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h COMPUTING SYSTEMS GOVERN some of the

most critical aspects of our lives. These high-assurance

systems, which are found in medical devices, auto-

mobiles, planes, satellites, and military systems,

have an extremely high cost of failure. Incorrect

construction or unnoticed security holes can com-

pletely compromise their reliability, potentially put-

ting humans in harms way of both their safety and

privacy.

These systems have already seen their fair-share

of security issues. For example, cardiac pacemakers

have been shown to have weak radio frequency

(RF) security. This can be exploited to compromise

both a patient’s personal safety and their secrecy

[1]. Aside from medical devices, security holes in

automobiles have been exploited to show that many

of the critical components (such as the braking sys-

tem) can be remotely con-

trolled by an attacker [2].

As is apparent with these

examples, taking the ut-

most care in security when

designing these systems

is mandatory. However, in

order to do so, designers

need methods and tools

that can help them expose security issues.

Some standards exist, such as the Common Crite-

ria standard that specifies a set of rules in which

secure systems must be constructed and evaluated.

For example, the Evaluation Assurance Level (EAL)

is awarded to systems based on how thoroughly

they have been evaluated (assigned a number from

1 to 7). Not surprisingly, achieving a high-assurance

level is not only time consuming, but extremely ex-

pensive. Furthermore, it is nearly impossible to eval-

uate a system with components from untrusted

entities because their behavior must be essentially

assumed to be undefined. Because it is substantially

faster and more cost efficient to use third-party

components, it is desirable to construct a system

that shows isolation between trusted, in-house

built components, and potentially untrusted third

party ones.

System-on-chips (SoCs) find themselves at the

heart of these issues because they rely on the reuse

of third-party intellectual property (IP) cores. These

cores include memories, digital signal processors
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(DSP), graphical processing units (GPUs), analog RF

blocks, I/O interfaces, and other various hardware

accelerators (such as hardware encryption units).

The SoC tightly integrates these cores together using

an SoC bus architecture such as the Opencores

WISHBONE. Ideally, integration of these compo-

nents would be done in a realiable and secure

manner. Unfortunately, because many of these cores

come from potentially untrusted sources, their use

in high-assurance applications becomes extremely

limited. This stems from the fact that these cores

either come from an untrusted vendor or they have

not been evaluated to the same extent as the trused

cores. For example, the Mars Rover requires sepa-

ration between the flight critical and scientific mea-

surement systems simply because the flight critical

components require detailed evaluation far beyond

that of the measurement ones. A missed bug or vul-

nerability in the measurement components could

affect the flight control components and desecrate

the integrity the entire system.

One concern in mix-trusted SoC integration is

because of malicious inclusions such as hardware

trojans. These trojans can violate security by using

hidden circuitry to either covertly transmit informa-

tion or insert a kill switch into the system. A survey

by Tehranipoor et al. [3] covers many of the detec-

tion techniques including power and timing-based

analyses. The work we present here can help deal

with hardware trojans, but requires additional tech-

niques to help mitigate their effect. We can ensure

hardware trojans in untrusted cores do not affect

trusted ones but we must explicitly assume trusted

cores do not have trojans.

Secure mix-trusted integration is not impossible if

appropriate techniques are in place to build the

system securely from the ground up. By designing a

secure computing foundation, information flow can

be tightly bounded in the system. Such techniques

are hard to come by because information can flow

through difficult to detect side-channels1 in hard-

ware; e.g., the amount time a computation takes to

execute. Recently, researchers have put effort in

developing these strategies, specifically with the use

of information flow tracking at the lowest digital

abstraction: logic gates.

Gate-level information-flow tracking (GLIFT) [4]

uses additional logic to monitor the security level of

every bit in the system as they flow through Boolean

gates. Similar to information-flow tracking at higher

abstractions [5], [6], GLIFT associates a single-bit

security label (known as taint) to each data-bit and

tracks this information as it flows through the sys-

tem. This meta-data specifies the security level of

every bit in the system and the extra logic gates to

precisely monitor this meta-data to determine where

the original data is moving. Because GLIFTworks at

the lowest digital abstraction, it is also capable of

tracking information through timing channels as re-

cently demonstrated [7]. This strong property makes

it possible for testers and designers to determine

whether or not untrusted information is flowing to

trusted components so they have a sense of the

potential security flaws in their designs. In the past,

GLIFT has been used to show how to build a provably

secure processor [8] and show isolation in the I2C

and USB bus protocols [9]. There has not, to the best

of our knowledge, been work showing how GLIFT

can be used to show isolation in a larger, realistic SoC

that uses components from varying trust.

