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Monitoring traffic payloads to detect the occurrence of suspicious patterns has proven
to be a useful and necessary tool for network security. Bit-splitting breaks the problem
of monitoring payloads to detect such patterns into several parallel components, each of
which searches for a particular bit pattern. We analyze bit-splitting as applied to Aho-
Corasick style string matching and present a formal treatment of bit-slicing to prove
correctness and to provide bounds on the NFA to DFA conversion of the Aho-Corasick
type machine used for bit-splitting. The problem can be viewed as the recovery of a spe-
cial class of regular languages over product alphabets from a collection of homomorphic
images. Furthermore, in an attempt to extend the flexibility and applicability of the orig-
inal bit-splitting algorithm, we explore the expressiveness and limitations of bit-slicing

with respect to wildcard matching applications.
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1. Introduction

Increasingly, routers are asked to play a role in scanning for, logging, and even pre-

venting network based attacks. Signature based schemes rely on a set of signatures

to describe malicious or suspicious data. While a wide variety of signature types

are possible, depending on the exact nature of the intrusion detection or preven-

tion method, a signature usually consists of at least a type of packet to search, a

sequence of bytes to match, and a location where that sequence is to be searched

for.

In an ideal case a signature includes a sequence of bytes which are always trans-

mitted during a specific attack. The SQLSlammer worm, for example, sends 376

bytes to UDP port 1434 and can be detected in part by searching for the invariant

framing byte 0x04 [14]. It is not uncommon to have thousands of signatures, each

4 to 40 bytes long. Searching through every byte of the payload of every packet for

one of a large number of signatures quickly becomes a significant computational

challenge.
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One implementation concern is storage. A single state of a DFA must have 256

next-pointers each of which can address one of 10,000 states. At 448 bytes per state,

the entire rule set of the intrusion detection system Snort [15] would require of 6

MB of on-chip storage.

To address these problems, bit-split Aho-Corasick machines have been proposed

to reduce the storage requirements by a factor of 10, and enable scanning throughput

on the order of 10 Gb/s (see [17]). While this work has demonstrated that bit-

splitting works in the specific case of Aho-Corasick machines built over the Snort

rule set, correctness or efficiency in the general case has not been shown. In this

paper we analyze bit-splitting as applied to Aho-Corasick based string matching and

prove that it works correctly in general. In addition, we prove that this approach

avoids a potential combinatorial explosion observed in the simulation of NFA by

DFA.

Finally in an attempt to extend the flexibility and applicability of the original

bit-splitting algorithm, we report on a new process capable of matching not only

character sequences, but also sequences that contain wildcards.

String matching in the context of bit-splitting can be viewed as the problem of

efficiently recognizing languages of the form

Σ∗(p1 + p2 + · · · + pm) (1)

where P = {p1, p2, . . . , pm} is a finite set of patterns (keywords). This corresponds

to locating the first index in the given packet (text) where a signature (pattern)

starts.

Intrusion detection is inherently a stream problem: given the flow of bytes over

a network, identify all sequences of bytes that appear suspicious. This critical oper-

ation should ideally happen at full network line rate (billions of bytes per second)

and over very large sets of rules (thousands or tens of thousands) for any legal

input (even in the worst case). While some intrusion detection techniques make

use of context free grammars to define a language of signatures, such as the LL(k)

parser at the heart of STATL [9], to maintain streaming performance the majority

of intrusion detection systems are far more restrictive. For example, the set P of

patterns that Snort searches is a finite language. However, because Snort needs to

find any member of P at any offset it is essentially a recognizer for languages of

finite suffixes as in (1). While necessary for performance, restricting the language

recognized will introduce greater possibility for false positives because the rules de-

fined may include a larger subset of legal activities a, however the vast majority of

rules can be specified as a simple string that cleanly captures an attempted exploit.

