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Abstract—A whiteboard that automatically identifies drawn sketch workload that will be faced by such a framework, and

strokes, interprets them in context, and augments drawn imges e explore the the inner workings of a state of the art general
with computational results, such as solutions to mathematial purpose sketch recognition engine.

equations or results of circuit simulations, is a surprisirgly
realistic goal for systems architects. In this paper we desibe the With the radical shifts in design philosophy taking place in
state of this emerging domain and argue that technical trend will computer architecture right now, it is now more importarirth
make this a particularly attractive workload in the future. We ever that we trv and identif ar’Id even sheoherd forward. the
provide a preliminary characterization of the critical loo ps that y Y P s

exist within one state of the art system, currently undergaig Mass market workloads of the future so that we can continue to
development, and we attempt to quantify the workloads that reap the benefits provided by broad adoption. Computer-archi
whiteboard-sized devices are likely to face in the future. Wile tects are forced to consider device and technology changes 5
this work is by no means a typical workload characterization to 15 years into the future, yet more often than not the uedtat

paper, given the shift in programming models that we are aboti L T . .
to endure, it is now more important than ever before to identfy assumption is that the applications that will drive thosekets

and understand those applications that have the potentiakt drive ~ Will be essentially unchanged from today.

our industry forward. While sketch recognition is certainly not a fully mature

field, it is now to the point that performance is one of
the most significant bottlenecks facing the area, and in fact

Even after more than thirty years of desktop computingepresents one of many computationally-intensive intesa
many (if not most) engineers facing complex problems inhat has the potential to drive the economics of our field
stinctively run right to the whiteboard. The whiteboardeod forward. Make no mistake, the projects that we have attethpte
an incredibly natural way by which ideas can be remembered, characterize are still not mature enough to be “product-
it provides a means of describing and communicating the releady” and performing detailed cache performance anabysis
tionships between complex interacting parts, and can be usgher traditional workload characterization techniquesila
to specify rough schematics of final designs. This interfafce be very premature. We instead present an argument that
drawn strokes on a large surface is so natural that even @5,@8chnological trends will make this an increasingly atiac
years ago our ancestors were doing something very similar@orkload as the field matures and characterize some of the
walls of their caves, yet at the same time it is powerful efougong-term performance challenges that must be overcome for
to be the chosen tool of expression for many of our greatelis workload to become a reality.
modern minds. . . .

While the utility of these simple smooth white slabs is clear Spec_lflcally, we characterize the state_(_)f the art in the
there is an opportunity here to create a computing devide tﬁrécreasmgly mature area of sk_etch recognition, we argae th
can provide all of these abilities and more—a computer matrparket forces ".‘ake. this an increasingly attractive area to

rsue, and we identify those areas where performancesissue

as simple as sketching but as powerful as a modern deskt%kﬂ. X .
Written equations can be captured and solved, sketches2h§ the greatest detriment to the advancement of the field.

state machines can be executed, and previous drawings caWe begin with a look into the economics of display technol-
be queried, recalled, shared, and transformed. ogy and uncover recent trends in display growth. In Section |

These ideas are not just science fiction, in fact the H®le provide an overview of related works, describing recent
community has made significant inroads in this direction kygsearch in the field of sketch recognition as well as computi
carefully hand crafting solutions to very specific instaoé environments designed for free-form input. In Section IV
these problems for everything from equation editors, touifr we attempt to characterize the input traffic generated in
diagrams, to simple mechanical systems. While these dne-whiteboard-based environments. We end in Section V with an
solutions give us a glimpse of the future possibilities, aggal investigation into a new sketch recognition system for unde
purpose framework will be needed to allow the simple cr@atictanding circuit diagrams. We conclude with our prediction
of new sketch based tools. In this paper we characterize floe the future demands of whiteboard computing.

I. INTRODUCTION
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Fig. 1. This plot shows the growth in size of the most affotddbCD displays per square inch taken from published whiteeps [1] versus time. These
devices are fabricated lithographically, and as procgstohnology has matured we have seen a drastic increasehirtH@size and affordability of large
displays.

Il. MOTIVATION FOR WHITEBOARD COMPUTERS time. Over the last 10 years, hand built prototype systems fo

Even in our modern computer-saturated lives, simple p&plet PCs have been created for a variety of domain specific
and paper sketching plays an important role in the Comp@;oble_ms, and this first generation of p_rototypes is just now
tasks that we undertake. For example, it has been obseraed fRaching a product-ready level of maturity.
sketches are a natural first step in the design of everytiimg f
circuits to mechanical devices [2], and that drawing in &nd i ) o
with discussion greatly increases our ability to commuisica ©One of the biggest problems facing this line of research
complex subject matter [3]. It is perhaps curious then, ¢kan 1S the_ jump from a series of hand built application specific
with all of the computation power at our disposal, our firdgchniques to a general purpose framework that supports the
inclination when we need to design something complicatedG&ation and extension of novel graphical domain specific

C. Frameworks for Sketch Recognition

to stand up and walk away from the computer. schemes. The context in which a sketch is created is a very
large part of understanding how the sketch is to be viewetd, ye
A. The Economics of Display Technology all sketches are constructed in fundamentally the same way.

