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Abstract—As data centers and end users become increasingly
reliant on virtualization technology, more efficient and accurate
methods of profiling such systems are needed. However, under
virtualization the virtual machine and OS each try to manage the
same resources independently, the underlying hardware is now
multiplexed between many streams of execution, and non-trivial
interference can be caused by seemingly unrelated resources.
While sampling techniques are effective at gathering average be-
haviors over long runs, understanding the time-varying behavior
of programs under virtualization, the correlation between events
at the level of program phases, or the transient effects of rare
events requires a new way of profiling virtualized applications.

To this end we present VrtProf, a low overhead profiling tool
that automates the collection of hardware and software events
spanning the vertical execution stack, including the hardware,
the virtual machine monitor, the guest kernels, and applications
at very fine time scales. We describe the many challenges faced
while developing VrtProf, the design of the resulting tool, and
how it can be used in practice on several multi-programmed
workloads both as virtualized and native executions. We show
that VrtProf introduces negligible performance overhead of only
1.2% while capturing the time-varying application behavior with
interval granularities as small as a few thousand cycles.

I. INTRODUCTION

From the largest cloud computing infrastructure to the
smallest mobile desktop, virtualization has become a very
popular strategy for providing migration, isolation, and ser-
vice agreements across a broad spectrum of parallel software
platforms. The potential for consolidating data centers and en-
hancing the availability and security of enterprise applications
means that many in the industry are eager to carefully evaluate
the tradeoffs involved in its adoption [1], [2]. While the per-
formance of virtualized systems is always a significant issue,
recent generations of hardware support for virtualization have
begun closing the gap between native and virtualized execu-
tion [3]. However, the story is never that simple. Virtualization
complicates many of the traditional methods by which we
measure and understand program performance. The extra layer
of abstraction that virtualization introduces further removes the
high level software behaviors (that application programmers
actually understand) from the underlying hardware resources
that determine the performance of the end system.

The ability to profile a full system stack, from the hardware
to the application, has shown itself to be useful in many prior
works [16], [17]. This is especially true when coupled with
information about how those workloads shift and change over
time. On a non-virtualized system (i.e. native) this information
can be gathered with the hardware performance counters

(HPC) present in most modern processors, and methods to
collect [4], [5] and use [6] such counters are not trivial but
have been well studied. Gathering such time-based information
from a virtualized system is even more challenging because
of all the extra sharing, management, and scheduling intro-
duced by the virtualization management software, the Virtual
Machine Monitor(VMM).

Most prior vertical profiling approaches use the operating
system (OS) to manage the many physical and software
counters in a meaningful way. Under virtualization, however,
even the operating system (and thus everything that runs above
it) is scheduled by the VMM; the counters are not directly
accessible by the OS, while most interrupts, DTLB misses,
and I/O operations (among many other system events) are cap-
tured and subsequently remapped according to ever-changing
transient relationships. Therefore, capturing and reconstructing
an accurate picture of application behavior while both the
OS and VMM manage the same resources (sometimes to
detrimental effect) is problematic. A tool is needed that will
allow application and system developers to see, and eventually
model, how the different phases of their applications are
effected by both virtualization and sharing.

Along these lines, we introduce a new software tool,
VrtProf, specifically built to vertically profile full systems
under hardware virtualization support with time granularities
as low as a few thousand cycles. While VrtProf builds upon
many of the advanced profiling techniques developed in recent
years, gathering detailed time-series performance profiles from
a virtualized hardware requires a method of synthesizing a
picture of the system performance from snapshots taken both
across layers and across metrics. To our knowledge, VrtProf is
the only low-overhead tool capable of aligning event collection
from various distinct sources spanning the vertical system
stack, including the HPC, the VMM, the guest OS, and the
applications. We describe the methods used in our tool to make
time-varying vertical profiling possible with both low overhead
and high precision. We outline many of the problems faced
in creating such a system, and we evaluate the effectiveness
of our tool on real virtualization hardware, and draw some
interesting conclusions about the performance of virtualized
execution. Specifically, in this paper we make the following
contributions:

• We show that fine-grain time-based vertical profiling on
virtualization systems with hardware is possible and we
introduce a novel vertical profiling tool, VrtProf, designed



specifically to provide this capability.
• We describe many of the new problems that are encoun-

tered when profiling virtualized systems and describe
how these problems can be overcome by our software
architecture and counter management heuristics.

• We evaluate several of VrtProf’s operational character-
istics, including its overhead and precision as imple-
mented in the popular Xen VMM. For practical con-
figurations, VrtProf introduces near-negligible overhead,
and we show how such a tool provides an unprecidented
view of the fine-grain behavior of several virtualized
SPEC R©CPU2006TM [7] and SPEC R©JBB2005TM [8]
benchmarks.

The remainder of this paper is organized as follows. The
next section will introduce the concepts of Virtual Machines
and Virtual Machine Monitors, and describes some of the
current popular profilers for virtualizaed systems. Section III
details the design of VrtProf and describes some important
lessons that may benefit other tool builders and users. Section
IV describes our experimental setup and operational considera-
tions when running VrtProf, and presents several examples that
illustrate the use of VrtProf in the analysis and optimization of
a subset of SPEC CPU2006 benchmarks in addition to Pseudo
JBB. Finally, we describe existing research which VrtProf
builds upon or supplements.