aA false positive is a where a packet is identified as suspicious when in fact it is not part of a
malicious activity. Typically intrusion detection systems include a couple of additional filtering
rules that help reduce the number of false positives before reports are generated, but these rules
do not need to operated at the full scan rate.
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2. Packet Scanning

Due to a combination of increasing bandwidths and worm activity, efficient string

matching and packet scanning techniques have become a highly active area of re-

search. Monitoring the network for any one of a huge list of possible attacks is a

significant computational challenge as bandwidths increase. It is also desirable to

have strict performance guarantees so that we may be confident that important

data is not missed. The idea of efficient pattern matching is obviously not new,

and over the years a variety of methods have been devised for both string matching

and general pattern matching. Both hardware and software-based solutions have

been proposed, and to address the growing threat of polymorphic viruses we expect

to see a move from strict keyword matching to the more general forms of pattern

matching. While a full description of all past pattern matching techniques is not

possible in the confines of this paper, we attempt to outline some of most recent

approaches and highlight the past work we have most directly built upon. For an

introduction to basic finite automata theory, the reader is referred to [13].

String matching is one of the most constrained forms of pattern matching, and

there are currently many algorithms available with excellent asymptotic time and

space complexities. Some well-known algorithms for exact string matching include:

Knuth-Morris-Pratt, Boyer-Moore, and Horspool [5, 12]. Many of today’s current

solutions start with ideas presented in these algorithms and attempt to heavily

optimize the constants involved. Unfortunately, each of these techniques only match

one string at a time. Our problem is related but slightly different. We are concerned

with searching a stream of data for any one of a large list of possible rules.

The Aho-Corasick algorithm [1] addresses this problem by constructing a finite

automaton based on the keywords that must be matched. In this manner, a body

of text can be searched for any number of keywords simultaneously by merging the

keywords into a single large state machine. The key to this approach is that the state

machine is a trie with back/cross edges which can be constructed and stored in lin-

ear time and space with respect to the total complexity of all the keywords. Fisk and

Varghese [11] extend this idea, and present a hybrid solution combining features of

both the Aho-Corasick and Boyer-Moore algorithms (good for common case perfor-

mance). Tuck, et al. [19] optimize the Aho-Corasick algorithm instead by focusing

on memory saving techniques using different forms of compression. If probabilistic

methods are acceptable, hash-based techniques may be useful. Dharmapurikar, et

al. [8] describes one approach using an FPGA. The implementation uses a set of

bloom filters to search for predefined keywords in parallel. One potential down-

side of this approach, as noted in [10], is that a bloom filter must exist for each

unique pattern length. This prohibits the use of regular expressions and has the

potential to break in situations where keyword pattern lengths are highly variable.

Baker and Prasanna describe multiple approaches to string matching using FPGA

devices [4, 2, 3]. In [3], a modified Knuth-Morris-Pratt algorithm is developed and

shown to perform well with relatively small keyword patterns. Our work extends
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upon the ideas presented in [17], where Tan and Sherwood demonstrate how a set

of keyword search strings can be mapped to a tile-based memory architecture using

bit-slicing over the output generated by the Aho-Corasick algorithm. The key ad-

vantage of bit-slicing is that the resulting state machines are far more compressed

and easy to implement because a full byte can be processed each cycle with only

2 possible next states for each machine, as opposed to a monolithic machine with

256 possible next states (one for each possible input character). A more detailed

comparison of the implementation issues can be found in [18].

The state of the art in network security and intrusion detection is now demanding

faster algorithms that are at the same time applicable to a broader class of patterns

than accepted by Aho-Corasick machines, for example full regular expressions. Some

hardware-based schemes have been proposed to attack this problem, usually through

some form of state machine based matching. In [16], the total amount of memory

required for regular expression matching is reduced by partitioning the rules into

a set of parallel running state machines. Rather than deal with the full complexity

introduced by general state machines, Baker et. al. present a scheme that combines

the idea of string matching with counters to help in the matching of wildcards [4].