From laptops to cell phones, mobile devices have beenMore so than in existing computing paradigms, users will
pushing the limits of small-scale technology. So much so, it tolerate fine-grained commands or complicated inter-
fact, that it might be easy to overlook a separate and veggees [4]. Instead, the burden of disambiguating a user’s
different trend that is occurring: the rapid increase in shee intentions must be left to the machine. Each stroke gergerate
and affordability of large displays. As illustrated in Figul, by the user will likely contain tens to hundreds of points
these disp|ay5, constructed ||thograph|ca||y and carvedhf alone (SeCtion \Y quantiﬁes whiteboard data collected from
|a|’ge pieces of “mother g|assi” are doub“ng in area ev%y jour |ab) With dlsplay resolutions Containing millions 0*9'3,
years while prices have been simultaneously dropping_gh@board full of drawings can result in a significant amount of
exponential gains, coupled with the fact that flat panelldjgp data. The storage, query, and manipulation of these sletche
larger than standard whiteboards are already in productidfoth the actual points and their associated meaningskiguic
imply that it is only a matter of time before displays becomeecomes difficult to reason about and manage. A scalable
economical enough to find their way into our offices, homeshared software architecture that can unify these diftevee-
and classrooms. Even today, DLP projectors are approachfifgprojects is badly required.
the $500 mark, less than the cost of a 15-inch LCD monitor
just 5 years ago. As the price of “human-scale” displays
drop, coupled with affordable pen tracking hardware alyead Whiteboard computing spans a wide variety of domains.
available on the market, it will become economically viablés such, the works referenced in this section are by no means
to replace a traditional whiteboard with a digital screess. Aexhaustive. We have focused our selection to a concise set of
these screens become common, radically different meansregent developments pertaining to sketch recognition arge|
interaction become increasingly attractive. surface displays.

IIl. RELATED WORKS

B. Domain Specific Sketch Recognition A. Tablet-Based Applications

Of course large, cheap displays are in fact only part of the Sketch based interaction presents a number of challenges
challenge. To successfully replace a whiteboard, the aysplto application developers. Interface questions that weiee o
must have an incredibly unobtrusive user interface—alwagddressed by the now pervasive windows, mouse, and pointer
ready for simple sketching, capable of making inferencesodel break down as sketching becomes the main mode
about sketches, and able to act upon these inferences in ofainteraction [5]. Application designers must implement a



where strokes are normalized and statistical features»are e
tracted. The second and third stages employ statistichlsisa
refining the classification of each stroke into its apprdpria
mathematical symbol. Once classification is complete, a fi-
nal recognition stage is required to interpret the geometri
arrangement of the symbols in order to discover superscript
fractions, and similar features.

A slightly more restricted form of sketch based interaction
has recently found applications in Organic Chemistry in the
O T form of ChemPad, a tablet-based tool for converting 2D molec
B S ular sketches into their corresponding 3D representations
ChemPad presents the user with a split view as shown in
Figure 3, displaying both the 3D and 2D molecular models [9].
The user is required to generate a 2D sketch through a
Fig. 2. MathPad interface. sequence of single-stroke gestures. Included in the set of
gestures is the ability to delete existing input, permiftthe
user to change only a portion of a given sketch. Once the
sketch is complete, the user can invoke recognition of the 2D
model and view its 3D counterpart.

ChemPad interprets free-form input on a per stroke basis.
Recognition is achieved through a modification of [10], veher
a highly specific set of rules are applied to differentiate
between gestures. One result of this approach is that gsstur
may require context; therefore, operations such as delete,
represented by a scribble) may be applied over entire rsgion
of existing user input.