II. BACKGROUND

At the heart of a fully virtualized system is the hypervisor,
commonly referred to as the Virtual Machine Monitor(VMM).
A VMM directly controls and manages all the physical re-
sources, including the CPU, memory, IO devices and even
interrupt vector assignments. The VMM then allocates these
resources to the Virtual Machines as they are created. There are
many virtualization strategies ranging from emulation to hard-
ware supported virtualization; however, commonly deployed
VMM models are divided primarly according to whether or
not they rely on hardware support.

In the absence of hardware support for virtualization, one
of several software techniques are used to allocate physical
resources to VMs. The most common method used in the open
source software world is ParaVirtualization (PV) utilized by
the popular Xen VMM. Paravirtualization modifies the guest
kernel to reroute access to system devices through the VMM.
This enables the VMM to perform the necessary verification
and ensure isolation and security across the many VMs. PV
is not an option when source code for the guest kernel is not
available (as in the case with proprietary closed source OS)

Alternatively, in systems with hardware support(e.g.
Intel R©VT-X [26], the VMs are allowed to execute directly
on physical processors unmodified and unaware that they are
executing inside a VM. To enable this, the hardware introduces
two execution contexts to replace the prior ring 0: VMX root
and VMX non-root mode. VMX root are intended for the
VMM and allow access to all instructions and all resources.
VMs, however, are limited to running in VMX non-root
mode, a restricted context which traps certain instructions and

references that either access global state information or affect
potentially shared resources.

For exclusively allocated resources (usually physical mem-
ory regions or time slots on processor cores), the VM executes
unimpeded. For shared resources (such as IO devices) the
VMs are exposed to a virtual ”incarnation” of the physical
hardware. When a VM accesses these virtual devices (or other
restricted resources such as state register) the instructions are
trapped by the virtualization logic in the processor and control
immediately switches to the VMM (in root VMX). The request
is scrutinized for proper permissions and access controls and
executed by the VMM on behalf of the VM.

A. Profiling Virtualized Systems

The VMM is a new software layer that is distinct from the
VMs and requires its own profiling tools. There are several
parallel tools to existing Linux profilers that were implemented
to collect runtime information under Xen:

• XenOprof is a port of Oprofile (a popular Linux profiling
tool) which captures HPC and assigns them to the proper
execution context (i.e. VMM, VM...)

• XenTop replicates the behavior of the Linux Top utility;
however, it captures individual VM runtime behavior
instead of process behavior.

• XenTrace records certain system events such a VT Exits,
context switches...

• PerfC, XenStat, XenMon are other tools that collect and
aggregate different subsets of events.

There are two main functional limitations to the existing
array of virtualization profiling tools:

• The ability to allign and correlate events from different
software contexts. The main challenge to this goal is the
significant time skew, and the ”virtualized” view of time
maintained in each software context.

• Fine granularity event profiling for both hardware and
software events. This limitation is due to the engineering
design of many of these existing tools which makes
certain assumptions on the usages of the collected data.

In section V we will further elaborate on work related to
VrtProf. In the next sections we will explain how VrtProf ad-
dresses these limitations and how the new capabilities are used
to enhance our ability to understand and analyze execution in
virtualized system.

III. VRTPROF SOFTWARE ARCHITECTURE

Creating a tool that is capable of giving a vertical view of
multiple events across a virtualized system at a fine time gran-
ularity requires the development a novel software architecture
for profiling that can both gather and communicate events very
efficiently.

A. Design Considerations

Specifically, VrtProf was designed with the following goals
in mind:

Accurate time slices: Event counts from hardware and
software sources need to be in time alignment; that is, over



a given span of time, all event counts should be obtained
and logged with as little time skew as possible. Alignment in
time is needed to allow a better understanding of how specific
run-time behaviors in real programs are affected by virtual-
ization and to understand how those behaviors change over
time. While multiplexing a few available hardware counting
resources is unavoidable, it must be performed at fine enough
time granularity to allow such analysis.

Minimal software perturbation: Such a tool should be
easy to customize and extend, should perturb software (includ-
ing the VMM) to a minimal degree, and should be easy to port
across hardware architectures. Ideally, this would also mean
compatibility with existing profiling utilities (so that those
application or OS statistics can be aligned with the hardware
performance counters and other low level events).

Minimal performance perturbation: As this is a perfor-
mance analysis tool, having as small an impact as possible
on the run-time of the end system is critical. The challenge
here is that, because VrtProf is aimed at profiling virtualized
execution, its data collection needs to simultaneously span
multiple execution domains, including the VMM and the guest
VMs. A key requirement is to achieve such alignment with
minimal synchronization or communication overhead.

Meeting the above goals required the creation of a new verti-
cal profiling software architecture, VrtProf. The key decisions
in the creation of this software design are:

Location of profiling: To minimize the overhead and con-
centrate the event recording into a single narrow block of Vrt-
Prof instructions, we place the primary profiling mechanism
within the VMM. Hosting the profiling management logic
within the VMM–as opposed to placing it in the supervisor
VM(Dom0), as Xenoprof does for example, or distributing it
across multiple domains–gives us the ability to see each VM’s
context without requiring expensive hypercalls or excessive
structure dereferencing. The highest frequency activities are
located within a single procedure that has visibility of the
necessary state information concerning the VMM, all the VMs,
and their virtual processors. However, this simplicity comes at
the expense of a lack of direct access to a block device and it
makes cheap communication with guest kernels or their user-
mode utilities a challenge (which we will discuss in the next
section).