Others have even made use of the associated search capabilities of TCAM to aid

in matching [10]. Concurrent with our work, Brodie et. al have introduced a new

method for compressing and efficiently operating on compressed state machines

for general regular expressions [6], but there is no reason that this new technique

cannot be used in conjunction with the idea of bit-splitting. While a scheme which

combined these two techniques would be interesting, it is not the focus of this work.

3. Bit-Slicing Formalized

Our starting point is bit-splitting as described in [17] where a set of binary machines

that run in parallel from a given Aho-Corasick machine M are constructed. Each

machine searches for one bit of the input at a time, and a match occurs only when

all of the machines agree. Since the split machines have exactly two possible next

states they are far easier to compact into a small amount of memory. Also they are

loosely coupled, and they can be run independently of one another.

3.1. The general case of two alphabets

The alphabet of M can be thought of as being Σ = {0, 1}8. The correctness and

performance of bit-splitting has to do with languages defined over alphabets which

are Cartesian products of other alphabets, binary or otherwise.

Consider a DFA where the input alphabet is a Cartesian product of two al-

phabets. Such an automaton is a finite state machine M = (Q, Σ, δ, q1, F ) where

Q = {q1, q2, . . . , qm} is a set of states, q1 is the start state, and δ : Q × Σ → Q is

the transition function and F ⊆ Q is the set of final states.

Suppose Σ = A × B for A = {α1, α2, . . . , αr} and B = {β1, β2, . . . , βs}. We

further assume that r, s ≥ 2.
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Let L = L(M) denote the language accepted by M . Each w ∈ L is of the form

w = a1b1 a2b2 · · · anbn for some n ≥ 0 and ai ∈ A, bi ∈ B for i = 1, 2, . . . , n.

M can be “bit-split” to construct two nondeterministic finite state machines

MA and MB . This is done by changing the alphabet and the transition function

of M , but not the set of states, the initial state, or the set of final states, in the

following manner.

Definition 1. Given a DFA M = (Q, Σ, δ, q1, F ) where Σ = A × B with A =

{α1, α2, . . . , αr} and B = {β1, β2, . . . , βs}, define

MA = (Q, A, δA, q1, F ) where ∀a ∈ A, q ∈ Q, δA(q, a) =
s⋃

j=1

δ(q, aβj) ,

MB = (Q, B, δB , q1, F ) where ∀b ∈ A, q ∈ Q, δB(q, b) =

r⋃

i=1

δ(q, αib) .

MA and MB are called bit-split automata or projection automata obtained from

M . LA = L(MA) and LB = L(MB) denote the languages accepted by MA and MB,

respectively.

MA and MB can be described in a number of ways. Probably the easiest visual-

ization is as follows: To construct the transition diagram of MA, make a copy of M

and erase the second letter in every transition in the transition diagram of M . MB

is constructed similarly. Since r, s ≥ 2, MA and MB are both nondeterministic. The

final step in bit-splitting is to take MA and MB and construct an equivalent DFA

DMA to MA and an equivalent DFA DMA to MB . This final step is very impor-

tant from an implementation standpoint, both because DFA can be more efficiently

implemented on real machines b and at the same time, the construction from NFA

to DFA in general has the potential to increase the number of states exponentially.

The languages LA and LB are easily seen to be homomorphic images of L. For

example, if we define the homomorphism hA : Σ → A by setting hA(αiβj) = αi

for every letter αiβj ∈ Σ for i = 1, 2, . . . , r, j = 1, 2, . . . , s, then LA = hA(L). In

particular, given a regular expression R denoting L, a regular expression for LA is

obtained from R by replacing each occurrence of the letter αiβj by αi, and a regular

expression for LB is obtained from R by replacing each occurrence of αiβj by βj .