The goal of this paper is to show how a SoC can

be designed using cores from different trust levels

and have its security tested using GLIFT. In doing so,

we demonstrate that untrusted cores never affect

trusted ones. Specifically, we target the WISHBONE

[10] SoC protocol using a crossbar interconnect. We

design a realistic system that resembles what one

might find in high-assurance applications; specifi-

cally, two processors (trusted and untrusted) that

want to share a hardware accelerator (AES encryp-

tion unit) in the SoC. Ideally, this sort of behavior

should be allowed as long as the untrusted compo-

nent does not interfere with the trusted one (and

thereby compromise the integrity of the system).

Using GLIFT, we show how a crossbar can be de-

signed and tested to be information flow secure

such that the untrusted processor never affects the

trusted one. This allows the hardware accelerator to

be shared in a secure way without causing harmful

side effects to the trusted computation. We demon-

strate that this isolation is maintained across several

different scenarios in which the untrusted processor

is attempting to interfere with the trusted one.

1A side-channel is defined as an entity that leaks
information but was not intended for communication. The
two most common side channels found in hardware are from
timing (the data-dependent latency of a computation) and
power (the data-dependent power consumed during a
computation). In this work, we address only logical side-
channels (timing), physical ones (power) are out of the scope
of this paper.
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Gate-level information-flow
tracking (GLIFT)

GLIFT is a tracking technique targeted at the

movement of information through Boolean gates. It

has been used in a variety of applications, e.g., de-

monstrating isolation between devices in bus proto-

cols [9] and processes in a microprocessor [8].

As with other information flow tracking methods,

GLIFT associates a bit of meta-data (henceforth ref-

erred to as taint) and tracks this taint through the

system as it executes. This bit of meta-data repre-

sents the security of the data (either trusted or

untrusted) so that the flow of untrusted information

can be precisely monitored. For example, consider a

simple AND gate and partial truth table as shown in

Figure 1.

Here we have a simple AND gate (a) with inputs a

and b and also the tracking logic for this AND gate (c)

with taint inputs at and bt in addition to the original

data inputs. The partial truth table (b) specifies how

the GLIFT logic (c) tracks the taints of the inputs to

the output. For example, as shown in row 1, if a is

tainted (at ¼ 1 or a is untrusted) with a ¼ 1 and b is

not tainted with b ¼ 0 then no tainted information

(from a) flows through the logic gate because the

output is always 0 because b ¼ 0. In other words, a

cannot affect the output f of the AND gate in this

scenario. The tracking logic captures this property

by indicating f as untainted ðft ¼ 0Þ. Conversely, if
we consider row 2 in which b is tainted instead of a,

then tainted information does flow through the AND

gate because b affects the output f . This is captured

by the GLIFT logic by labeling f as tainted ðft ¼ 1Þ.
Similar truth tables can be constructed for other gate

primitives (OR, XOR, etc.) so that GLIFT logic can be

created for any gate in the design.

To use GLIFT in practice, the existing logic syn-

thesis tools are leveraged to tightly integrate it into

the design flow. First, we take a design written in a

hardware-description language (HDL) such as

Verilog or VHDL at the register-transfer level (RTL).

This hardware design is then synthesized to logic

gates using Synopsys’ Design Compiler and target

its and_or.db library that contains simple two-

input ANDs, ORs, and inverters. Note that we use this

library for the sake of simplicity; more complex

libraries can be used as long as the GLIFT logic has

been derived a priori as previously discussed. Once

the logic is in the form of a gate-level netlist, we

process this netlist to add the additional GLIFT logic.

This process simply takes every gate primitive and

replaces it with the appropriate GLIFT logic (this

new logic contains both the original and tracking

logic).

Once all the pieces are in place, the design can

be tested to determine whether or not an informa-

tion flow exists. This is done by tainting known

untrusted regions of the design and simulating exe-

cution on input test vectors using a simulation tool

such as Mentor Graphics Modelsim. If this tainted

information flows to a trusted region, the design has

a security vulnerability that the designer must assess.