Avoidance of Inter-Domain Communication: To minimize
the communication overheads and associated time drifts be-
tween logging of profiling data, we avoid inter-domain com-
munication for profiling except for initiation and termination
of the profiling session. Further along this line, it is desirable to
employ shared memory based funneling of updates instead of
performing active reads or writes over inter-domain transport
mechanisms. Section III-C elaborates on this further.

Elimination of Peformance Perturbations: Any performance
perturbing activities within the profiling mechanism such as al-
locating or recycling memory, VMM timer scheduling, are all
completely avoided. Furthermore, we confine event collection
logic, as far as possible, to the interrupt handler (rather than
in a background collector) to minimize interference with the

executing applications being profiled.

B. VrtProf Design

While the above design considerations provide a sketch of
our end design, there are many details critical to the perfor-
mance of our end system which we outline here. Figure 1
shows the overall design of VrtProf. It consists of these
components: a VrtProf Manager, a HPC management agent,
a VMM software counter agent, several Guest Kernel counter
agents, a set of extensible guest user agents, and User level
controls. To expand instrumentation, additional agents can be
defined or existing utilities can be integrated into VrtProf
as new agents. The specific duties and interactions of these
components are as follows:

1) VrtProf Manager: This component resides in the VMM.
It receives requests for initiating and terminating profiling
sessions. It triggers the various profiling agents requested by
the user and periodically sweeps the data from each of the
profiling data sources into a common collection buffer. It
allocates bulk memory at load time, in which it maintains a
page aligned circular buffer where data from many intervals
can be aggregated before being flushed to persistent store by
a Dom0 helper daemon.

2) HPC Agent: This is an architecture-specific agent and
contains the mechanisms for programming or reading the
HPC registers in order to collect hardware event counts at
the desired interval granularity, and to multiplex the HPC
resources to cover the requested events. It also implements
the logic to program for, and receive and handle, the counter-
overflow interrupts for driving profiling. While clock cycles
or any one of a large number of HPC events can be used as
a basis to set multiplexing interval, in the current version of
VrtProf, we have used retired instruction count as the basis
for defining event multiplexing intervals.

3) VMM Software Counter Agent(s): These agents are
VMM specific. In this version we only implement VrtProf on
Xen, so we use Xen software counter infrastructures such as
perfc and Xentrace for capturing the event counts. We modify
these utilities so that we can read or reset the counters with
simple loads and stores from other VrtProf modules.

4) Guest Kernel Counter Agents: We capitalize on guest
kernel instrumentations, such as sysstat or vmstat utilities, to
collect profile data in those guests. Naturally, these utilities
run outside the VMM address space and privilege, and so to
achieve low overhead access to these data collection utilities,
we instrument the guest kernel to set up a shared memory
region into which counter updates get redirected. VrtProf then
periodically reads these counters. Due to the requirement of
modifying the guest kernel source code, this is an optional
feature for select VM OS.

5) Other (Extensible) Agents: VrtProf is designed to easily
incorporate additional existing or custom profiling data sources
at build time. Each of the three agents listed above, i.e.
the HPC, the VMM, and the guest VM kernel event data
collectors, is an example of an extensible agent. Existing
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Fig. 1. VrtProf architecture design (shown with a 4 Virtual Machine configuration on an 8 core system). Four different profiling agents are displayed. The
user level components (to the left) are decoupled from the VMM and guest level components during active profiling. (Note: the 1:1 correspondance between
virtual CPU (VCPU) and physical CPU (PCPU) if for clarity and illustrations. In reality the pairings are dynamic and fluid.)

instrumentation such as Xenoprof, which is not part of VrtProf
yet, is being added as an extensible agent at this time.

6) VrtProf User Controls: Two controls run at the user
level in Dom0. One provides the ability to initiate or terminate
profiling sessions, which are actions requiring direct interac-
tion between Dom0 user level and the VMM. The second
control (referred to in figure 1 as ”VrtProf user-level helper
thread”) consists of a daemon that periodically sleeps for
several seconds, wakes up, copies new data from the data
buffer (see VrtProf manager, above) to a file, and sleeps again.

C. Engineering Tradeoffs

As noted above, a key objective is to obtain aligned event
counts from hardware and software layers and to do so
at a high collection frequency. Furthermore, the PMU data
collection needs to multiplex the scarce counter resources
among the different types of profiled events. This allows us
to record the densities of multiple different types of events
within each high resolution collection interval.

These considerations led to hand-optimizing the instructions
that run in the HPV interrupt handler, which read and re-
program the HPC event registers, and which update the log
buffer with the event counts. Performance data is collected
into the log buffer in the form of a two-dimensional table,
with a column per event and a row per interval. A global
interval counter is maintained and all processors record their
event counts (from the HPC and other agents) into the table
using the modulo of the counter and buffer size as the row
index. This avoids the need to bring the processors to a barrier
before logging the event counts. The processors make a local
copy of the interval number before using it as row index, so
spin locking the interval number is unnecessary. This strategy
complicates the portability of our implementation to different
processors and so we have reduced to a minimum the number

of instructions needed to participate in this monolithic index
management.