Example: When Σ = A×B with A = {0, 1} and B = {a, b}, the language L over Σ

denoted by the regular expression (0a+0b+1a+1b)∗0b results in the languages LA

over A and LB over B denoted by the regular expressions (0 + 1)∗0 and (a + b)∗b,

respectively. The transition diagrams of M , MA and MB are given in Figure 1.

bTo simulate an NFA of size N processing a single input character requires N steps in the worst
case as each state needs to be updated. A DFA in comparison requires only a single step because it
can be in one and only one state at a time. Given the very large number of states the application
demands, a DFA is required for efficient traversal.
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Fig. 1. MA and MB from M : Σ = A × B with A = {0, 1}, B = {a, b}.

Definition 2. Given LA over A and LB over B, the language Alt(LA,LB) over

A × B is defined by

Alt(LA,LB) = {a1b1 a2b2 · · · anbn | n ≥ 0, a1a2 · · ·an ∈ LA, b1b2 · · · bn ∈ LB}.

The problems that we formalize in this paper come down to the recovery of L

from LA and LB , and the state complexity of the conversion of MA to DMA and

MB to DMB for Aho-Corasick machines.

Lemma 3. Suppose w = a1b1 a2b2 · · · anbn ∈ L, where L = L(M) for a DFA M

over the alphabet A×B, as in Definition 1. Then a1a2 · · · an ∈ LA and b1b2 · · · bn ∈

LB . In other words

L ⊆ Alt(LA,LB). (2)

Proof. Suppose a1b1 a2b2 · · · anbn ∈ L. Then there are states qi1 , qi2 , . . . , qin+1
in

Q with q1 = qi1 and qin+1
∈ F with δ(qij

, ajbj) = qij+1
for j = 1, 2, . . . , n. By the

definition of δA, qij+1
∈ δA(qij

, aj) for j = 1, 2, . . . , n. Furthermore qin+1
is also

a final state of MA. Thus a1a2 · · · an ∈ LA. Similarly b1b2 · · · bn ∈ LB . Therefore

every a1b1 a2b2 · · · anbn ∈ L belongs to Alt(LA,LB) and (2) follows.

Remark: Equality in (2) does not necessarily hold. For example when Σ = {0, 1}×

{a, b} and L over Σ is the language denoted by the (0a+0b+1a+1b)∗(0b+1a), LA

and LB are the languages denoted by the regular expressions (0 + 1)∗(0 + 1) and

(a+b)∗(a+b), respectively. Thus a1 = 0 and b1 = a are in LA and LB , respectively.

Therefore a1b1 = 0a ∈ Alt(LA,LB), but 0a 6∈ L.

Definition 4. Suppose L = L(M) where M is a DFA over Σ = A×B. L satisfies

the alternation property if for every n ≥ 0, ai, xi ∈ A, bi, yi ∈ B for i = 1, 2, . . . , n,

a1y1 a2y2 · · · anyn, x1b1 x2b2 · · ·xnbn ∈ L implies a1b1 a2b2 · · · anbn ∈ L . (3)

This property suffices to prove equality in (2).
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Proposition 5. Suppose L = L(M) over the alphabet Σ = A × B, LA and LB

defined as in Definition 1. If L has the alternation property, then L = Alt(LA,LB) .

Proof. By Lemma 3, we have L ⊆ Alt(LA,LB). To show Alt(LA,LB) ⊆ L, assume

a1b1 a2b2 · · ·anbn ∈ Alt(LA,LB) for some n ≥ 0. By definition of Alt(LA,LB),

a1a2 · · · an ∈ LA and b1b2 · · · bn ∈ LB . First we show that a1a2 · · ·an ∈ LA implies

that there exist y1, y2, . . . , yn ∈ B with a1y1 a2y2 · · · anyn ∈ L. Consider a sequence

of states qi1 , qi2 , . . . , qin+1
in Q with q1 = qi1 and qin+1

∈ F with qij+1
∈ δA(qij

, aj)

for j = 1, 2, . . . , n. By definition of δA, qij+1
= δ(qij

, ajβkj
) for some βkj

∈ B and we

can take yj = βkj
for j = 1, 2, . . . , n. Similarly, b1b2 · · · bn ∈ LB implies that there

exist x1, x2, . . . , xn ∈ A with x1b1x2b2 · · ·xnbn ∈ L. Since L satisfies the alternation

property, we have a1b1 a2b2 · · · anbn ∈ L. Thus Alt(LA,LB) ⊆ L.

