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Abstract—A whiteboard that automatically identifies drawn
strokes, interprets them in context, and augments drawn images
with computational results, such as solutions to mathematical
equations or results of circuit simulations, is a surprisingly
realistic goal for systems architects. In this paper we describe the
state of this emerging domain and argue that technical trends will
make this a particularly attractive workload in the future. We
provide a preliminary characterization of the critical loo ps that
exist within one state of the art system, currently undergoing
development, and we attempt to quantify the workloads that
whiteboard-sized devices are likely to face in the future. While
this work is by no means a typical workload characterization
paper, given the shift in programming models that we are about
to endure, it is now more important than ever before to identify
and understand those applications that have the potential to drive
our industry forward.

I. I NTRODUCTION

Even after more than thirty years of desktop computing,
many (if not most) engineers facing complex problems in-
stinctively run right to the whiteboard. The whiteboard offers
an incredibly natural way by which ideas can be remembered,
it provides a means of describing and communicating the rela-
tionships between complex interacting parts, and can be used
to specify rough schematics of final designs. This interfaceof
drawn strokes on a large surface is so natural that even 35,000
years ago our ancestors were doing something very similar on
walls of their caves, yet at the same time it is powerful enough
to be the chosen tool of expression for many of our greatest
modern minds.

While the utility of these simple smooth white slabs is clear,
there is an opportunity here to create a computing device that
can provide all of these abilities and more–a computer that is
as simple as sketching but as powerful as a modern desktop.
Written equations can be captured and solved, sketches of
state machines can be executed, and previous drawings can
be queried, recalled, shared, and transformed.

These ideas are not just science fiction, in fact the HCI
community has made significant inroads in this direction by
carefully hand crafting solutions to very specific instances of
these problems for everything from equation editors, to circuit
diagrams, to simple mechanical systems. While these one-off
solutions give us a glimpse of the future possibilities, a general
purpose framework will be needed to allow the simple creation
of new sketch based tools. In this paper we characterize the

sketch workload that will be faced by such a framework, and
we explore the the inner workings of a state of the art general
purpose sketch recognition engine.

With the radical shifts in design philosophy taking place in
computer architecture right now, it is now more important than
ever that we try and identify, and even shepherd forward, the
mass market workloads of the future so that we can continue to
reap the benefits provided by broad adoption. Computer archi-
tects are forced to consider device and technology changes 5
to 15 years into the future, yet more often than not the unstated
assumption is that the applications that will drive those markets
will be essentially unchanged from today.

While sketch recognition is certainly not a fully mature
field, it is now to the point that performance is one of
the most significant bottlenecks facing the area, and in fact
represents one of many computationally-intensive interfaces
that has the potential to drive the economics of our field
forward. Make no mistake, the projects that we have attempted
to characterize are still not mature enough to be “product-
ready” and performing detailed cache performance analysisor
other traditional workload characterization techniques would
be very premature. We instead present an argument that
technological trends will make this an increasingly attractive
workload as the field matures and characterize some of the
long-term performance challenges that must be overcome for
this workload to become a reality.

Specifically, we characterize the state of the art in the
increasingly mature area of sketch recognition, we argue that
market forces make this an increasingly attractive area to
pursue, and we identify those areas where performance issues
are the greatest detriment to the advancement of the field.

We begin with a look into the economics of display technol-
ogy and uncover recent trends in display growth. In Section III
we provide an overview of related works, describing recent
research in the field of sketch recognition as well as computing
environments designed for free-form input. In Section IV
we attempt to characterize the input traffic generated in
whiteboard-based environments. We end in Section V with an
investigation into a new sketch recognition system for under-
standing circuit diagrams. We conclude with our predictions
for the future demands of whiteboard computing.



Fig. 1. This plot shows the growth in size of the most affordable LCD displays per square inch taken from published white papers [1] versus time. These
devices are fabricated lithographically, and as processing technology has matured we have seen a drastic increase in both the size and affordability of large
displays.

II. M OTIVATION FOR WHITEBOARD COMPUTERS

Even in our modern computer-saturated lives, simple pen
and paper sketching plays an important role in the complex
tasks that we undertake. For example, it has been observed that
sketches are a natural first step in the design of everything from
circuits to mechanical devices [2], and that drawing in tandem
with discussion greatly increases our ability to communicate
complex subject matter [3]. It is perhaps curious then, thateven
with all of the computation power at our disposal, our first
inclination when we need to design something complicated is
to stand up and walk away from the computer.