Both MathPad and ChemPad serve as a good guide and
warning for future sketch application systems. Within this
field, there is significant freedom to design novel methods of
Fig. 3. ChemPad interface. interaction, but this freedom comes at a cost. Designers of

both MathPad and ChemPad had to spend significant time
and effort building each domain specific recognizer.
. . L SketchREAD is perhaps the most notable attempt at per-
interface that lies between two extremes: basing mpuﬂ)sol%rming recognition across multiple domains. Developedrpr

on the interpretation of free-form strokes, or restricting user 1o both MathPa#land ChemPad, SketchREAD is a framework

toonly a "’T‘“.ed set of predefined ggstu_res. Here we descr ¥ diagrammatic sketch recognition. The framework udiiz
a set of existing sketch based applications that each aidr namically constructed Bayesian networks to interpret un

the input problem with varying degrees of input freedom. ¢onqirained drawings, permitting users to draw objectsauit

One recurring goal of the sketch community has begRgnect to a specific stroke ordering. While SketchREAD pro-

robust recognition of mathematical expressions [6], [7}jqes promising system performance results, accuracyinsma
Recent research has resulted in MatiPadtablet-based tool a limiting factor [11].

for combining mathematical sketches and simple, dynamic
illustrations [8]. The MathPad interface is predominantly
modeless, using a combination of free-form input and hig
level gestures to determine the flow of control. Expressions A new market for devices slightly larger than traditional
variables, and numeric values are inferred from a usecemputer displays appears to be emerging, as recent ad-
sketch, while actions over the sketch data, such as redoghit vances in multi-touch technology is becoming increasingly
deletion, and grouping are invoked by gestures. The higéHe popular [12], [13]. As these devices are capable of detgctin
gestures delineate the actions to be taken as well as thenregnultiple points of contact at any given time, they can be
over which an action is to be performed. A typical usagdewed as a generalization of the existing pen and tablet
scenario involves inputting a formula, where the user mustterfaces.
first draw an equation and then encircle and tap the regionThe appeal of a larger interactive surface has attracted
that is to be recognized. An example of the interface can besearch in the past. Xerox’s LiveBoard targeted the office
seen in Figure 2. setting where workgroup meetings and presentations are com
In MathPad, the full recognition of user input happens ovemonplace. Using a pen-based interface and specialized appl
multiple stages [8]. The first stage involves feature etima¢c cations, the LiveBoard set an early precedent for pen-based
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TR I stroke data. To date, very few of these attributes are ceresid

‘ by even the most advanced recognition techniques; many
1 S “\: h solutions are only concerned with the spatial and temporal
R ey data.
“- W?:::” = S To understand more fully the order of magnitude of data

T and timing involved in such a whiteboard system, using an

N T e eBeam capture device [16], we have collected roughly four
= - months worth of input on our laboratory whiteboard. Our

experiment does no recognition, instead it passiveégords
Fig. 4. A sample collected from an eBeam board capture deliciag the statistics from the data points that are naturally writtgn b
week of January 20, 2008. The left and right images refleatticel data. our lab for computer architecture research so that we can
The i_mage on the _Ieft displays only the_ raw point values, evifile image on nderstand the distribution of inputs that might be given
the right uses available metadata to mimic the current stithe board. i . .
to recognition systems. Beyond spatial coordinates, the ra
data captured includes timing information, marker coloql a
marker size. The input radius of each drawing device was
user interface design. Produced in 1994, with a sixty-sevaised to accurately account for the intersection and erasure