We also avoid synchronization overhead in the interaction
between the VMM resident data logging code and the user
level thread that commits the event data from the log buffer
to persistent store. In essence, it is a single producer-single
consumer interaction: the producer in this case is the VMM
resident code that inserts event data from all agents into the
(circular) log buffer, while the consumer is the user level thread
that repeatedly sleeps for several seconds and then commits
any updates that were made in the log buffer. Since rows are
indexed by the interval count, any loss of information that can
occur when the producer gets too far ahead of the consumer is
easily noticed, and corrective action can be taken (if desired)
by changing the rate at which the consumer is activated or
adjusting the memory available for data buffering.

Finally, since VrtProf is designed to provide an identical
profiling environment for both native and virtualized environ-
ments, we need to port VrtProf to work with the native guest
Kernel. Unfortunately, the tight integration of the event logging
logic within the VMM code means that we are unable to
directly restructure it as a pseudo device driver, which could be
reused without modification in a natively executing OS kernel.
Fortunately, only the VMM resident code needs to be ported
into native kernels, while the remaining elements –including
the agents – are mostly identical with only minor differences.
Another key difference is in the shared memory transport:
kernel-user sharing in native instances is setup differently
from the VMM-guest sharing of memory that is needed for
enabling coordinated profiling under virtualization. We have
implemented identical facilities for aligning profiles in native
and virtualized cases and have found that we achieve identical
overheads and precision in the two situations.



Parameter
Description

Range

HPC Event Count The number of hardware events that are simultaneously col-
lected

2-20 events

Interval Width Number of retired instruction in a single interval. Low values
may increase overhead and perturb the profiled application.
High number may reduce the precision and usefulness of
subsequent analysis.

2-400 mil. instr.

Multiplex Interval Width (Derivative) Interval width (in retired instructions) divided by
the interval count. This is the effective sampling rate.

1-20 mil. instr.

Monitor Sleep Time Time in seconds before the monitoring thread will read data
from the shared circular buffer and write them to disk

1-20 seconds

Runtime Data Buffer Size Number of records in the circular buffer. Larger buffers allow
longer sleep times before records need to be persisted without
loss of data. They also increase the memory footprint of the
VMM component of VrtProf (and in consequence the VMM
footprint)

210 - 213 records (set at build time)

TABLE I
VRTPROF PARAMETERS THAT AFFECT OVERHEAD AND PRECISION.

IV. EXAMPLE USAGE AND APPLICATIONS OF VRTPROF

A. VrtProf Configuration

Table I lists the customizable VrtProf parameters, describes
each parameter and specifies the range of values that reason-
ably bound the parameter. The range column in table I can
have a different set of bounds that may be reasonable for dif-
ferent benchmarks and under different system environments;
therefore, some pilot experimentation is necessary to pick a
value that draws a balance between the cost of instrumentation
and the desired interval resolution for the measured data. We
briefly explain the contents of table I next.

• HPC Events: Because of the limited number of hardware
event counters in modern processors, we use multiplexing
at the HPC level to collect processor hardware counters.
Most of processors such as the one used in the measur-
ments described in the next section support the simulta-
neous collection of at least 2 types of HPC events. The
high end range of 20 (i.e., simultaneous collection of 20
events in each measurement interval) is due to a decision
to hardwire a limit of 20 on this parameter to simplify the
testing of VrtProf during its initial implementation stage.
Of course, this upper bound can be easily changed.

• Interval Width: As described in preceding sections, Vrt-
Prof divides the workload execution time into intervals
of equal length using a reference event. By default, we
use instructions retired as the reference event. As shown
in row 2 of table I, VrtProf can be run with an interval
width as small as 2 million instructions without causing a
noticeable overhead. We recommend a maximum interval
width of 400 million instructions because we noticed that
at higher widths, we began to lose phase distinctions in
both HPC and VMM data.

• Multiplexing Interval Width: In each interval, few counter
registers of the HPC can be used for profiling simultane-
ously. To collect more events, we divide each collection
interval into several subintervals each of which collects
a subset of the events in a round-robin fashion. This

parameter denotes the width of such subintervals. The
number of these intervals is also derived by dividing
the number of profiled HPC events by the number of
available physical HPC registers (e.g., 2). Since we have
currently a limit of 20 different HPC events that VrtProf
may collect simultaneously, practical multiplexing inter-
val widths ranges from a low of 1 million to a high of 20
million instructions. Lower values will cause significant
workload perturbation, while higher values will degrade
the statistical representation of the multiplexed events.
The number of multiplexing subintervals will range from
1 to 10.

• Monitor Sleep Time: This parameter determines how long
the user-level helper thread sleeps between flushing data
collected by VrtProf to persistent store. With potentially
20 events collected and with interval widths that are
only a few million instructions, we found it necessary
to limit the monitor sleep time to 20 seconds, since
higher numbers will result in a large number of missed
intervals. Values smaller than 1 second introduce a lot of
perturbation and overhead to the profiled system.