Lemma 6. The language L = L(M) accepted by a Aho-Corasick machine M with

a single keyword satisfies the alternation property.

Proof. L is of the form Σ∗p where Σ = A × B and p is the keyword. With the

notation of Definition 4, a1y1 a2y2 · · ·anyn, x1b1 x2b2 · · ·xnbn ∈ L implies that for

some k,

a1y1 a2y2 · · ·anyn = a1y1 a2y2 · · · akyk p ,

x1b1 x2b2 · · ·xnbn = x1b1 x2b2 · · ·xkbk p .

Therefore a1b1 a2b2 · · · anbn = a1b1 a2b2 · · · akbk p ∈ L .

The language L we are interested in is a finite union of languages of the form Σ∗p,

where the union is over the keywords p. However L in this generality need not satisfy

the alternation property of Proposition 5.

It is possible to have an exponential blow-up in the number of states of a DFA

for a language L and the minimum state DFA for its homomorphic image h(L),

even if the homomorphism just identifies a pair of letters of the alphabet, e.g. a

homomorphism such as

h : {a, b, c} → {a, b}∗, where h(a) = a, h(b) = b, h(c) = b. (4)

Example: Let Σ = {a, b, c}. Given an integer k > 0, consider the DFA M on k + 2

states shown in Figure 2. M accepts the language L denoted by (a+ b)∗c(a+ b)k−1.

The homomorphic image of L under the homomorphism (4) is given by (a+b)∗b(a+

b)k−1. It is well-known that the minimum state DFA for this latter language requires

Ω(2k) states.

3.2. NFA to DFA conversion in bit-splitting

We can show that for any Aho-Corasick pattern matching machine, the projection

automata MA and MB in our construction do not blow up in size when converted

to the equivalent DFA DMA and DMB .
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k+1

...

a,b
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c a,b a,b a,b

c c c a,b,c...

Fig. 2. DFA for a language whose homomorphic image requires Ω(2k) DFA states.

Recall that the Aho-Corasick algorithm [1] constructs a special state machine

which is essentially a trie with back/cross edges, that can be constructed and stored

in linear time and space with respect to the total complexity of all the keywords.

The preprocessing for the construction is in two stages. The first stage builds up a

tree of all keyword strings. The tree has a branching factor equal to the number of

symbols in the language, and is thus a trie. The root represents the state where no

strings have been even partially matched. To match a string, we start at the root

node and traverse down the edges according to the input characters observed. The

second half of the preprocessing is inserting failure edges. When a string match is

not found, it is possible for the suffix of one keyword to match a prefix of another.

To handle this case, transitions are inserted which shortcut from a partial match

of one string to a partial match of another. In the Aho-Corasick automaton, there

is a one-to-one correspondence between accepting states and strings, where each

accepting state indicates the match to a unique keyword.

Proposition 7. Suppose M is a Aho-Corasick automaton on n states over Σ =

A×B and MA, MB are the two NFA obtained from M using bit-splitting. Then the

equivalent DFA DMA and DMB each have at most n states.

Proof. M is built on a trie for a set of keywords P = {p1, p2, . . . , pm} with a

number of back and cross edges defined by the longest proper suffix that is also a

prefix of some keyword, as described above and in detail in [1].

It suffices to show that the trie part of MA (and MB) has no more than n

states, as the back and cross edges for DMA and DMB are constructed by the

longest proper suffix condition for the patterns obtained from P after collapsing

the alphabets to A and B, and this process does not change the number of states.