inch display and retail value between $40,000 to $50,0G9, tbf existing strokes. Figure 4 presents an example of the data
success of the LiveBoard ultimately succumbed to financiehptured and generated by the whiteboard system.
loss due to cost, supply, and quality issues [14]. Some of theOver the survey period, approximately 10-15 lab members
features that made the LiveBoard so attractive also redeiM@ad access to the whiteboard. The sample period, spanning
the harshest critiques. While the display had a relativetge from November 19, 2007 to March 17, 2008, includes portions
resolution for its time (1120 x 720 pixels), users felt the@e of Winter and Spring quarter, including a significant hojida
quality needed to be better. While the optical pen, capabletsreak in between. Of the 120 days of the survey, 49 days
capturing 90 x-y coordinate pairs per second, was a noyabproximately 41%) contained board activity.
feature, the feel and accuracy of the pen were dislikedly.ast The combined days of board activity produced over 300,000
earlier models of LiveBoard used monochrome displays, Yi@bput strokes. An input stroke is generated every time antinp
there was a demand for color [4]. pen touches the whiteboard surface. A stroke accumulates al
By today’s standards, the user demands for the LiveBoasdint data captured until the pen is lifted from the surfate o
seem underwhelming. High-resolution, board-sized colst dthe whiteboard. It is assumed that only one pen is drawing on
plays are readily available, and high resolution trackimg dthe whiteboard surface throughout the duration of any given
vices are available through a number of vendors. Reseaggtfoke. Our entire data collection consists of strokes asag
has led to results far beyond typical board sizes, includimg of up to hundreds of points each.
18 x 8 foot wall-sized display with a native resolution of @14 As a means of deciphering and reviewing past board data,
x 3072 pixels [15]. we created a variety of tools for automatically segmenting
and replaying stroke data. As highlighted in Figure 4, en@asu
metadata is useful in depicting the visual state of the board
The applications we have discussed thus far have al perceived by the user. A review of the data shows a wide
been primarily aimed at tablet devices. Considering the reariety of drawings. Since the lab board is a communal wgitin
cent advancements in display technology and the increagdace, there are many active ideas on the board at any given
interest in multi-touch interfaces, it's not hard to imaginpoint in time and they are spatially partitioned across the
these applications being used in a broader context withimard. In the same way that the inputs are clustered in space,
larger, pen-based or touch-based environments. Howaverthe strokes are clustered into bursts of time as well. Rekear
our knowledge there has not been any significant reseaddscribed in [17] has shown that temporal and spatial clues
aimed at understanding how well these algorithms will scadge often not enough to segregate groups of strokes into thei
and behave across different mediums. Factors such asyispklevant symbols (e.g., circuits and gates); however, ata d
resolution, input resolution, and the kinematics involveth shows promising results for accurately segmenting strakes
the input process each have the potential to affect the acgura larger granularity.
of the recognition process. As we are interested in targetin To understand and quantify the nature of the board traffic,
whiteboard-sized devices, we have begun observing how freee have dissected the input into drawing and erasure strokes
form input arrives on the whiteboard. . _ 3 _
The mention of free-form input generally implies data in thﬁolgesrirflv:%”“”ued to use tradiional dry erase markers. iBleict pen
. . . L L g placed around the original markers to record rpevement.
form of two-dimensional points in time. However, a signifi€a aAn electronic eraser, capable of removing the dry erase imggkwas used
amount of metadata can accompany each stroke and possiblgcord all erasures.