While GLIFT itself does not provide any mechanism

for determining why there is a security-violating

information flow, it will always correctly indicate the

absence of one. We reserve providing the techni-

ques for showing ‘‘why’’ for a future work. For now, it

is up to the designer to reason about the flow and

put mechanisms in place to eliminate it. GLIFT will,

as mentioned, correctly identify the absence of this

flow once these mechanisms are added. (Note that

using GLIFT in this manner will show the absence of

a flow for the test vectors used. It does not necessa-

rily guarantee the absence of unintended informa-

tion flow for all input combinations. Past work has

created a solution to this problem called Star-Logic

[8], but it is out of the scope of this paper.)

To show how this works more concretely, we

show how to apply this technique to a realistic SoC

with the WISHONE bus architecture. We undergo

this test in a similar manner as has past work [9].

However, the system we present here is much more

realistic and complex and provides a clearer sense as

to how GLIFT can be applied to modern designs. The

Figure 1. (a) A simple AND gate. (b) A partial truth table
for the tracking logic of an AND gate. ft ¼ 1 iff a tainted
input affects f . (c) The tracking logic for an AND gate.
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details of this system, and how we create an

information-flow secure interconnect for WISHBONE,

are presented in the next section.

Designing a secure crossbar
in WISHBONE

WISHBONE is a SoC protocol originally devel-

oped by the Opencores community. It is a relatively

simple protocol that allows easy integration of dif-

ferent cores into a design. WISHBONE itself is very

flexible and allows many different interconnect

configurations and bus transactions. WISHBONE

allows many connectivity configurations including:

point-to-point, data-flow, shared bus, and crossbar

interconnect. In this paper, we focus on the crossbar

interconnect because it provides a flexible interface

for systems that contain large numbers of cores

interacting in parallel.

We wish to demonstrate that multiple cores can

access a shared resource in a safe and secure

manner. We designed a system that consists of two

MIPS-based processors and a 128-bit Advance En-

cryption Standard (AES) core. The two processors

share the AES core over the WISHBONE interface.

We assume that one of these processors runs critical

code while the other is untrustworthy, e.g., running

unknown (potentially mali-

cious) code or not being as tho-

roughly evaluated as the trusted

core. Further details of this sys-

tem are discussed in the next

subsection.

Mix-trusted system with
hardware accelerator

Our system consists of two

MIPS-based processors and a

128-bit AES core. We designed

the MIPS based processor and

the 128-bit AES was obtained

from the Opencores [11] web-

site. All cores are written in

Verilog HDL. We chose this

configuration because it well

suits the common issues found

in high-assurance applications.

Namely, it is often desirable to

share a hardware accelerator

in a large SoC with mix-trusted

components. Although this

system is does not have all

the complexity of commercial

SoCs it does capture the main

idea that multiple mix-trusted

cores share common hard-

ware resources and isolation

between them should be

maintained.

Figure 2a shows the over-

view of our system. It consists

of two of our processors and a

128-bit hardware AES unit. One

of these processors is treated as

Figure 2. (a) The system used in our test scenario. This consists of two
MIPS-based processors and a 128-bit AES encryption core. U and T
contend for the use of the AES core. (b) The system after the AES core,
xBar, and interface controllers have their GLIFT logic added. Information
is observed to flow from U to T . (c) The final information flow secure
system uses a time-multiplexed arbiter with a trusted reset to ensure
information flow isolation between U and T. Adding the GLIFT logic to this
system shows no information flowing from U to T.

IEEE Design & Test58

Trusted System-on-Chip With Untrusted Components



untrusted ðUÞ and the other trusted ðT Þ. In other

words, we do not trust the behavior of processor U

and assume its intentions are to corrupt the execu-

tion of T . Our MIPS-based processor is fully func-

tional and can execute many of the SPEC 2006

benchmarks (e.g., mcf, specrand, bzip2) [12]. To

execute these applications (that are written in C),

we used the SESC gcc cross-compiler to compile to

MIPS binaries. These binaries are loaded into our

processor’s memory and the executions are simu-

lated using Mentor Graphics’ Modelsim. In order to

communicate off-chip, we memory-mapped our pro-

cessors WISHBONE I/O controller to a region of

unused memory space. Since we have a cross-

compiler for our processor, we wrote C-applications

to push data out of the WISHBONE I/O interface. We

wrote different applications for U and T to execute

as we discuss later.