Note that we can obtain MA from M in stages, where in each stage a pair of

letters of the current alphabet are identified and the alphabet is reduced in size by

one. For example starting with A × B = {0, 1} × {a, b, c} = {0a, 0b, 0c, 1a, 1b, 1c},

we can identify 1c and 1b, and then 1b with 1a obtaining the intermediate alphabet

{0a, 0b, 0c, 1a}. Then we can identify 0c and 0b, and then 0b with 0a obtaining

{0a, 1a}, which is a copy of A. Thus it suffices to show that when only two letters
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Fig. 3. Identification of b and c: at the root of the trie.

are identified, the resulting machine has a deterministic counterpart with no more

than n states.

Suppose we are given a trie T of an Aho-Corasick machine M on some alphabet

Σ (which need not be a product of two alphabets), and we identify two letters

b, c ∈ Σ. In T , we first replace each occurrence of c by b. The resulting structure

is a nondeterministic trie, in the sense that a node can have more than one child

labeled by the letter b. As the second step, we identify nodes of the trie top down,

level by level, and at each level, from left to right. At the root of the trie, we identify

the children of the root indexed by the letter b. At other nodes, we may also need

to identify children of a node labeled by the same letter for letters other than b,

because identifications at the previous level may produce more than one child in an

identified node that is labeled by a letter other than b. In addition, if any one of

the identified nodes is a final state of the original machine, then the node obtained

by the identification is made into a final state of the resulting machine. Since a

sequence of identifications can only decrease the number of nodes of the trie, the

result follows.

Note that the identifications can produce multiple back edges or cross edges if

we keep these edges in addition to the trie structure when we execute the two steps

in the proof above. The final step in creating the Aho-Corasick machine requires

the elimination of multiple edges of this type which may have been created by the

identification nodes. In other words, we need not recompute the back and cross

edges anew for each the new set of keywords obtained by identifying a pair of

letters. Figure 3 and Figure 4 show the operation of identification on root and

non-root nodes of the trie.

Example: The trie in Figure 5 is built on the patterns P = {abbc, abcc, bab, bba,

ca,cba,cc} over Σ = {a, b, c}. Identification of c and b results in the trie in Figure 6
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Fig. 4. Identification of b and c: at an arbitrary node of the trie.
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64
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12

1613

ca

14

15

a
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Fig. 5. Trie portion of the Aho-Corasick machine for the keywords {abbc, abcc, bab, bba, ca, cba,
cc} over Σ = {a, b, c}.

built on the set of patterns {abbb, bab, bba, ba, bb} over Σ = {a, b}.

3.3. Recovering L

If there is a single pattern p, then the language LM is the form Σ∗p. Since this

language has the alternation property of Definition 4, L can be recovered com-

pletely from the knowledge of LA and LB . Thus by Proposition 5 the input
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a1b1 a2b2 · · · anbn ∈ L iff a1a2 · · · an ∈ LA and b1b2 · · · bn ∈ LB . But this works

because both MA and MB have a single final state, i.e. the unique final state of

M that corresponds to the keyword p. When there is more than one keyword, L

no longer satisfies the alternation property, and therefore equality of the languages

in Proposition 5 does not hold. However we can recover L from MA and MB by

considering a type of diagonal acceptance as follows

Proposition 8. Suppose L = L(M) over the alphabet Σ = A × B for some

Aho-Corasick machine M . Define MA(f) and MB(f) as in Definition 1, except

a fixed f ∈ F is made the final state. For a1a2 · · · an ∈ LA and b1b2 · · · bn ∈ LB ,

a1b1 a2b2 · · · anbn ∈ L iff a1a2 · · ·an ∈ L(MA(f)) and b1b2 · · · bn ∈ L(MB(f)) for

some f ∈ F .

Proof. An Aho-Corasick machine M accepts languages of the form (1). The con-

dition of the proposition forces MA and MB to accept by the same final state. Thus

for each final state, the language accepted is of the form Σ∗pi, and therefore satisfies

the alternation property and Lemma 6 is applicable.