A. The Economics of Display Technology

From laptops to cell phones, mobile devices have been
pushing the limits of small-scale technology. So much so, in
fact, that it might be easy to overlook a separate and very
different trend that is occurring: the rapid increase in thesize
and affordability of large displays. As illustrated in Figure 1,
these displays, constructed lithographically and carved from
large pieces of “mother glass,” are doubling in area every 1.5
years while prices have been simultaneously dropping. These
exponential gains, coupled with the fact that flat panel displays
larger than standard whiteboards are already in production,
imply that it is only a matter of time before displays become
economical enough to find their way into our offices, homes,
and classrooms. Even today, DLP projectors are approaching
the $500 mark, less than the cost of a 15-inch LCD monitor
just 5 years ago. As the price of “human-scale” displays
drop, coupled with affordable pen tracking hardware already
available on the market, it will become economically viable
to replace a traditional whiteboard with a digital screen. As
these screens become common, radically different means of
interaction become increasingly attractive.

B. Domain Specific Sketch Recognition

Of course large, cheap displays are in fact only part of the
challenge. To successfully replace a whiteboard, the display
must have an incredibly unobtrusive user interface–always
ready for simple sketching, capable of making inferences
about sketches, and able to act upon these inferences in real

time. Over the last 10 years, hand built prototype systems for
tablet PCs have been created for a variety of domain specific
problems, and this first generation of prototypes is just now
reaching a product-ready level of maturity.

C. Frameworks for Sketch Recognition

One of the biggest problems facing this line of research
is the jump from a series of hand built application specific
techniques to a general purpose framework that supports the
creation and extension of novel graphical domain specific
schemes. The context in which a sketch is created is a very
large part of understanding how the sketch is to be viewed, yet
all sketches are constructed in fundamentally the same way.

More so than in existing computing paradigms, users will
not tolerate fine-grained commands or complicated inter-
faces [4]. Instead, the burden of disambiguating a user’s
intentions must be left to the machine. Each stroke generated
by the user will likely contain tens to hundreds of points
alone (Section IV quantifies whiteboard data collected from
our lab). With display resolutions containing millions of pixels,
a board full of drawings can result in a significant amount of
data. The storage, query, and manipulation of these sketches
(both the actual points and their associated meanings) quickly
becomes difficult to reason about and manage. A scalable
shared software architecture that can unify these different one-
off projects is badly required.

III. R ELATED WORKS

Whiteboard computing spans a wide variety of domains.
As such, the works referenced in this section are by no means
exhaustive. We have focused our selection to a concise set of
recent developments pertaining to sketch recognition and large
surface displays.

A. Tablet-Based Applications

Sketch based interaction presents a number of challenges
to application developers. Interface questions that were once
addressed by the now pervasive windows, mouse, and pointer
model break down as sketching becomes the main mode
of interaction [5]. Application designers must implement an



Fig. 2. MathPad2 interface.

Fig. 3. ChemPad interface.

interface that lies between two extremes: basing input solely
on the interpretation of free-form strokes, or restrictingthe user
to only a limited set of predefined gestures. Here we describe
a set of existing sketch based applications that each address
the input problem with varying degrees of input freedom.

One recurring goal of the sketch community has been
robust recognition of mathematical expressions [6], [7].
Recent research has resulted in MathPad2, a tablet-based tool
for combining mathematical sketches and simple, dynamic
illustrations [8]. The MathPad2 interface is predominantly
modeless, using a combination of free-form input and high-
level gestures to determine the flow of control. Expressions,
variables, and numeric values are inferred from a user’s
sketch, while actions over the sketch data, such as recognition,
deletion, and grouping are invoked by gestures. The high-level
gestures delineate the actions to be taken as well as the region
over which an action is to be performed. A typical usage
scenario involves inputting a formula, where the user must
first draw an equation and then encircle and tap the region
that is to be recognized. An example of the interface can be
seen in Figure 2.