• Collection Buffer Size: This parameter determines how
large the collection buffer can be in number of records
while waiting for the monitoring thread to commit the
data to persistent store. We experimented with a range of
values and found that a collection buffer of size between
a thousand and eight thousand records provided sufficient
data holding (Our buffer size was fixed at 8MB. The
number of records was set to fit in that buffer).

For the experiments described in the subsequent sections,
we collect the events listed in table II with an interval width
of 50 million retired instructions. Recall that this implies a
multiplexing subinterval width of 2.5 million retired instruc-
tions. We set the helper thread’s sleep time to 1 second, which
is enough to keep up with the interval data generated by the
8 physical CPUs.



Hardware Events - user and kernel mode Description
INST RETIRED.LOADS Retired Load Operations
INST RETIRED.STORES Retired Store Operations
BR INST RETIRED.ANY Retired Branch Operations
BR INST RETIRED.MISPRED Retired Branch Operations that were mispredicted
MUL Retired Multiplication Operations
MEM LOAD RETIRED.L2 LINE MISS Retired Memory Operations that missed in the L2 Cache
MEM LOAD RETIRED.L1D LINE MISS Retired Memory Operations that missed in the L1 Data Cache
L2 LINES IN Number of data lines brought into the L2 Cache (regardless of cause)
DTLB MISSES.ANY Number of Data TLB misses
HW INTR RCV Number of Hardware interrupts recieved by the processor
VMM (XEN) Events
XEN VMEXITS VT exit events (triggering a processor context switch from guest to VMM mode
VT SCHED SW Context switches (between two guests or between the VMM and a guest) due to scheduling
XEN IRQS Number of interrupt Requests received by the VMM (regardless of whether they are forwarded to any

guests

TABLE II
HARDWARE AND SOFTWARE EVENTS COLLECTED BY VRTPROF FOR THE ANALYSIS IN SECTION IV

Native Virtualized

System Intel R©XeonTMX5355 Quad Core x2 (total 8 cores)

Specifications
2.66GHz Core Clock - 1333MHz Bus Speed

8MB L2 Cache per chip (16MB total)
16GB Main Memory

Operating Sys-
tem SUSE Linux 2.6.16.46-0.12

Virtual
Machine
Monitor

NA Xen R©3.0.4

TABLE III
HARDWARE AND SOFTWARE ENVIRONMENT USED FOR THE EXPERIMENTS

DESCRIBED IN THIS PAPER.

B. Experimental Virtualized System Setup

Table III describes the hardware, VMM, and kernel used in
our measurement system setup. We use an alpha version of
VrtProf for the Xen VMM. Specifications of the system we
use are listed in table III.

As we are concentrating on the potential usefulness of the
described tool, and not attempting to draw broader conclusions
about virtualization performance at large, we have selected
benchmarks that we have found–through comprehensive pilot
evaluations–to exhibit some interesting behaviors, including a
significant divergence between native and virtual execution,
particularly high or low CPIs, or significant expansions of the
Path Length (dynamic committed instructioncount).

We run 6 benchmarks from the SPEC CPU2006 suite,
including both integer and floating point benchmarks. We also
use Pseudo JBB [9], an adaptation of SPEC JBB2005 that
is designed to run a predetermined number of transactions
instead of running for a specified amount of time.

In addition to the experiments run to present the findings in
sections IV-C and IV-D, we also evaluate the overhead of Vrt-
Prof by comparing the execution time when collecting profile
data for the above benchmarks under three circumstances:

• While VrtProf is unloaded.
• While VrtProf is set to a very low frequency (the smallest

possible sampling rate without overflowing the counters).

Benchmark RT with
VrtProf

RT without
VRTPROF

Overhead(%)

403.gcc 5362.4 5268.8 -1.78%
416.gamess 1425.0 1448.0 1.59%
429.mcf 3185.6 3205.8 0.63%
433.milc 4882.9 4919.5 0.74%
465.tonto 6192.7 6108.0 -1.39%
481.wrf 2965.7 3013.9 1.60%
Pseudo JBB 2578.0 2646.6 2.59%
Geomean 2578.0 2646.6 1.34%

TABLE IV
RUNTIME OF THE BENCHMARKS WITH VRTPROF (COLUMN 2) AND

WITHOUT VRTPROF (COLUMN 3). THE OVERHEAD

• With VrtProf set to a practical sampling frequency that
affords an acceptable error rate.

Table IV presents the runtime for the evaluated benchmarks.
We found that across all our profiling scenarios, the execution
times for the above three cases are within 1-2% of each other
and they even presented very similar variances, suggesting that
the overhead introduced by VrtProf is essentially negligible.
The geomean of the overheads across the tested benchmarks
was 1.34% 1 The two negative overhead benchmarks are long
executing benchmarks with a very high rate of DTLB and L2
misses, and a high rate of VT exits. This likely masks any
overhead introduced by VrtProf, and the negative overhead
simply represents the noise of run to run variation.