each point. PhyS|caI attributes such as pressure, sizecaod A_Ith_opgh we do not discuss all of our methods fo_r stroke_se_fgmmn in
detail, it is worth noting that segmentation based on isteske timing delays

as well as functional att”.bu'[esv such as era_sure' arems and segmentation based strictly on batched erasures botided visually
of the metadata properties that could be included with raaffective results.

IV. CHARACTERIZATION OF WHITEBOARD TRAFFIC



6% — 100%
90%-]
80%-]
70%-]
60%
50%-
40%-]
30%-]

0/ —
196 20%-]
[l ﬂ o

0% 0% T

} . . . ———T— T T T T T T_T T T 1
0 5000 10000 15000 20000 25000 '30000' 35000 40000 0.01s 0.1s 1s 2s 4s  16s 2
Number of Points Generated Per Day Inter-Stroke Intervals (seconds)

5%

Percentage of Days
R g B
8 ¥
1 1 1
Percentage of Strokes

Fig. 5. Number of points generated on a daily basis during faonths gy 7 cymulative distribution of the inter-stroke delagtieen drawing

of whiteboard usage. Over this collection period, over 800,points were (o, erasure) strokes across all sessions. Approximaietp of drawing
generate?]. Days without activity, approximately 59% of toal collection,  gyrokes occur within one-tenth of a second of the precedragidg stroke.
are not shown.
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required to solve the typical problems faced when intengcti
Fig. 6. Number of points generated over ten-minute intereal a daily basis with the whiteboard.
during four months of whiteboard usage. Over the 120 daysitf dollection, A detailed look into inter-stroke arrival times is provided
burst_s of board traffic_V\_/ere observed. A review of daily bc_)maﬂfi_c_reveals in Figure 7. Since most drawing strokes occur in rapid
sessions of board activity are frequently followed by hoafrénactivity. . L. . . .
succession, partitioning the recorded data into sessions i
which the inter-stroke delay between two consecutive ssok
exceeded 30 minutes, produced an accurate history of board
As shown in Figure 5, with only one exception, all daysnapshots. We captured approximately 90 unique periods of
in which drawing input occurred generated less than 11,0Q06er activity. Figure 8 describes the number of drawingksiso
points. The largest percentage of daily input generatesl legenerated throughout all individual sessions. The trentthén
than 5,500 points. Investigating the creation of pointsrovgraph indicates that a nontrivial percentage the sessions d
time shows an extremely bursty traffic pattern. Figure 6 showot contribute new drawing data and only a small percentage
the number of points generated over ten minute intervad§the sessions are responsible for large drawing contoibsit
throughout the lifetime of the survey. After reviewing théPerhaps not surprisingly, the results shown in Figure Scatei
individual days of collection, it was easy to segment thihat the total area of the board utilized by a session behaves
drawings into board sessions, or periods of time when useimilarly to the number of strokes per session. The relatign
were at the board working on a specific problem. Whilbetween the two figures would suggest that new strokes often
it remains unclear how useful the session metric will bdo not overlap with existing strokes, or they at least do so in
to system design, it's conceivable that sessions could helpnanner that expands the bounding box housing the current
identify a lower and upper performance bound. For exampket of strokes.
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strokes within the session. The total size of the whitebasr@pproximately by drawing strokes, roughly 15% of all sessions are exaigicomposed of
6 meters. erasures.
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10%] board-usually when clearing the entire board surface—many
] drawing sessions are interspersed with erasures. Given the
complexity of sketch recognition, it's understandable vitg
issue of erasing is avoided, yet our data indicates thaguith
a frequent task that the role erasing will play in any sketch
Fig. 10. Duration of drawing (non-erasure) strokes acrtisseasions. While system Is S|g_n|f|cant. We be“_eve this f_eature should not be
a small percentage of strokes exceeded two seconds, nbaidyexted strokes Neglected as it has the potential to add immeasurable value t
lasted less than one second. The longest duration discbvesched 8.8 the system.
seconds. One final observed trend, that is also highly relevant to
modern sketch recognition systems, is the evaluation of the
complexity of each individual stroke. While there are a nemb
The data collection process was designed to be as neffi-applicable metrics, a simple estimate of complexity can b
intrusive as possible, with no attempts at making whiteboapbtained by fragmenting the stroke into approximate pieces
interaction more convenient for the user. For example, if@uch as lines and curves. Neglecting curves, past work has
user needed to erase the entire board surface, he or she hafktaonstrated how the speed of a drawing can be used to
do so manually. Therefore the trends recorded are true to theickly detect a stroke’s corners [18]. Using this method,
normal trends of our whiteboard. it is possible to get a feel for the complexity of the board
One trend that stands out is how quickly strokes are drawdata. Table | provides a breakdown of the number of corners
Figure 10 provides a histogram outlining the duration afetected within all collected drawing strokes. The results
drawing strokes. Over 55% of the drawing strokes were drawttdicate that over 90% of strokes do not contain corners.
in under one-tenth of a second. In fact, almost all drawiriphis is likely an indication of two separate issues. Firsens
strokes last less than a full second. are mostly likely lifting the pen and creating new straight-
A second important trend to follow is erasure behaviolined strokes in places where corners exist (e.g., drawing a
Existing sketch recognition algorithms tend to acknowkddox using four unique strokes in place of one continuous
and then ignore the potential for erasures, so our ability tootion). Second, many strokes that have potential corners
capture erasure data was of particular interest. In thewad, are likely gentle curves. The first case is ideal, since the
observed that a large amount of time was spent erasing daiser is essentially performing the fragmentation by harek T
Figure 11 highlights the percentage of erasure strokes tlsatond case, however, is more problematic since it can be
occurred per board session. An important observation is thfficult to place a threshold to specify which curves reprds
while some sessions were entirely dedicated to erasing twners. Upon visual inspection of the board sessions, it is
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apparent that text likely accounts for a large percentage of
the strokes without corners. While many pieces of input data| User Drawing Final Output
clearly contain corners, most of the input that is not text is

frequently accompanied by textual labels. h A
These data above are not meant to capture the workload o ! :
a specific application, and indeed if the whiteboard was an V 1

in_teractive device it is likely that some of these distribos Potential Potential Model _

will change. However, we can still take a great deal away |  Gyoupings Matches Conclusions

from this characterization: the workload is exceedinglysby

strokes are usually fairly simple yet they come in rapid \j \\j

succession, and an average session will deal with hundreds

or thousands of strokes spread over several square metggs.12. The abstract sketch recognition loop. The dashess [represent
With these observations in mind, we shift our focus to igput and output to and from the system, forming an impliitd, eval,
modern tablet-based sketch recognition system that igtlyr  4ISP1&Y cycle.

undergoing development.

