two
parts: the indexing bits and the tag bits. The cache
works in the traditional way, the indexing bits are used
to address a cache line and the tag bits are used to
verify that the indexed entry is the one that was being
searched for. We investigate tag and index bit choices
in the results section.

Site Description

ANL Argonne National Laboratory to STARTAP

FLA Florida universities GigaPOP

FXW FIX-West facility at NASA-Ames (FDDI)

MRT Michigan universities (Merit)

NCL NC Networking Initiative NCNI GigaPOP

NRN NASA’s NREN connection at the AIX

ODU Old Dominion University

OSU Ohio State University

SDC SDSC commodity connection

Table 1: Packet trace source locations.

Site Packets Unique IPs Duration (s)

ANL 1,371,854 2,564 1,649

FLA 3,294,418 2,323 3,601

FXW 43,080,646 162,839 3,599

MRT 58,980,772 101,352 3,600

NCL 6,919,914 6,196 3,602

NRN 33,600,336 1,208 3,602

ODU 4,808,121 10,070 3,600

OSU 32,765,590 57,514 3,598

SDC 36,044,403 73,816 3,600

Table 2: Packet trace sizes.

4 Methodology

In order to evaluate caching performance we obtained
packet traces containing real IP numbers from busy In-
ternet routers from around the United States. Real
packet traces were necessary because randomly gener-
ated IP numbers would not exhibit the same distribu-
tion of bit values in the address nor would it exhibit
any locality.

The destination IP addresses were then used, rather
than traditional memory references, as input to a
caching simulator to compare the performance of vari-
ous cache configurations.

4.1 Packet Traces

Since cache effectiveness is based on the assumption
that IP destination addresses seen by a backbone router
have specific properties, we needed router traces con-
taining real IP addresses to confirm those properties
and the validity of our caching scheme. There were
two properties we were most interested in investigat-
ing. First we wished to find out which bits of the des-
tination IP address are the most “volatile”. That is,
which bit positions change the most from address to ad-
dress. Secondly, the temporal locality of the addresses
should be tested. If a high degree of such locality does



Figure 1: Average bit values.

indeed exist, then caching the destination IP lookup
tables should be quite effective.

To this end we contacted the National Laboratory for
Applied Network Research [7] and arranged access to
such traces. They provided us with long traces ranging
in length from nearly 1

2 hour to over 1 hour collected
from nine routers from around the U.S. Tables 1 and 2
summarize the sites and traces used.

4.2 Caching Simulation

We first formatted the original router trace files to con-
form to an input format usable by Dinero with the IP
destination address in place of memory address. We
first tested 21 L1 cache configurations ranging in size
from 4K to 256K entries each with three different asso-
ciativity levels including direct-mapped, 2, and 4 way.
One and two megabyte L2 caches with direct-mapped,
2-way, 4-way, and full associativity were then simulated
with all the above L1 caches in an attempt to obtain
optimum hit rates.

5 Results

5.1 Average bit values

The first series of tests performed were designed to mea-
sure the average values of the bits distributed in the
IP address. This measurement could help determine if
some of the bits in the address would be better to index
a cache with or to use as tags. The best indexing bits
should be those with an average value of 1

2 ; meaning
that over a large series of addresses, they are set 50%
of the time. Indexing with these bits should help to
spread references more evenly across the cache minimiz-
ing conflict misses. Every address in each trace file was
checked. The average bit values were calculated over

Figure 2: Average bit values for unique addresses.

the entire stream of references and also for only those
references which were unique. Figure 1 plots the range
of average bit values for the entire reference stream.
All nine traces’ average bit values were computed sep-
arately and then an overall average value covering all
the traces was computed. The plot shows the high and
low average values; the overall average value is marked
on each vertical line.

The average bit values vary quite a bit for most bits
and vary quite wildly for several which indicates that
the average bit value seen by each router tends to be
dominated by the networks it is connected to.

The graph in Figure 2 shows the average values for
only the unique addresses found in each trace. The av-
erage value of the lower 16 bits of the address vary much
less from router to router than the non-unique values
do. The high bit values still vary quite a bit, but much
less than before. Since most of the lower bits appear to
have the most desirable and tightest average value, we
used the bits as they appeared in the IP addresses in
the cache simulations with the lowest bits indexing the
cache.

5.2 Caching simulations

The L1 cache miss rates for four of the traces are plot-
ted in Figure 3. The x-axis plots cache size which varies
from 4KB to 256KB and the y-axis is the miss rate.
There are three plots per graph with the topmost plot
(having the worst hit rate) being for a direct mapped
cache. The middle plot is a 2-way set associative cache.
The best hit rates are achieved using a 4-way set asso-
ciative cache.

Several of the traces had such a small number of
unique IP address in them that the hit rates were ex-
ceptionally high even on the smallest, 4K entry, caches
we simulated. Those plots are not shown since they are



Figure 3: L1 cache miss rates for FXW, MRT, OSU,
and SDC using direct mapped, 2-way and 4-way caches

Site no cache 128K L1 4K L1 L1+L2

ANL 55 2.11 2.32 2.13

FLA 55 2.04 2.16 2.06

FXW 55 3.40 8.85 3.28

MRT 55 2.17 11.11 3.45

NCL 55 2.06 2.82 2.16

NRN 55 2.00 2.03 2.01

ODU 55 2.12 2.65 2.19

OSU 55 2.12 6.36 2.74

SDC 55 2.15 4.45 2.46

Table 3: Average IP lookup times in nanoseconds

so flat. All of these locations display a high degree of
temporal locality; at least for the duration of the traces
we have.