In MathPad2, the full recognition of user input happens over
multiple stages [8]. The first stage involves feature extraction,

where strokes are normalized and statistical features are ex-
tracted. The second and third stages employ statistical analysis,
refining the classification of each stroke into its appropriate
mathematical symbol. Once classification is complete, a fi-
nal recognition stage is required to interpret the geometric
arrangement of the symbols in order to discover superscripts,
fractions, and similar features.

A slightly more restricted form of sketch based interaction
has recently found applications in Organic Chemistry in the
form of ChemPad, a tablet-based tool for converting 2D molec-
ular sketches into their corresponding 3D representations.
ChemPad presents the user with a split view as shown in
Figure 3, displaying both the 3D and 2D molecular models [9].
The user is required to generate a 2D sketch through a
sequence of single-stroke gestures. Included in the set of
gestures is the ability to delete existing input, permitting the
user to change only a portion of a given sketch. Once the
sketch is complete, the user can invoke recognition of the 2D
model and view its 3D counterpart.

ChemPad interprets free-form input on a per stroke basis.
Recognition is achieved through a modification of [10], where
a highly specific set of rules are applied to differentiate
between gestures. One result of this approach is that gestures
may require context; therefore, operations such as delete,
represented by a scribble) may be applied over entire regions
of existing user input.

Both MathPad2 and ChemPad serve as a good guide and
warning for future sketch application systems. Within this
field, there is significant freedom to design novel methods of
interaction, but this freedom comes at a cost. Designers of
both MathPad2 and ChemPad had to spend significant time
and effort building each domain specific recognizer.

SketchREAD is perhaps the most notable attempt at per-
forming recognition across multiple domains. Developed prior
to both MathPad2 and ChemPad, SketchREAD is a framework
for diagrammatic sketch recognition. The framework utilizes
dynamically constructed Bayesian networks to interpret un-
constrained drawings, permitting users to draw objects without
respect to a specific stroke ordering. While SketchREAD pro-
vides promising system performance results, accuracy remains
a limiting factor [11].

B. Larger Surfaces

A new market for devices slightly larger than traditional
computer displays appears to be emerging, as recent ad-
vances in multi-touch technology is becoming increasingly
popular [12], [13]. As these devices are capable of detecting
multiple points of contact at any given time, they can be
viewed as a generalization of the existing pen and tablet
interfaces.

The appeal of a larger interactive surface has attracted
research in the past. Xerox’s LiveBoard targeted the office
setting where workgroup meetings and presentations are com-
monplace. Using a pen-based interface and specialized appli-
cations, the LiveBoard set an early precedent for pen-based



Fig. 4. A sample collected from an eBeam board capture deviceduring the
week of January 20, 2008. The left and right images reflect identical data.
The image on the left displays only the raw point values, while the image on
the right uses available metadata to mimic the current stateof the board.

user interface design. Produced in 1994, with a sixty-seven-
inch display and retail value between $40,000 to $50,000, the
success of the LiveBoard ultimately succumbed to financial
loss due to cost, supply, and quality issues [14]. Some of the
features that made the LiveBoard so attractive also received
the harshest critiques. While the display had a relatively large
resolution for its time (1120 x 720 pixels), users felt the image
quality needed to be better. While the optical pen, capable of
capturing 90 x-y coordinate pairs per second, was a novel
feature, the feel and accuracy of the pen were disliked. Lastly,
earlier models of LiveBoard used monochrome displays, yet
there was a demand for color [4].

By today’s standards, the user demands for the LiveBoard
seem underwhelming. High-resolution, board-sized color dis-
plays are readily available, and high resolution tracking de-
vices are available through a number of vendors. Research
has led to results far beyond typical board sizes, includingan
18 x 8 foot wall-sized display with a native resolution of 6144
x 3072 pixels [15].

IV. CHARACTERIZATION OF WHITEBOARD TRAFFIC

The applications we have discussed thus far have all
been primarily aimed at tablet devices. Considering the re-
cent advancements in display technology and the increased
interest in multi-touch interfaces, it’s not hard to imagine
these applications being used in a broader context within
larger, pen-based or touch-based environments. However, to
our knowledge there has not been any significant research
aimed at understanding how well these algorithms will scale
and behave across different mediums. Factors such as display
resolution, input resolution, and the kinematics involvedwith
the input process each have the potential to affect the accuracy
of the recognition process. As we are interested in targeting
whiteboard-sized devices, we have begun observing how free-
form input arrives on the whiteboard.