Finally, examining the effect of virtualization requires going
beyond an understanding of simply ”virtualized” and ”non-
virtualized” systems. Multiple applications, and multiple in-
stances of applications, can all run under a single operating
system, and multiple operating systems can run across multiple
virtual machines, all of which can be scheduled across a
variety of physical machines. For the purposes of this eval-
uation we have considered how a set of identical application
runs can be distributed across VM guests. Specifically, we
have collected event data from the benchmarks under the

1The modulo of the negative values was used to compute the geomean
of the overheads. If those values were eliminated from the computation the
geomean of the overheads will be 1.253%.



following system configurations: Native (no VM, all apps
run on a single OS), and Virtualized with 1, 2, 4, and 8
guests (with benchmark copies distributed evenly across those
guests). Since the system has 8 physical CPUs, we alter
the number of virtual CPUs allocated to the guests so that
there is always a 1:1 correspondence between physical and
virtual CPUs. Further, in order to saturate the system with
a homogeneous workload, we run 8 parallel copies of the
profiled benchmark under all configurations (also to maintain
a 1:1 correspondence with the number of physical CPUs). In
the case of 1, 2, 4, and 8 guest VMs we respectively run 8, 4,
2, and 1 copies of the benchmark on each VM. We configure
VrtProf to collect the events listed in table II at an interval rate
of 100 million events (i.e. a multiplexing interval of 5 million
events). Each architectural event is collected twice, in USER
and KERNEL mode (denoted by a U and K prefix during the
results presentation in sections IV-C and IV-D). KERNEL
events capture both the VMM and the guest kernel’s behavior.
Future versions of vrtprof will employ software methods of
separating the two components.

Now that we have described the operational parameters
involved with VrtProf, we describe a few scenarios in which its
unique abilities can be useful. In particular, we have conducted
a series of experiments designed to show how virtualization
effects a set of executing applications. While we limit this
study to a subset of the benchmarks from SPEC CPU2006
and Pseudo JBB, the main point of this section is to show how
VrtProf can be used to evaluate the many different aspects of
virtualized system performance.

These experiments have allowed us to consider the effects
of virtualization on low level architectural metrics, the changes
in the reasons for VT exits (an expensive operation), and
the effect of changing the VM load distribution on several
hardware level events.

C. Event Correlation

The analysis space for our experiment is very large. The
combination of events that can be examined and the number of
benchmarks and experimental configurations is prohibitively
large. One strategy is to use a correlation matrix to identify
the pairs of events that have some degree of correlation and
subject them to further study.

Another strategy is to compare correlation values across
different experimental configurations and note significant
changes. Such changes can identify event relationships that
are subject to change because of Virtualization.

Figures 2 and 3 can illustrate both strategies. In the native
case, we can observe a high correlation between Kernel DTLB
misses and Kernel Branch instructions. This likely due to the
DTLB miss resolution, which involves a walk of the Page
Tables, a very ”branchy” operation.

While examining the Virtualization correlation matrix (for
the 8 guest example) we observe a similar trend to the
native case for many of the architectural events. One stark
difference is the higher correlation of the Kernel CPI to several
architecture events in the case of Virtualization.

In the Virtualization example, we also observe some in-
teresting correlation trends between Virtualization events and
some architectural events. The correlation values are generally
small–due to the significant difference in magnitude between
VT and architectural events. Nevertheless, User level DTLB
misses and Hardware Interrupts demonstrate a slightly elevated
value, since both these events almost always trigger a VT exit.

D. Event Timeline

Another very useful utility of VrtProf’s high granularity
interval-based event collection is the ability to visualize the
execution timeline in terms of specific event rates. Figures
4 to 7 show several examples of such visualizations. 1

433.milc shows a very clear pseudo-regular pattern, while
Pseudo JBB is essentially a flat single-phased benchmark. One
of the primary benefits of VrtProf is the ability to capture
and visualize the phase behavior of benchmarks. Most existing
tools lack either the interval-based capability or the granularity
to capture such behaviors.

One of the very interesting trends captured by our visualiza-
tion is the regularity of VT exit operations during the execution
of 433.milc in all of the VT execution modes, while also
highlighting the difference in magnitude. During the second
peak (around the 30K instruction retired marker), the VT
exit rate is inversely proportional to the number of guests,
whereas later in the execution this almost perfect relationship
breaks. This is a very good example of the value of time series
visualization over the reliance on coarse grained averaged data.
(The exact cause of this behavior requires additional source
code-level analysis).

V. RELATED WORK

Our work builds on many past efforts to provide perfor-
mance analysis for virtualized systems. For example, several
VMM profiling utilities, XenTrace [10], XenTop [11], Perfc
and XenMon [12] to name few, are built directly into Xen.
Both XenTrace and Perfc have been adapted as plugin agents
to VrtProf and operate as an event counter source for the
hypervisor layer.

The closest existing tool to VrtProf is most likely Xeno-
prof [13], which is a system-wide profiling tool that sup-
ports both timing-based (e.g. through a tsc counter) and
hardware performance counter event collection. It is based
on the popular Oprofile [14] tool which allows the user
to profile the executing code base of both the application
and the kernel, by sampling the Instruction Pointer register
whenever a sampling trigger is generated. Oprofile allows for
several hardware performance counters to trigger sampling at
arbitrarily defined frequencies and even attempts to resolve
the Instruction Pointer into a source code line if debugging
information is available in the loaded Object files. Xenoprof
provides Oprofile functionality within the scope of the VMM
by sampling the VMM and the supervisor kernel (Dom0) code