We also designed the crossbar interconnect to

handle requests from the processors. The crossbar

interconnect is connected to each processor’s

WISHBONE controller (see Figure 2a). This crossbar

interconnect handles requests from the two proces-

sors in a roundrobin fashion. This is simply for cor-

rectness and to prevent any sort of denial of service.

Each processor can perform at most one transaction

before having to relinquish control of the bus. It

waits for requests from a master and grants access to

the slave at the address specified if the slave is

available. In our scenario, we have only a single

slave: a 128-bit hardware AES unit. Depending on

the request type, this AES unit will take the data

passed to it (in 32-bit chunks) and encrypt/decrypt a

128-bit block. The processor that requested the bus

cycle polls until the transaction is complete and

then retrieves the data from the AES unit. Upon

completion, the next processor (if it has a pending

request) will get access to the AES core.

Note that all the communication between the

processor and AES unit are through WISHBONE and

its crossbar interconnect. In this system, because we

have both trusted and untrusted processors con-

tending for the use of the AES unit, there is likely to

be information flows from U to T . Such a flow would

violate the integrity of T and should be prevented.

Moreover, this interference is not a denial of service

attack because it is not possible for U to keep T from

completing its work. Still, U can effect when T gets

access to the AES block because it must wait for U ’s

transaction to complete. For example, if U never

wants to use the bus, and T performs continuous

bus transactions, T can finish in some time t.

However, if U performs bus transactions every time

it is scheduled, T will finish its bus transactions in

time � 2t. Thus U can affect the time in which T

finishes execution but cannot prevent it from doing

so. The next section discusses how we identify in-

formation flows in this system and how to elimi-

nate them.

Building a secure crossbar for WISHBONE
To first illicit how an information flow occurs

from U to T , we test a scenario in which T encrypts a

128-bit block of text using the AES unit and subse-

quently decrypts the cipher-text to verify the result.

In parallel with T , U continuously reads a configu-

ration register on the AES core. We call this program

executing on processor U as R CONF . This scenario

was chosen to show an information flow because U

is not overwriting any of T ’s data because it is only

reading. In other words, U is not directly corrupting

T ’s data on the AES block and at first glance U seems

to be noninterfering with T .

Since we are concerned with the information

flow from U to T , we need to look at the information

flowing out of U and in to T . To be precise, let

Tint ¼ fdata it ; ack itg be the taint input wires to T

from the wishbone logic. We determine whether or

not a flow occured by identifying whether any wire

in Tint is every set to 1. To do so, we must track the

flow of information through the crossbar, the AES

unit’s WISHBONE controller, and the AES unit itself.

To track this flow of information, we follow the same

method presented in Gate level information flow

tracking. Namely, we process the crossbar and the

AES unit with its WISHBONE interface through

synthesis using Synopsys’ Design Compiler to

achieve a gate-level netlist. Subsequently, we add

the GLIFT logic to these components and re-insert

this logic into the system as shown in Figure 2b. We

then execute R CONF on U by simulating the

Verilog in Modelsim. From the simulation, as shown

in Figure 3, a tainted flow is observed entering T ’s

inputs as soon as it requests an AES transaction

ðfdata it ; ack itg ¼ f0xF . . . F ; 1gÞ. Because we only

tainted the ouputs of U, it must be the source of this

tainted information flow.

This flow occurs because U and T contend for

the use of the encryption unit. Specifically, U af-

fects the execution of T indirectly by its use of the
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AES unit. This flow can be regarded as occurring

through a timing channel. That is, U is able to affect

the time in which T finishes its computation (U is

only reading and therefore does not directly affect

the computation of T ). Such channels can violate

the integrity of the design because they can

potentially violate real-time constraints, where T

must meet a critical deadline but is unable to be-

cause of U. To solve this problem, we put in place a

way for U to never affect T ’s use of this resource.

Specifically, we introduce a time-multiplexed arbiter

with a trusted reset to the crossbar that forces T and

U to operate in mutually exclusive time slots as

shown in Figure 2c. Upon expiration of a time-slot,

the logic is restored to a known state to ensure

harmful content is left behind. As we see in the

next section, this new crossbar eliminates this un-

trusted flow.