Remarks: Note that we are not able to recover L from an arbitrary description

of the languages LA and LB for more than one pattern. However for the packet

scanning application, this presents no problems. We make sure that the MA and

MB accept on the same final state. Otherwise the input is rejected.

If we use the deterministic versions of MA and MB obtained by the algorithm

described in the proof of Proposition 7 and keep the names of the identified final as

an equivalence class, then we can still recover L by acceptance by the “same” final

state, meaning that there is a common final state in the two equivalence classes of

names after identifications in the resulting DFA.

The results given above for the Cartesian product of two alphabets readily gen-

eralize to Σ = A1 × A2 × · · · × Am. We omit the details of the general case. In

particular, Σ = {0, 1}8, results in the 8 binary machines M0, M1, . . . , M7 of the

bit-split Aho-Corasick.

4. Bit-Sliced Wildcards

In an attempt to extend the flexibility and applicability of the original bit-splitting

algorithm, we investigated a new process that is capable of matching not only char-

acter sequences, but also sequences that contain wildcards. Specifically, wildcards

given by single letters of the alphabet Σ.

4.1. Wildcard bit-split construction and analysis

The ability to reduce strings containing wildcards into a functionally correct bit-

split machine hinges on one key observation: the Aho-Corasick DFA is actually

an NFA representation of the final bit-split machine. This means that in order to
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Fig. 6. After identifying c and b, the resulting trie of the Aho-Corasick machine for the keywords
{abbb, bab, bba, ba, bb} over Σ = {a, b}.

produce a functionally correct bit-split machine, we simply need to follow the rules

of subset construction. The advantage of having greater expressive power, however,

comes with a cost. As we will demonstrate, one potential downside of extending the

accepted language is that we are no longer protected by the space bound guarantees

of the original design.

The process of constructing bit-split machines capable of detecting strings con-

taining wildcards requires multiple applications of subset construction. Figure 4.1

provides an outline of the conversion process. We modify the first step of the Aho-

Corasick algorithm so that our initial graph is an NFA. The start state contains an

edge back to itself that essentially acts as a wildcard. As we construct our NFA,

we add edges in an identical fashion to the Aho-Corasick algorithm. If a wildcard

is encountered, 256 edges, representing each element in the ASCII character set Σ,

are added as transitions to the next state.

Once the NFA is fully constructed, we begin the first application of subset

construction. The graph produced is a DFA capable of detecting the full set of

keywords. To produce the desired bit-split state machines, we must perform subset

construction over the keyword DFA. The number of times we must perform subset

construction over the DFA depends exclusively on how many bits we want the bit-

split machines to evaluate per cycle. In the example we have provided, we perform

subset construction four times over the keyword DFA in order to create four bit-split

state machines that each interpret two bits per cycle.
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Fig. 7. A simple example of bit-slicing a language with wildcards to recognize ΣΣ∗(bΣd). The first
stage is identical to the construction used in the Aho-Corasick algorithm [1] with the addition of
an explicit wildcard back edge to and from the start state. The second stage graph is generated by
performing subset construction over the initial graph and then bit-sliced according to the number
of bits per cycle read by the architecture. [∧b] and [∧bd] denote the complements of {b} and
{b, d} in Σ. In this example, the architecture reads two bits per cycle, so four bit-sliced graphs are
created. The final state machines, capable of recognizing the original set of keywords, requires one
final application of subset construction over each of the bit-sliced graphs. The example highlighted
in gray follows the required transformations using the two rightmost bits. A detailed explanation
of the final output can be found in [17].

While the transformation from keyword strings to binary state machines is rel-

atively simple, there is still potential for even basic keyword patterns to cause

significant storage and/or processing penalties. Without wildcards, the bit-splitting

algorithm guarantees space bounds on the BSMs such that they will not exceed the

size of the DFA from which they are composed. With the addition of wildcards,

however, this guarantee no longer holds. Although the random insertion of wild-

cards throughout a set of keywords may not appear to have an adverse effect on

the space requirements, a worst-case scenario can easily be produced. By increasing

the number of consecutive wildcards the final storage requirements grow exponen-

tially. If it is known that a large number of wildcards will occur consecutively, this

approach will not suffice. It is possible that this technique could be augmented with

a counting mechanism to overcome space limitations and we hope to address this

issue in future work.