1We intentionally chose events and benchmarks with low noise levels and
interesting variation pattern to demonstrate these visualizations.
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K_DTLB_MISSES 0.87 -0.01 0.02 -0.01 0.02 0.19 0.00 0.27 0.23 0.00 0.01 0.01 0.02 0.13 0.13 0.22 0.00 -0.03 0.33 -0.03
K_BR 0.00 0.01 -0.02 -0.01 0.20 -0.01 0.21 0.18 -0.01 0.02 0.00 0.02 0.15 0.12 0.16 0.00 -0.04 0.32 -0.01
U_STORES -0.11 0.16 -0.02 -0.01 0.01 0.00 0.02 -0.03 -0.02 -0.10 0.05 -0.01 -0.01 -0.04 0.00 -0.05 -0.02 0.19
U_L2_LINES_IN -0.17 0.02 0.02 0.14 0.02 0.00 0.23 0.05 0.16 -0.06 0.01 0.04 0.06 0.00 0.36 0.07 0.25
U_LOADS 0.09 -0.03 0.03 0.04 0.06 -0.05 0.10 -0.13 -0.03 0.01 -0.02 -0.04 -0.02 -0.04 -0.05 -0.02
U_MUL -0.01 -0.04 0.03 0.05 -0.03 -0.02 0.01 -0.05 0.00 0.01 0.04 -0.03 -0.05 0.00 0.09
K_LOADS 0.05 0.29 0.26 0.01 0.03 0.03 0.02 0.22 0.17 0.17 0.01 -0.02 0.41 0.00
U_HW_INTR_RCV -0.02 -0.03 0.04 0.00 0.07 -0.05 0.00 0.00 -0.02 -0.01 0.10 0.00 0.17
K_L1D_LINE_MISS 0.79 -0.01 -0.02 0.00 0.01 0.18 0.19 0.36 -0.01 -0.06 0.41 -0.01
K_BR_MISPRED -0.02 0.02 0.01 0.02 0.17 0.17 0.29 -0.01 -0.06 0.35 0.00
U_L1D_LINE_MISS 0.22 0.14 -0.09 0.01 0.02 0.00 0.01 0.31 -0.01 -0.05
U_BR_MISPRED 0.15 0.05 0.04 0.03 -0.02 0.02 0.09 0.02 -0.03
U_DTLB_MISSES 0.25 0.05 0.05 -0.01 0.01 0.18 0.05 -0.01
U_BR_INST_RETIRED 0.01 0.02 -0.01 -0.01 -0.03 0.02 -0.08
K_STORES 0.83 0.16 0.05 -0.01 0.31 0.00
K_L2_LINES_IN 0.19 0.06 0.02 0.33 0.01
K_L2_LINE_MISS 0.03 -0.07 0.34 -0.04
K_HW_INTR_RCV 0.02 0.05 0.01
U_L2_LINE_MISS 0.02 0.21
K_CPI 0.00

Fig. 2. Correlation Matrix for the Native execution. The values are the average correlation across all benchmarks
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K_DTLB_MISSES 0.97 -0.04 -0.02 -0.04 -0.02 0.24 -0.01 0.21 0.22 -0.01 0.01 0.00 -0.02 0.21 0.15 0.16 0.05 0.01 0.06 0.03 0.00 0.37 -0.01
K_BR -0.05 -0.02 -0.04 -0.01 0.25 -0.02 0.22 0.24 -0.02 -0.01 -0.01 -0.02 0.22 0.17 0.18 0.07 0.01 0.03 0.01 0.00 0.39 -0.02
U_STORES 0.03 0.22 -0.19 -0.02 0.04 -0.03 -0.01 0.01 0.06 0.02 0.18 -0.03 -0.05 -0.04 -0.01 0.00 0.02 0.15 0.04 -0.04 0.20
U_L2_LINES_IN -0.09 0.04 0.00 0.15 -0.01 -0.03 0.14 0.07 0.13 -0.06 -0.02 -0.01 -0.04 -0.02 0.28 0.12 0.18 0.01 0.01 0.19
U_LOADS 0.19 -0.04 0.01 -0.01 0.01 -0.05 0.16 0.03 0.09 -0.02 -0.07 -0.04 -0.02 -0.04 -0.15 -0.10 0.02 -0.06 0.06
U_MUL -0.03 0.01 -0.02 -0.01 -0.01 -0.01 0.02 -0.13 -0.02 -0.03 -0.03 -0.03 0.04 0.08 -0.01 0.00 -0.02 0.06
K_LOADS 0.10 0.31 0.30 0.00 0.00 0.00 -0.01 0.24 0.19 0.18 0.08 0.01 0.05 0.04 0.00 0.45 0.00
U_HW_INTR_RCV -0.02 -0.03 0.05 0.08 0.10 0.02 -0.01 -0.02 -0.03 -0.02 0.10 0.19 0.21 0.05 -0.01 0.13
K_L1D_LINE_MISS 0.90 -0.03 -0.01 -0.02 -0.03 0.24 0.27 0.28 0.18 0.01 0.06 0.03 -0.01 0.56 -0.01
K_BR_MISPRED -0.02 0.02 -0.01 -0.01 0.23 0.24 0.27 0.13 -0.02 -0.01 -0.02 -0.01 0.51 -0.01
U_L1D_LINE_MISS 0.20 0.11 0.06 0.00 -0.02 -0.03 -0.01 0.17 0.08 0.09 0.00 -0.04 -0.03
U_BR_MISPRED 0.19 0.08 0.01 -0.01 -0.02 -0.03 0.06 0.08 0.01 0.00 -0.02 0.03
U_DTLB_MISSES 0.14 0.01 -0.02 -0.03 -0.02 0.14 0.25 0.28 0.03 -0.01 0.06
U_BR_INST_RETIRED -0.02 -0.04 -0.01 0.02 0.01 -0.06 0.03 0.02 -0.05 -0.02
K_STORES 0.73 0.24 0.09 0.00 0.05 0.04 0.00 0.41 -0.01
K_L2_LINES_IN 0.29 0.16 0.03 0.05 -0.03 0.00 0.49 -0.01
K_L2_LINE_MISS 0.49 0.00 -0.01 -0.03 0.00 0.47 -0.01
K_HW_INTR_RCV -0.02 0.04 -0.01 0.01 0.33 -0.03
U_L2_LINE_MISS 0.14 0.18 0.01 0.04 0.19
XEN_VT_EXIT 0.59 0.16 0.11 0.02
VT_SCHED_SW 0.13 0.04 0.26
XEN_IRQ 0.00 -0.03
K_CPI 0.05