V. CHARACTERIZATION OF RECOGNITION ENGINE have been trying to understand the most performance dritica

The best-known algorithms for parsing free-form drawingsections in this research code. In talking with many of these
rely on a tight hypothesize-model-measure loop that placesexperts it became clear to us that this is fundamentally a
extraordinarily heavy demand on the system. Each reasengiérformance-limited problem, and in this section we déscri
hypothesis must be tested in isolation so that the mostylikehe software architecture and the opportunities for perarce
interpretation of the input can be discovered. This tiglplo improvements to increase recognition power and accuracy.
is the critical bottleneck. To understand exactly what ieslo  To better understand the performance demands of the sketch
and how it might map onto the machines of the future, in thiecognition process, we have evaluated a system, currently
section we describe these steps in more detail. under development at Harvey Mudd, capable of interpreting

There are many levels on which we could characterize tb&cuit diagrams [21]. We believe this application reprease
workload of sketch based systems. Irrespective of thetybilthe state of the art in sketch recognition techniques and the
of the underlying system to quickly recognize and undetktafessons we can take away from an analysis of this approach
free-form input, from the user’s perspective, the intezfaanill generalize when developing similar and larger scale
contributes significantly to the perceived responsivenésise systems.
system. The designers of sketch systems must carefullysehoo At a high level, sketch recognition involves multiple stage
when and how recognition is triggered. Furthermore, evear afthat must refine raw stroke data into manageable groupings
recognition takes place, the system may or may not wanttttat ultimately match, or fail to match, a set of templates
provide immediate feedback to the user. Especially whes fredefined by the application. Figure 12 depicts the generatkke
form input is the main mode of interaction, there appears tecognition loop. It is important to note the dependencyheac
be a delicate balance between assisting the user with tobh metage has on the previous stages. Errors that occur early
or too little feedback. While it may seem counterintuitilesss in the recognition process propagate and can easily become
responsive feedback may result in an overall more pleasidgtrimental to the recognizer’s ability to find suitable otegs.
form of interaction [19], [20]. While it may seem obvious for systems that receive contisuou

Giving the user the ability to write freely lies at the heamipdates, such as new strokes drawn by the user, to consist of
of these tablet-based applications. Ultimately, the fater an input loop, that is not the purpose of the loop expressed
should disappear and allow the user to freely express hisiorthe figure; the input recognition and user feedback loop
her ideas without concern for the underlying tool’s ability is implicit and not shown. The loop outlined in Figure 12
comprehend the input. However, there are a number of facterdsts to combat the propagation of errors. Since it quickly
that prevent this goal from becoming a reality. Questiorieecomes infeasible to test every possible grouping of every
about user interface designs aside, giving the user complstroke generated by the user, sophisticated techniqueshaus
freedom to draw in any manner that he or she chooses presesisd to guess which strokes should be combined into formal
an extraordinary computational challenge. In this secti@n groups. It is possible that a small set of groupings work well
explain why this problem is computationally challenginglanwithin a local setting, but fail in a global context. It is tieéore
discuss the best known approaches for interpreting fre@-focrucial that the conclusions being drawn actively inforra th
input. grouper so that mistakes can be detected and correctedys ear

Like much other software still under research and devels possible.
opment, it is impossible to find solid and openly available The developers of the circuit recognizer have created a
codes to characterize and run. Indeed the work we study hesting framework dubbed “TestRig” that gives the tester th
is right out of the research lab and is far from ready fdreedom to define and insert any number of stages in the
distribution. However, working with experts in the area weecognition pipeline (See: Figure 13). For our purposes, we



Raw sified and must be grouped; ideally, strokes belonging to the
Stroke Data same gate or wire are collected into one shape. There are many
potential strategies for performing grouping at this levsl
l naive approach could try to group every possible combinatio
of every stroke; however, this quickly becomes impractical
%j)\— for even small circuit diagrams. One of the benefits of the
:{

S
)_ preclassification stage is that it can significantly reduee t

search space of this final grouping stage. The grouper uses
this information to match labeled data that is close in both
WIRE GATE space and time. A support vector machine (S\_/M) [23] is

: used to analyze the grouped gates and determine their final

Group ; O classification.
Step (N-1) - As this project is still in development, conclusive per-

formance benchmarks are difficult to obtain, but our pre-
liminary results indicate that the majority of the procasgsi

Step 1 Fragment

Step 2

XOR AND overhead occurs in the initial recognition stage. The aurre
Step N Label @— performance breakdown, shown in Figure 14, indicates that
’& the total processing time for one pass over relatively ba-
sic circuit diagrams—composed of fewer than 100 strokes—
i — YOR requires seconds to complete. The timing data indicatds tha

the labeling stage introduces significantly more overhbad t

the grouping stage. This result seems reasonable since the
AND grouping stage should only be analyzing a subset of the
original data while grouping fragments. A key, and possibly