The mention of free-form input generally implies data in the
form of two-dimensional points in time. However, a significant
amount of metadata can accompany each stroke and possibly
each point. Physical attributes such as pressure, size, andcolor,
as well as functional attributes, such as erasure, are just some
of the metadata properties that could be included with raw

stroke data. To date, very few of these attributes are considered
by even the most advanced recognition techniques; many
solutions are only concerned with the spatial and temporal
data.

To understand more fully the order of magnitude of data
and timing involved in such a whiteboard system, using an
eBeam capture device [16], we have collected roughly four
months worth of input on our laboratory whiteboard. Our
experiment does no recognition, instead it passively1 records
statistics from the data points that are naturally written by
our lab for computer architecture research so that we can
understand the distribution of inputs that might be given
to recognition systems. Beyond spatial coordinates, the raw
data captured includes timing information, marker color, and
marker size. The input radius of each drawing device was
used to accurately account for the intersection and erasure
of existing strokes. Figure 4 presents an example of the data
captured and generated by the whiteboard system.

Over the survey period, approximately 10-15 lab members
had access to the whiteboard. The sample period, spanning
from November 19, 2007 to March 17, 2008, includes portions
of Winter and Spring quarter, including a significant holiday
break in between. Of the 120 days of the survey, 49 days
(approximately 41%) contained board activity.

The combined days of board activity produced over 300,000
input strokes. An input stroke is generated every time an input
pen touches the whiteboard surface. A stroke accumulates all
point data captured until the pen is lifted from the surface of
the whiteboard. It is assumed that only one pen is drawing on
the whiteboard surface throughout the duration of any given
stroke. Our entire data collection consists of strokes composed
of up to hundreds of points each.

As a means of deciphering and reviewing past board data,
we created a variety of tools for automatically segmenting
and replaying stroke data. As highlighted in Figure 4, erasure
metadata is useful in depicting the visual state of the board
as perceived by the user. A review of the data shows a wide
variety of drawings. Since the lab board is a communal writing
place, there are many active ideas on the board at any given
point in time and they are spatially partitioned across the
board. In the same way that the inputs are clustered in space,
the strokes are clustered into bursts of time as well. Research
described in [17] has shown that temporal and spatial clues
are often not enough to segregate groups of strokes into their
relevant symbols (e.g., circuits and gates); however, our data
shows promising results for accurately segmenting strokesat
a larger granularity.2

To understand and quantify the nature of the board traffic,
we have dissected the input into drawing and erasure strokes.

1Users continued to use traditional dry erase markers. Electronic pen
holders were placed around the original markers to record pen movement.
An electronic eraser, capable of removing the dry erase markings, was used
to record all erasures.

2Although we do not discuss all of our methods for stroke segmentation in
detail, it is worth noting that segmentation based on inter-stroke timing delays
and segmentation based strictly on batched erasures both provided visually
effective results.
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Fig. 5. Number of points generated on a daily basis during four months
of whiteboard usage. Over this collection period, over 300,000 points were
generated. Days without activity, approximately 59% of thetotal collection,
are not shown.
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Fig. 6. Number of points generated over ten-minute intervals on a daily basis
during four months of whiteboard usage. Over the 120 days of data collection,
bursts of board traffic were observed. A review of daily boardtraffic reveals
sessions of board activity are frequently followed by hoursof inactivity.

As shown in Figure 5, with only one exception, all days
in which drawing input occurred generated less than 11,000
points. The largest percentage of daily input generated less
than 5,500 points. Investigating the creation of points over
time shows an extremely bursty traffic pattern. Figure 6 shows
the number of points generated over ten minute intervals
throughout the lifetime of the survey. After reviewing the
individual days of collection, it was easy to segment the
drawings into board sessions, or periods of time when users
were at the board working on a specific problem. While
it remains unclear how useful the session metric will be
to system design, it’s conceivable that sessions could help
identify a lower and upper performance bound. For example,
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Fig. 7. Cumulative distribution of the inter-stroke delay between drawing
(non-erasure) strokes across all sessions. Approximately20% of drawing
strokes occur within one-tenth of a second of the preceding drawing stroke.
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Fig. 8. Cumulative distribution of drawing (non-erasure) strokes per session.
Strokes are segmented into sessions based on timing data; inter-stroke delays
larger than 30 minutes define a new session.

a session could indicate how much working memory will be
required to solve the typical problems faced when interacting
with the whiteboard.