The miss rates do steadily decrease with increasing
cache sizes as expected. This fact suggests that caching
IP destination addresses scales well with cache size. A
heavily aggregated site with less temporal locality in the
IP destinations could improve cache hit rates by using
larger cache sizes. Since cache memory densities have
historically grown at a rate similar to network traffic
growth rates (doubling in size every 18 months) this
should be a maintainable improvement into the future.

6 IP Lookup Performance Times

Realistically L1 cache sizes and associativity are limited
by cycle time. We found several sources for L1 caches
in the 128K, 2-way, 2ns cycle time, 1-cycle latency
range. Table 3 shows calculated average IP lookup
times, in nanoseconds, for several different lookup con-
figurations. In each case, the main memory DRAM
is assumed to be organized using the Stanford scheme
from.[4] The “no cache” column gives access times if a
DRAM access is required for every lookup. The next
two columns show access times if a high-performance
128K or 4K entry, 2-way, 2ns cycle time with a 1-cycle
latency L1 cache were used in front of the DRAM stage.
The last column attempts to demonstrate the effective-
ness of a large fast 1M entry L2 cache for improving
access times even when the 4K L1 hit rates are low.
Low for this data however is still over 80% for even
the smallest 4K caches, so the effect of the L2 cache
may not be as dramatic as it could be with different
reference streams.

The cache timing we used for the L1 caches are
from [8] and L2 cache timings are from the Intel Xeon
CSRAM modules as reported in [1] and [9]: 2ns (and
less) cycle times, 5 cycle latency, 4-way set associative.



7 Conclusions and Comments

Our experiments demonstrate that caching of destina-
tion IP addresses is indeed an effective speedup to IP
lookup in high-speed routing. The traffic patterns of
the nine sites we were able to obtain test data for all
responded well to our caching strategy. Hundreds of
millions of packets over several hours of time were an-
alyzed. In each case the lowest bits of the IP address
demonstrated the most randomness making them well
suited to index a cache. On top of that, the scheme
would appear to scale well for use on sites with higher
aggregation levels of destination addresses. The sites
we tested all showed impressive speedups using small
4K entry caches. This suggests that if all nine of these
networks were concentrated at one router at most 9×4k
cache entries would be necessary to maintain similar
performance.

Non-real world worst case traffic streams, such as
sequential non-repeating destination addresses, would
show no gain using this method; although, the over-
head imposed by the presence of the L1 cache in these
cases would be a small fraction compared to the DRAM
access time. The presence of the cache has shown a 10x
or better speed improvement when used with all of the
real packet streams we’ve tested it with.

The best performing method we’ve seen to date, the
Stanford method, required at least one DRAM cycle
(55ns) plus off chip delays to perform this task. The
caching we propose would supplement that method, or
most any other DRAM based method, and shows siz-
able speed increases. With an average IP lookup time
of well under 4ns, a lookup engine could support 250
million lookups per second. Even the occasional worst
case performance is barely greater than 1 DRAM ac-
cess. Assuming average packet sizes of 500 bytes per
packet, this lookup scheme could support speeds ex-
ceeding 1Tbps.

Acknowledgments

We would like to thank Hans-Werner Braun of NLANR
for providing us with packet traces and for providing us
with the machine time to perform the data analysis.

References

[1] “Intel Bets On Custom Cache Device For Slot 2
Platform”, Anthony Cataldo, EE Times, February
11, 1998

[2] “Small Forwarding Tables for Fast Routing
Lookups”, Mikael Degermark, Andrej Brofnik, Sa-
vante Carlsson, and Stephen Pink., ACM SIG-
COMM 1997

[3] Dinero IV Cache Simulator 1997 NEC Research
Institute, Inc. and Mark D. Hill.

[4] “Routing Lookups in Hardware at Memory Ac-
cess Speeds”, Pankaj Gupta, Steven Lin, Nick
McKeown, Computer Systems Laboratory, Stan-
ford University

[5] “A Simulation Study of IP Switching”, Steven Lin
and Nick McKeown, From ACM Sigcomm’97.

[6] “Scalable High Speed IP Routing Lookups”, Mar-
cel Waldvogel, George Varghese, Jon turner, and
Bernard Plattner, From ACM Sigcomm’97

[7] National Science Foundation Cooperative Agree-
ment No. ANI-9807479, and the National
Laboratory for Applied Network Research,
http://nlanr.net/

[8] “A 2ns Access, 285 Mhz, Two-Port Cache
Macro using Double Global Bit-Line Pairs”,
Ken-ichi Osada, Hisayuki Higuchi, Koichiro
Ishibashi, Naotaka Hashimoto, Kenji Shiozawa.
From IEEE International Solid-State Circuits Con-
ference (ISSCC) 1997.

[9] “Intels Xeon for Workstations and Servers”, An-
dreas Stiller, c’t 14/98, page 162, Translation by
Sabine Cianciolo

[10] “Scalable High-Speed IP Routing Lookups.”, M.
Waldvogel, G. Varghese, J. Turner, B. Plattner,
Procedures ACM SIGCOMM 1997, pp. 25-36

[11] “Routing on Longest-Matching Prefixes”, Do-
eringer, Willibald, Karjoth, Gunter, Nassehi,
Mehdi, IEEE ACM Transactions On Networking,
Vol. 4, No. 1, pp. 86-97, February 1996.


	Introduction
	Related Work
	Stanford Lookup
	IP Switching

	IP Caching
	Methodology
	Packet Traces
	Caching Simulation

	Results
	Average bit values
	Caching simulations

	IP Lookup Performance Times
	Conclusions and Comments