Fig. 13. Harvey MuddTestRig design (Left) and performance evaluation.unsettlmg’ observation is that the number of fragmentsgie

configuration (Right). With TestRig’s pipelined designyamumber of stages N & dr?‘Wing does not appear to consistently affect the the
can be connected in order to view and modify the raw stroke.d@ recognizer's performance. In order to understand why this

model the (_:urrent sta_te of the circu_it recognizer, thregestaare required: is the case, we must understand what occurs throughout the
Fragmentation, Grouping, and Labeling. .
labeling stage.
The labeling stage is essentially a generalization of the
methods presented in [24]; a CRF is constructed and used to
have focused on the three significant phases outlined in [2¢jassify the fragmented stroke data as either a wire or a gate
The initial input to TestRig consists of raw stroke data. IlThe number of nodes created for the CRF is set to the number
this recognition sequence, we are only concerned with tle twof fragments in the sketch. Edges are created between nodes
dimensional points and timing data. The first stage evaduat@at are close in both spatial and temporal proximity. Naxt,
each stroke and attempts to fragment complex strokes imi@mber of attributes, such as geometric distance, timirtg, da
multiple strokes. Fragmentation is accomplished by amadyz and speed, must be calculated for both nodes and &dges
the speed and curvature of a given stroke and locating poidiace all attributes have been calculated, classification ca
with both high curvature and low speed. Former work hdsegin. The graphs created for circuit recognition are dense
shown this approach to be effective at discovering corrié8E [ and therefore employ a loopy belief propagation algoritom t
Because users draw gates and other symbols with a varigideform the inference.
number of strokes, it is important to brake these “compound” Profiling TestRig with the data presented in Figure 14
lines apart into their fundamental units. Consider, fomegke, clearly flags the loopy belief inference step as the main
how one might draw a square—one continuous stroke, two performance bottleneck. The relative uncertainty of host fa
shaped strokes, one line and one concave segment, etc. Qheealgorithm will converge is conveyed by the timing data.
fragmentation is complete, the transformed data is sent tofae CRF's complexity is a function of not only the number
preclassification stage. of fragments, but also the temporal ordering and placemfent o
The second stage attempts to label the individual strokessaokes.
either wires or gates. Classification decisions are based on As previously noted, successive stages are dependent on the
pre-trained, conditional random field (CRF) [22]. Similara stages that precede them. The performance of the grouping
hidden Markov model, the CRF is a probabilistic, graphicatage is therefore largely dependent on the success of the
model that is effective at labeling and segmenting strecturlabeler. The current grouping implementation evaluatesyev
data. Details on the application of conditional random &eld
to circuit diagrams can be found in [21]. 3In total, 17 attributes are used in the current implememat® attributes

The third d final st f iqnifi t t aﬁe used for the nodes, while 8 are used for the edges. Atshiescribed
€ third and Tinal stage periorms a signimcant amoun [24] have been observed to work empirically; however,adiog the best

computation. At this point, the stroke data has been preclast of attributes remains an open problem.

Transformed 7
Stroke Data




AND-1 =
ngéjg — S =Labeler
EQ1-3 — m Grouper
EQ1-2 ]
COPY2-2 I—
NOT-2 ———mm
OR-3 —————————— =
EQ2-2 ]
COPY1-1 T—
COPY1-2 T
T
T

NOT-4 ——==m
EQ1-4
AND-4
COPY2-4 T
NOT-2 T
OR-2 ]
AND-3 T
NOR-4 T
XOR-4 ]
AND-2 T
EQ2-3 ]
EQ1-1
COPYlA4 ———————— ==
COPY2-1 E——
NAND-2 T
XOR-2 =]
NOR-3 —m=m

T T T T T T T T T
0 1500 3000 4500 6000 7500 9000 1050012000 13500  150(
Time (milliseconds)

Sketch Data (ordered by number of fragments)

Fig. 14. Performance of circuit recognition phases basedime to perform each task. Data along thexis has been sorted based on the number of
fragments (ranging from 25 to 60) within each drawing. Datghis evaluation was previously fragmented, so the fragatiem stage has been omitted. Tests
performed over similar raw data indicate the fragmentasitiye operates an order of magnitude faster than the Igbafid grouping stages.

combination of the set of strokes it is passed, yet profiling Still today, handling sketch input poses a significant chal-
results seem promising. The time spent by the grouperlénge to many areas of research, including HCI, recognition
largely dominated by the recombining of strokes; the supp@nd performance. It seems the interesting solutions lidiat t
vector machine proves to be very efficient and does niotersection of all three goals, and there is a need for ingro
currently appear to be a source of overhead. ment in each before free-form sketch recognition becomes a