A detailed look into inter-stroke arrival times is provided
in Figure 7. Since most drawing strokes occur in rapid
succession, partitioning the recorded data into sessions in
which the inter-stroke delay between two consecutive strokes
exceeded 30 minutes, produced an accurate history of board
snapshots. We captured approximately 90 unique periods of
user activity. Figure 8 describes the number of drawing strokes
generated throughout all individual sessions. The trend inthe
graph indicates that a nontrivial percentage the sessions do
not contribute new drawing data and only a small percentage
of the sessions are responsible for large drawing contributions.
Perhaps not surprisingly, the results shown in Figure 9 indicate
that the total area of the board utilized by a session behaves
similarly to the number of strokes per session. The relationship
between the two figures would suggest that new strokes often
do not overlap with existing strokes, or they at least do so in
a manner that expands the bounding box housing the current
set of strokes.
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Fig. 9. Cumulative distribution of the square area of drawing (non-erasure)
strokes per session. Strokes are segmented into sessions based on timing data;
inter-stroke delays larger than 30 minutes define a new session. The area of
a session is computed by finding the minimum bounding box containing all
strokes within the session. The total size of the whiteboardis approximately
6 meters.
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Fig. 10. Duration of drawing (non-erasure) strokes across all sessions. While
a small percentage of strokes exceeded two seconds, nearly all detected strokes
lasted less than one second. The longest duration discovered reached 8.8
seconds.

The data collection process was designed to be as non-
intrusive as possible, with no attempts at making whiteboard
interaction more convenient for the user. For example, if a
user needed to erase the entire board surface, he or she had to
do so manually. Therefore the trends recorded are true to the
normal trends of our whiteboard.

One trend that stands out is how quickly strokes are drawn.
Figure 10 provides a histogram outlining the duration of
drawing strokes. Over 55% of the drawing strokes were drawn
in under one-tenth of a second. In fact, almost all drawing
strokes last less than a full second.

A second important trend to follow is erasure behavior.
Existing sketch recognition algorithms tend to acknowledge
and then ignore the potential for erasures, so our ability to
capture erasure data was of particular interest. In the end,we
observed that a large amount of time was spent erasing data.
Figure 11 highlights the percentage of erasure strokes that
occurred per board session. An important observation is that
while some sessions were entirely dedicated to erasing the
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Fig. 11. Percentage of erasure (non-drawing) strokes across sessions. Strokes
are segmented into sessions based on timing data; inter-stroke delays larger
than 30 minutes define a new session. While most sessions are dominated
by drawing strokes, roughly 15% of all sessions are exclusively composed of
erasures.

TABLE I
NUMBER OF CORNERS PRESENT IN FRAGMENTED DRAWING STROKES

STROKE FRAGMENTATION AND CORNER DETECTION PERFORMED USING
SPEED CALCULATIONS AS PRESENTED IN[18]

# Corners 0 1 2+

# Segments (%) 15291 (93.9%) 579 (3.6%) 407 (2.5%)

board–usually when clearing the entire board surface–many
drawing sessions are interspersed with erasures. Given the
complexity of sketch recognition, it’s understandable whythe
issue of erasing is avoided, yet our data indicates that it’ssuch
a frequent task that the role erasing will play in any sketch
system is significant. We believe this feature should not be
neglected as it has the potential to add immeasurable value to
the system.

One final observed trend, that is also highly relevant to
modern sketch recognition systems, is the evaluation of the
complexity of each individual stroke. While there are a number
of applicable metrics, a simple estimate of complexity can be
obtained by fragmenting the stroke into approximate pieces,
such as lines and curves. Neglecting curves, past work has
demonstrated how the speed of a drawing can be used to
quickly detect a stroke’s corners [18]. Using this method,
it is possible to get a feel for the complexity of the board
data. Table I provides a breakdown of the number of corners
detected within all collected drawing strokes. The results
indicate that over 90% of strokes do not contain corners.
This is likely an indication of two separate issues. First, users
are mostly likely lifting the pen and creating new straight-
lined strokes in places where corners exist (e.g., drawing a
box using four unique strokes in place of one continuous
motion). Second, many strokes that have potential corners
are likely gentle curves. The first case is ideal, since the
user is essentially performing the fragmentation by hand. The
second case, however, is more problematic since it can be
difficult to place a threshold to specify which curves represent
corners. Upon visual inspection of the board sessions, it is



apparent that text likely accounts for a large percentage of
the strokes without corners. While many pieces of input data
clearly contain corners, most of the input that is not text is
frequently accompanied by textual labels.