Secure crossbar evaluation
To demonstrate the lack of information flow

using this new crossbar, we construct several differ-

ent programs that have malicious characteristics of

causing interference to the trusted computation on

T . Specifically, we show noninterference for a fixed

set of programs. Noninterference states that U

should never affect T through any sort of digital

information. This includes both directly corrupting

the data of T or affecting the time in which programs

on T take to complete. This ensures not only the

integrity of the data on T , but also the integrity of

the timing of the computation. To demonstrate this

property for a set of programs, let P ¼ fp1; p2; . . . ;

png be a set of programs to be run on U . We want to

show noninterference with respect to P by demon-

strating that no untrusted information flows to the

inputs of T

8p 2 P:Sðpk�Þ )
c
Tint ¼ f0; 0g (1)

where Sðpk�Þ is the system executing with p on U

and � on T and )
c
is an implication over all clock

cycles c. Tint is the set of taint inputs from the wish-

bone crossbar as previously defined. This definition

says that for any program p in a set P , when exe-

cuting p on U with some trusted computation on �

on T , no untrusted information from U flows to the

inputs of T during any clock cycle. Because GLIFT

can also capture information flowing through timing

channels as mentioned in the previous section, this

includes information that affects the time in which �

takes to complete.

For our particular test scenario, we build the set

P ¼ fMM ;R CONF ;R ALL;W ALL;AESg. MM is a

simple matrix multiply program. R CONF is the

same program as before that continuously reads a

configuration register on the AES core. R ALL at-

tempts to read the entire address space associated

with the AES core. W ALL attempts to write the en-

tire address space associated with the AES core.

Last, AES uses the AES core to encrypt then decrypt

some information. All of these applications are writ-

ten in C, compiled to MIPS, and loaded on to their

respective processor’s instruction memory. Table 1

presents an interesting subset of our test cases and

summarizes the outcomes. We do not present all

results due to space constraints but observed that

Definition 1 holds for each � we tested.

For all cases in which � accesses the WISHBONE

fabric, untrusted information flows from U to T in

Figure 3. Waveform showing tainted information flow. As soon as T requests
access to the AES unit ðwb stb o ¼ wb cyc o ¼ 1Þ tainted information flows to its inputs
ðfdata i t; ack i tg ¼ f0xF . . . F; 1gÞ. U’s outputs were the only marked as tainted, so this flow
must have originated from U.
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the unsecure crossbar, thus violating Definition 1.

One interesting case is when MM and AES are run

on T and U respectively. In this case, no untrusted

information flows to T simply because � never ac-

cesses the AES core. Its execution is independent of

the behavior of U. Conversely, another interesting

case arises when U runs MM and T runs AES. In this

case, even though p is not using the AES core, the

lack of its use still affects the behavior of �. This lack

of use allows � to finish faster than if p were access-

ing it; a flow of information. GLIFT indicates no flow

ðTint ¼ f0; 0gÞ for all applications when the secure

crossbar is used. In other words, non-interference is

upheld for these computations on U .

It is important to make a couple of notes on this

solution. First, the arbiter only time-multiplexes this

specific resource and not the crossbar as a whole.

The goal of the crossbar interconnect is to allow

parallelism; multiplexing the entire crossbar elim-

inates this flexibility. This parallelism can still be

maintained because U can be granted access to

other devices in the system in parallel with T and

isolation can still be maintained. In addition, ideally

this property (Definition 1) would be shown for all

possible programs on U to demonstrate complete

noninterference. However, such an exhaustive test

would be impractical in this case. Some recent work

on GLIFT has made an effort to solve this problem by

introducing Star-Logic [8] that uses an abstract exe-

cution to make exhaustive testing possible. Unfortu-

nately most of this work is still in its early stages, but

we plan to employ these techniques in future

research.

COMPUTERS ARE FINDING themselves at the

heart of avionics, medical devices, military applica-

tions, automobiles, and many other critical aspects

of our lives. Building these systems in a secure

manner requires strict design practices and tools. In

this paper, we showed how mix-trusted IP cores can

be integrated in a secure manner. By using gate-

level information flow tracking to show information

flow isolation between trusted and untrusted cores,

we have constructed a secure crossbar interconnect

for the WISHBONE SoC bus architecture. This

powerful property makes it possible to integrate

mix-trusted cores and verify the security of their

interactions. This ultimately reduces the cost and

time associated with development and makes using

untrusted cores in high-assurance applications

more of a possibility. h
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