The increased amount of processing time and space needed to produce the BSM

graphs leads to a number of concerns. Namely, how practical is this approach when

dealing with content from Internet-based attacks?

4.2. Practical concerns about wildcard bit-splitting

To place our results within the context of network intrusion detection, we extracted

signatures from real-world intrusion detection systems and evaluated the text pat-

terns used to search for and identify malicious content. Our results indicate that



July 6, 2009 12:9 WSPC/INSTRUCTION FILE paper
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Fig. 8. Using signatures generated to detect polymorphic and metamorphic worms [7], we eval-
uated the frequency of contiguous wildcards needed to identify current Internet-based attacks.
The original signatures provided byte ranges for invariant sequences of known malicious content.
Our results indicate that a large number of consecutive wildcards would be required to capture a
majority of the attack patterns.

while there may be instances where single wildcard character matching would be

beneficial, in many cases, it is simply unable to meet the demands of current attack

patterns.

Figure 4.2 is an evaluation of the signatures used to detect polymorphic and

metamorphic attacks as presented in [7]. Our goal was to identify how well our

wildcard pattern matching system would scale in order to incorporate these sig-

natures. Noting the difficulty of handling too many contiguous wildcards, our key

concern was the frequency in which contiguous polymorphic bytes occur. In other

words, is it possible to accurately recreate the signatures using single-character

wildcards even with their known space limitations?

In Figure 4.2 we examine how many contiguous wildcards would be required

to reproduce the signatures in [7]. The x -axis identifies the number of contiguous

wildcards discovered between invariant byte sequences. The y-axis describes the cu-

mulative percentage of contiguous wildcards. Therefore, if we wanted to successfully

reproduce 80% of the signatures present, we would need to use between 20 to 40

contiguous wildcards in our keyword strings. The results of this graph imply that it

may be impractical to use single character wildcards to approximate the signatures.

When used in conjunction with our current architectural constraints, we discovered

that seven contiguous wildcards would nearly fill the available memory space. Ac-

cording to the numbers in the figure, limiting ourselves to only seven contiguous

wildcards would cover significantly less than 10% of the entire set of signatures.

As such, we believe that this method, by itself, is not suitable for the purpose of

matching intrusion detection signatures.
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5. Conclusions

While the need for efficient pattern matching techniques has existed for many years

now, applications in networking and security environment necessitate strong guar-

antees on worst-case performance and highly efficient storage. In this paper we

formally describe and verify a technique known as bit-splitting. We prove for the

first time that bit-splitting Aho-Corasick machines is functionally correct, and pro-

vide strict space and time bounds for this approach. One open formal problem

remaining is that the language property described in Proposition 3 is sufficient,

but perhaps not necessary to preserve correctness. However, even without a nec-

essary condition, the formal description of how and why bit-splitting works opens

the door to new potential applications, including the use of bit-splitting for other

classes of languages or other problem domains.

Using this formal framework we have explored the possibility of using bit-

splitting to search for patterns embedded with single character wildcards. We have

shown that bit-splitting will still be functionally correct (the language recognized

by the bit-split machines is identical to that of the original machine) and that the

time required for search will not be affected. However, before such a scheme could

be useful in practice the space overhead might have to be reduced. If there is a

significant number of wildcard rules, the size of the bit-split machines can grow

exponentially do to the required subset construction step. As we have shown, to

capture polymorphic viruses in the most general way possible, a significant number

of wildcards will be required in the future. Attacks like the SQLSlammer worm, that

transfer only a specific number of bytes, imply the need for more general pattern

matching techniques. Future work could perhaps address this problem with a clever

combination of bit-splitting (as we present) and counters (as presented in [4]).
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