These data above are not meant to capture the workload of
a specific application, and indeed if the whiteboard was an
interactive device it is likely that some of these distributions
will change. However, we can still take a great deal away
from this characterization: the workload is exceedingly bursty,
strokes are usually fairly simple yet they come in rapid
succession, and an average session will deal with hundreds
or thousands of strokes spread over several square meters.
With these observations in mind, we shift our focus to a
modern tablet-based sketch recognition system that is currently
undergoing development.

V. CHARACTERIZATION OF RECOGNITION ENGINE

The best-known algorithms for parsing free-form drawings
rely on a tight hypothesize-model-measure loop that placesan
extraordinarily heavy demand on the system. Each reasonable
hypothesis must be tested in isolation so that the most likely
interpretation of the input can be discovered. This tight loop
is the critical bottleneck. To understand exactly what it does
and how it might map onto the machines of the future, in this
section we describe these steps in more detail.

There are many levels on which we could characterize the
workload of sketch based systems. Irrespective of the ability
of the underlying system to quickly recognize and understand
free-form input, from the user’s perspective, the interface
contributes significantly to the perceived responsivenessof the
system. The designers of sketch systems must carefully choose
when and how recognition is triggered. Furthermore, even after
recognition takes place, the system may or may not want to
provide immediate feedback to the user. Especially when free-
form input is the main mode of interaction, there appears to
be a delicate balance between assisting the user with too much
or too little feedback. While it may seem counterintuitive,less
responsive feedback may result in an overall more pleasing
form of interaction [19], [20].

Giving the user the ability to write freely lies at the heart
of these tablet-based applications. Ultimately, the interface
should disappear and allow the user to freely express his or
her ideas without concern for the underlying tool’s abilityto
comprehend the input. However, there are a number of factors
that prevent this goal from becoming a reality. Questions
about user interface designs aside, giving the user complete
freedom to draw in any manner that he or she chooses presents
an extraordinary computational challenge. In this sectionwe
explain why this problem is computationally challenging and
discuss the best known approaches for interpreting free-form
input.

Like much other software still under research and devel-
opment, it is impossible to find solid and openly available
codes to characterize and run. Indeed the work we study here
is right out of the research lab and is far from ready for
distribution. However, working with experts in the area we
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Fig. 12. The abstract sketch recognition loop. The dashed lines represent
input and output to and from the system, forming an implicit read, eval,
display cycle.

have been trying to understand the most performance critical
sections in this research code. In talking with many of these
experts it became clear to us that this is fundamentally a
performance-limited problem, and in this section we describe
the software architecture and the opportunities for performance
improvements to increase recognition power and accuracy.

To better understand the performance demands of the sketch
recognition process, we have evaluated a system, currently
under development at Harvey Mudd, capable of interpreting
circuit diagrams [21]. We believe this application represents
the state of the art in sketch recognition techniques and the
lessons we can take away from an analysis of this approach
will generalize when developing similar and larger scale
systems.

At a high level, sketch recognition involves multiple stages
that must refine raw stroke data into manageable groupings
that ultimately match, or fail to match, a set of templates
defined by the application. Figure 12 depicts the general sketch
recognition loop. It is important to note the dependency each
stage has on the previous stages. Errors that occur early
in the recognition process propagate and can easily become
detrimental to the recognizer’s ability to find suitable matches.
While it may seem obvious for systems that receive continuous
updates, such as new strokes drawn by the user, to consist of
an input loop, that is not the purpose of the loop expressed
in the figure; the input recognition and user feedback loop
is implicit and not shown. The loop outlined in Figure 12
exists to combat the propagation of errors. Since it quickly
becomes infeasible to test every possible grouping of every
stroke generated by the user, sophisticated techniques must be
used to guess which strokes should be combined into formal
groups. It is possible that a small set of groupings work well
within a local setting, but fail in a global context. It is therefore
crucial that the conclusions being drawn actively inform the
grouper so that mistakes can be detected and corrected as early
as possible.