In reviewing TestRig’s performance, one question of partiéea"t)’-
ular interest stands out: how much of a tradeoff can be made
between performance and accuracy? While the complexity of
loopy belief propagation might at first seem unacceptable,A computational whiteboard, one that can automatically
the use of conditional random fields may actually provide jgentify user input and interpret free-form strokes in réxmle,
means for trading performance for accuracy and vice versa.a challenging problem, but one that is within our grasp
Since the graphs of the CRF are composed at runtime and #3ecomputer systems developers. Waiting passively for new
attributes defined over the nodes and edges can be arlitrafjbrkloads to find their way into the mainstream and only
complex, it may be possible to tweak these values in ordgfen characterizing and developing architectures ancsyst
to achieve the desired balance between performance apgtware around them is not something that we have the
accuracy dynamically. The ability to make this tradeoff Idou Juxury of doing in these turbulent times. In this paper we
be invaluable when dealing with data Covering surfaces B&ve provided a pre"minary look into the data and apphn'an
large as a whiteboard. One could, for example, target specihallenges facing whiteboard computing.
regions of a sketch for higher accuracy while targeting othe of course this is not a problem for systems architects alone,
regions for high performance. but it is one where significant systems expertise is sorely

At first glance, the results presented may appear to kexjuired today. More so than in existing computing paradigm
too slow to function in real-time—even more so when yousers will not tolerate fine-grained commands or complitate
consider that in a fully developed system certain stagdswil interfaces. Instead, the burden of disambiguating a uger's
repeated multiple times before converging on a final outpué&ntions must be left to the machine. Systems must be deksigne
Even though the processing time appears high, it is impbrtamth imprecision as a first class citizen as the errors intitere
to remember that we are interpreting batched data. Workitg free-form sketch input are enormous. The best-known
with dynamic content, the application has the ability taniify ~ algorithms for parsing free-form drawings rely on a tight
individual strokes as they are drawn. Furthermore, it seemgpothesize-model-measure loop that places an extrawiigin
likely that users may not necessarily require immediatel-feeheavy demand on the system. Each reasonable hypothesis must
back [19]. Exploiting both of these properties could ea#yp be tested in isolation so that the most likely interpretatio
amortize the cost of the recognition processing overhead. of the input can be discovered. New error-conscious paralle

VI. CONCLUSIONS



primitives could potentially make these steps operational
real time. Novel tradeoffs that play between system peigept

(4]

ness, human participation, and computational efficiency ma

be possible in this new domain [25].
Following this line of reasoning, the interface itself prets

(5]

some interesting system research opportunities. Managing (g
of the figures and drawings on the board in both time and
space is a very tricky problem. A quick look at a typical
white board from our laboratory shows that it is covered with;
everything from lists and announcements to precise diagram

sketches used during conversations, even amusing dood
Appropriately grouping these sketches, moving them arou

§

S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz, W.s¥&m, D. Lee,
K. McCall, E. Pedersen, K. Pier, J. Tang, , and B. Welch, “hvard:
A large interactive display supporting group meetingsspngations and
remote collaboration,” irProceedings of ACM CHI'92 Conference on
Human Factors in Computing Systeni992, pp. 599-607.

G. Apitz and F. Guimbretiére, “CrossY: a crossing-lhsgrawing
application,” vol. 24, no. 3, pp. 930-930, July 2005.

R. Helm, K. Marruitt, and M. Odersky, “Building visual tguage
parsers,” inCHI '91: Proceedings of the SIGCHI conference on Human
factors in computing systemsNew York, NY, USA: ACM Press, 1991,
pp. 105-112.

S. Smithies, K. Novins, and J. Arvo, “A handwriting-basequation
editor,” in Graphics Interface 1999, pp. 84-91. [Online]. Available:
citeseer.ist.psu.edu/smithies99handwritingbased.htm

J. J. Laviola and R. C. Zeleznik, “Mathpad2: a system fbe t
creation and exploration of mathematical sketcheACM Trans.

the board as new and old sketches become active, and search-Graph, vol. 23, no. 3, pp. 432-440, August 2004. [Online]. Avaliéab
ing through prior sketches are effectively open problems t?g]

different extents in the HCl community. Each stroke gerestat

by the user will likely contain tens to hundreds of points
alone. With display resolutions reaching into the milliosfs [10]
pixels, a board full of drawings can result in a significant
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potential to play a double role in this space. Not only wil

new tools be required to construct digital whiteboard syste

f14]

a whiteboard environment could facilitate completely new
approaches to visual language design. It remains unclear wi®!
such a whiteboard language would look like, or even if one
extensible enough to allow the creation of new whiteboard

tools, yet practical enough for everyday use, is even plessi

While there are many challenges to realizing such a visio

16]

ultimately we desire a system that can compute upon freg?]
form input from any number of domains without sacrificing the
freedom provided by a conventional whiteboard. We belieyg
this presents a number of new challenges to architect,rayste

and language designers alike and that we need to take ar a
role is defining new ways for this work to become a reality.
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