Fig. 3. Correlation Matrix for the eight guest VT mode execution. The values are the average correlation across all benchmarks. Note the additional VT
events.
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Fig. 4. The rate of VM Exit operations over the duration of the benchmark 433.milc for the different VT modes
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Fig. 5. The rate of User level L2 Cache Line reads over the duration of the benchmark 433.milc for the different VT modes and the Native execution
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Fig. 6. The rate of User level L2 Cache Line reads over the duration of the benchmark Pseudo JBB 2005 for the different VT modes and the Native execution
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Fig. 7. The rate of User level DTLB misses over the duration of the benchmark 433.milc for the different VT modes and the Native execution

maps upon receiving sampling triggers. It also extends virtu-
alization support to the guest Virtual Machines by forwarding
the sampling signals triggered by hardware counter overflows
(all of which are managed within the VMM) to all the guests
registered to receive such a signal. Xenoprof also supports
passive profiling, ignoring specific code lines executing within
the guests and simply registering the specific domain that was
being serviced at the instance of the sampling trigger.

While Xenoprof does provide significant VMM profiling
capabilities, it and VrtProf are complementary tools designed
for different types of analysis. Specifically, VrtProf provides
the following additional feature:

• Concurrently sample event counters from various sources
(including the hardware, VMM and guests).

• Align and present events from different vertical contexts.
• Multiplex the collection of several hardware events across

a limited set of physical counters.
• Collect events at a very fine granularity - as little as a

few thousand cycles or retired instructions

The result of these features is the ability to capture the time
varying behavior of events and enable the types of studies
presented earlier in this paper.

Our work also relates to research within the sphere of
online profiling and performance characterization and anal-
ysis. VrtProf is essentially a vertical full system profiler for
virtualization. The authors in [15], [16] have developed and
utilized vertical full system profiling in the study of Java
Virtual Machine performance. In [17] the authors also utilize
Full System profiling, although in a simulation context, to
analyze and identify bottlenecks in the networking subsystem
of the Linux Kernel.

Performance characterization and analysis is a very active
field. VrtProf is an enabling tool for this research, and the
CPI decomposition and modeling, such as done in [18], [19],
[20], [21] in virtualization contexts, and [6], [22], [23] in
native contexts is one of the original objectives of VrtProf.



Additional profiling tools also aid in this and other objectives;
for example [24], [25], [4], [5] are used for profiling across
the kernel boundary, profiling embedded devices, managing
hardware performance counters, and identifying and visualiz-
ing performance bottlenecks respectively.

VI. CONCLUSION

As virtualization becomes an increasingly integral part of
modern software design, the application behavior is further
removed from the complex details of the underlying sys-
tem software and hardware. While this may prove to be
a significant advantage for those responsible for tackling a
huge variety of system-level challenges, the performance of
the resulting applications is harder to comprehend because
it is yet another step removed from the underlying hardware
environment. In fact, the performance of the resulting system
is impacted by decisions across the whole vertical stack, from
the hardware, to the virtual machine, to the multiple operating
systems at the guest level, all the way up to the application
itself. To truly understand the performance of such a machine,
tools combining information from all of these sources into a
cohesive picture are needed. This paper introduces VrtProf, a
tool that provides such a functionality.

To create VrtProf we have pulled information from the
hardware, hypervisor, VM kernel and application layers, then
aligned them according to predefined criteria (e.g. retired
instructions). We made sure our system has minimal overhead
to support the fine granularity necessary for the forms of
analysis we believe are necessary to comprehend virtualized
system execution. We also achieved this with a software
architecture that is flexible to expand and incorporate future
requirements for virtualized system profiling.

Looking toward the future, we see many ways in which
VrtProf can be used in real world scenarios. For example,
system administrators and Data Center designers could use
VrtProf in evaluating the efficiency of a given configuration at
the architecture and system software level, ultimately aiding
and guiding the customizations and the co-location of various
applications for virtualization and consolidation. We believe
that our current tool will prove to be a useful utility in under-
standing and subsequently optimizing applications designed to
operate in a virtual environment, and has the potential to act as
a platform around which production quality VM optimization
systems could grow.
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