The developers of the circuit recognizer have created a
testing framework dubbed “TestRig” that gives the tester the
freedom to define and insert any number of stages in the
recognition pipeline (See: Figure 13). For our purposes, we
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have focused on the three significant phases outlined in [21].
The initial input to TestRig consists of raw stroke data. In

this recognition sequence, we are only concerned with the two-
dimensional points and timing data. The first stage evaluates
each stroke and attempts to fragment complex strokes into
multiple strokes. Fragmentation is accomplished by analyzing
the speed and curvature of a given stroke and locating points
with both high curvature and low speed. Former work has
shown this approach to be effective at discovering corners [18].
Because users draw gates and other symbols with a variable
number of strokes, it is important to brake these “compound”
lines apart into their fundamental units. Consider, for example,
how one might draw a square–one continuous stroke, two L-
shaped strokes, one line and one concave segment, etc. Once
fragmentation is complete, the transformed data is sent to a
preclassification stage.

The second stage attempts to label the individual strokes as
either wires or gates. Classification decisions are based ona
pre-trained, conditional random field (CRF) [22]. Similar to a
hidden Markov model, the CRF is a probabilistic, graphical
model that is effective at labeling and segmenting structured
data. Details on the application of conditional random fields
to circuit diagrams can be found in [21].

The third and final stage performs a significant amount of
computation. At this point, the stroke data has been preclas-

sified and must be grouped; ideally, strokes belonging to the
same gate or wire are collected into one shape. There are many
potential strategies for performing grouping at this level. A
naive approach could try to group every possible combination
of every stroke; however, this quickly becomes impractical
for even small circuit diagrams. One of the benefits of the
preclassification stage is that it can significantly reduce the
search space of this final grouping stage. The grouper uses
this information to match labeled data that is close in both
space and time. A support vector machine (SVM) [23] is
used to analyze the grouped gates and determine their final
classification.

As this project is still in development, conclusive per-
formance benchmarks are difficult to obtain, but our pre-
liminary results indicate that the majority of the processing
overhead occurs in the initial recognition stage. The current
performance breakdown, shown in Figure 14, indicates that
the total processing time for one pass over relatively ba-
sic circuit diagrams–composed of fewer than 100 strokes–
requires seconds to complete. The timing data indicates that
the labeling stage introduces significantly more overhead than
the grouping stage. This result seems reasonable since the
grouping stage should only be analyzing a subset of the
original data while grouping fragments. A key, and possibly
unsettling, observation is that the number of fragments present
in a drawing does not appear to consistently affect the the
recognizer’s performance. In order to understand why this
is the case, we must understand what occurs throughout the
labeling stage.

The labeling stage is essentially a generalization of the
methods presented in [24]; a CRF is constructed and used to
classify the fragmented stroke data as either a wire or a gate.
The number of nodes created for the CRF is set to the number
of fragments in the sketch. Edges are created between nodes
that are close in both spatial and temporal proximity. Next,a
number of attributes, such as geometric distance, timing data,
and speed, must be calculated for both nodes and edges3.
Once all attributes have been calculated, classification can
begin. The graphs created for circuit recognition are dense
and therefore employ a loopy belief propagation algorithm to
perform the inference.

Profiling TestRig with the data presented in Figure 14
clearly flags the loopy belief inference step as the main
performance bottleneck. The relative uncertainty of how fast
the algorithm will converge is conveyed by the timing data.
The CRF’s complexity is a function of not only the number
of fragments, but also the temporal ordering and placement of
strokes.

As previously noted, successive stages are dependent on the
stages that precede them. The performance of the grouping
stage is therefore largely dependent on the success of the
labeler. The current grouping implementation evaluates every

3In total, 17 attributes are used in the current implementation; 9 attributes
are used for the nodes, while 8 are used for the edges. Attributes described
in [24] have been observed to work empirically; however, choosing the best
set of attributes remains an open problem.
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combination of the set of strokes it is passed, yet profiling
results seem promising. The time spent by the grouper is
largely dominated by the recombining of strokes; the support
vector machine proves to be very efficient and does not
currently appear to be a source of overhead.

In reviewing TestRig’s performance, one question of partic-
ular interest stands out: how much of a tradeoff can be made
between performance and accuracy? While the complexity of
loopy belief propagation might at first seem unacceptable,
the use of conditional random fields may actually provide a
means for trading performance for accuracy and vice versa.
Since the graphs of the CRF are composed at runtime and the
attributes defined over the nodes and edges can be arbitrarily
complex, it may be possible to tweak these values in order
to achieve the desired balance between performance and
accuracy dynamically. The ability to make this tradeoff could
be invaluable when dealing with data covering surfaces as
large as a whiteboard. One could, for example, target specific
regions of a sketch for higher accuracy while targeting other
regions for high performance.

At first glance, the results presented may appear to be
too slow to function in real-time–even more so when you
consider that in a fully developed system certain stages will be
repeated multiple times before converging on a final output.
Even though the processing time appears high, it is important
to remember that we are interpreting batched data. Working
with dynamic content, the application has the ability to identify
individual strokes as they are drawn. Furthermore, it seems
likely that users may not necessarily require immediate feed-
back [19]. Exploiting both of these properties could easilyhelp
amortize the cost of the recognition processing overhead.

Still today, handling sketch input poses a significant chal-
lenge to many areas of research, including HCI, recognition,
and performance. It seems the interesting solutions lie at the
intersection of all three goals, and there is a need for improve-
ment in each before free-form sketch recognition becomes a
reality.

VI. CONCLUSIONS

A computational whiteboard, one that can automatically
identify user input and interpret free-form strokes in realtime,
is a challenging problem, but one that is within our grasp
as computer systems developers. Waiting passively for new
workloads to find their way into the mainstream and only
then characterizing and developing architectures and systems
software around them is not something that we have the
luxury of doing in these turbulent times. In this paper we
have provided a preliminary look into the data and application
challenges facing whiteboard computing.

Of course this is not a problem for systems architects alone,
but it is one where significant systems expertise is sorely
required today. More so than in existing computing paradigms,
users will not tolerate fine-grained commands or complicated
interfaces. Instead, the burden of disambiguating a user’sin-
tentions must be left to the machine. Systems must be designed
with imprecision as a first class citizen as the errors inherent
to free-form sketch input are enormous. The best-known
algorithms for parsing free-form drawings rely on a tight
hypothesize-model-measure loop that places an extraordinarily
heavy demand on the system. Each reasonable hypothesis must
be tested in isolation so that the most likely interpretation
of the input can be discovered. New error-conscious parallel



primitives could potentially make these steps operationalin
real time. Novel tradeoffs that play between system perceptive-
ness, human participation, and computational efficiency may
be possible in this new domain [25].

Following this line of reasoning, the interface itself presents
some interesting system research opportunities. Managingall
of the figures and drawings on the board in both time and
space is a very tricky problem. A quick look at a typical
white board from our laboratory shows that it is covered with
everything from lists and announcements to precise diagrams,
sketches used during conversations, even amusing doodles.
Appropriately grouping these sketches, moving them around
the board as new and old sketches become active, and search-
ing through prior sketches are effectively open problems to
different extents in the HCI community. Each stroke generated
by the user will likely contain tens to hundreds of points
alone. With display resolutions reaching into the millionsof
pixels, a board full of drawings can result in a significant
amount of data. The storage, query, and manipulation of these
sketches (both the actual points and their associated meanings)
quickly becomes difficult to reason about and manage. A
scalable shared software architecture that can unify these
different one-off projects is badly required. Through inference
or explicit user action, techniques for sketching across domain
barriers must be developed. Programming languages have the
potential to play a double role in this space. Not only will
new tools be required to construct digital whiteboard systems,
a whiteboard environment could facilitate completely new
approaches to visual language design. It remains unclear what
such a whiteboard language would look like, or even if one
extensible enough to allow the creation of new whiteboard
tools, yet practical enough for everyday use, is even possible.

While there are many challenges to realizing such a vision,
ultimately we desire a system that can compute upon free-
form input from any number of domains without sacrificing the
freedom provided by a conventional whiteboard. We believe
this presents a number of new challenges to architect, system,
and language designers alike and that we need to take an active
role is defining new ways for this work to become a reality.
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