
A Pythonic Approach for Rapid Hardware
Prototyping and Instrumentation

John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo, Joseph McMahan and Timothy Sherwood
University of California, Santa Barbara, CA, 93106 USA

Email: {jclow, gtzimpragos, deeksha, sguo, jmcmahan, sherwood}@cs.ucsb.edu

Abstract—We introduce PyRTL, a Python embedded hardware
design language that helps concisely and precisely describe
digital hardware structures. Rather than attempt to infer a
good design via HLS, PyRTL provides a wrapper over a well-
defined “core” set of primitives in a way that empowers digital
hardware design teaching and research. The proposed system
takes advantage of the programming language features of Python
to allow interesting design patterns to be expressed succinctly, and
encourage the rapid generation of tooling and transforms over
a custom intermediate representation. We describe PyRTL as a
language, its core semantics, the transform generation interface,
and explore its application to several different design patterns and
analysis tools. Also, we demonstrate the integration of PyRTL-
generated hardware overlays into Xilinx PYNQ platform. The
resulting system provides an almost “pure” pythonic experience
for the prototyping and evaluation of FPGA-based SoCs.

I. INTRODUCTION

From Systems-on-Chip to warehouse sized computing, sys-
tem engineers are increasingly turning to custom and recon-
figurable hardware blocks to provide performance and energy
efficiency where it counts most. Traditional hardware descrip-
tion languages, such as Verilog and VHDL, were developed
more than three decades ago and are still the dominant HDLs.
In recent years, High-Level-Synthesis (HLS) approaches are
also gaining ground, leading to the market’s expansion to
a usership beyond traditional RTL coders to include “non-
experts”. However, the tremendous amount of work focusing
on how good designs can be inferred via these methods proves
that deep hardware understanding is still required, in both
cases, for the development of reasonably optimized solutions.

In this paper, we introduce PyRTL. PyRTL is an open-
source Python-based HDL aiming to enable the rapid prototyp-
ing of complex digital hardware. PyRTL provides a collection
of classes for pythonic RTL design, simulation, tracing, and
testing, suitable for teaching and research. Simplicity, usability,
clarity and extensibility, rather than performance or optimiza-
tion, are the overarching goals.

At a high level, PyRTL builds the hardware structure that
the user explicitly defines. In contrast with HLS approaches,
PyRTL does not promise to take “random” high-level code and
turn it into hardware. However, our system aims at (a) lowering
the barrier of entry to digital design (for both students and
software engineers), (b) promoting the co-design of hardware
transforms and analysis with digital designs (through a simple
core and translation interface), and (c) ultimately allowing
complex hardware design patterns to be expressed in a way
that promotes reuse beyond just hardware blocks.

To achieve these goals, PyRTL intentionally restricts users
to a set of reasonable digital design practices. PyRTL’s small
and well-defined internal core structure makes it easy to add
new functionality that works across every design, including
logic transforms, static analysis, and optimizations. Features
such as elaboration-through-execution (e.g. introspection), de-
sign and simulation without leaving Python, and the option
to export to, or import from, common HDLs (Verilog-in via
Yosys [1] and BLIF-in, Verilog-out) are also supported. More
information about PyRTL’s high level flow can be found in
Figure 1.

PyRTL IR
• Scripts
• Testbench
• Hardware Design

Analysis & Simulation
• Estimation of design’s area,

latency and max clock
frequency.

• PyRTL built-in simulator.
• Commercially available

simulators.

RTL

CAD tools
• System development.
• Reports (timing, area, etc.)

• Hardware execution.
• On-chip HW-SW co-verification

Bitstream•
R

TL
 m

o
d

u
le

s

• RTL modules

Yo
sy

s

• Instrumentation
• Transforms

Fig. 1. Overview of PyRTL’s flow.

The paper first gives an overview of the related work,
highlighting the similarities and differences between existing
projects and our approach. Section III describes the PyRTL
language and its main features. In Section IV, PyRTL’s inter-
mediate representation is presented. An instrumentation API
along with a set of possible transforms over PyRTL’s core
are discussed in Section V. The performance of our tool
is quantified in Section VI. The on-board deployment and
SoC integration of PyRTL-generated designs are presented in
this section as well. Finally, concluding remarks are given in
Section VII. Overall, the main contributions of this paper are
the following:

• A Python embedded hardware design language that allows
the use of dynamic typing, introspection, comprehensions,
and other Python features to capture reoccurring design
patterns and facilitate extensive reusability.



• A concise intermediate representation that simplifies the
co-design of hardware transforms and analysis with digital
designs.

• An instrumentation API that supports transforms through
an interface similar to software-like binary instrumentation
toolkits. The applicability and efficiency of these methods
are also demonstrated across a variety of sample designs.

• The integration of PyRTL-generated hardware overlays into
Xilinx PYNQ (and therefore Zynq) for quick and easy SoC
development and evaluation via Python.

II. RELATED WORK

Traditional HDLs have a very long learning curve, even for
experienced engineers. On the other hand, HLS approaches
promise to raise the level of abstraction and compile regular
C/C++ functions into logic elements. However, there is still
no clear way as to how to come up with an optimized design
without prior hardware engineering experience. PyRTL’s goal
is to provide an alternative between these two extremes
by enabling programmers to directly specify their hardware
designs in a language they already know. As expected, this is
not the first attempt to cover this need.

Chisel [2] is a Scala-based project with similar goals to
PyRTL. Chisel is (like PyRTL) an elaborate-through-execution
hardware design language. With support for signed types,
named hierarchies of wires, and a well-designed control struc-
ture, Chisel is a powerful tool used in some great research
projects, including OpenRISC. Unlike Chisel, PyRTL has
concentrated on a complete tool chain, which is useful for
instructional projects, and provides a clearly defined and
relatively easy to manipulate intermediate structure, which
allows rapid prototyping of hardware analysis routines.

ClaSH [3] is a hardware description embedded DSL in
Haskell. In a similar way to PyRTL, ClaSH provides an
approach suitable for both combinational and synchronous se-
quential circuits, and allows the transformation of these high-
level descriptions to low-level synthesizable Verilog HDL.
Unlike PyRTL, which is based on Python (one of the most
popular languages with support for both functional and im-
perative style programming), in ClaSH the user has to deal
with the challenges that come with functional programming.
Moreover, designs have to be statically typed (like VHDL).
To be more specific, in PyRTL variable types do not have to
be explicitly declared in source code, but rather they can be
inferred during Python program execution; this facilitates the
development of more reusable structures.

MyHDL [4] and PyMTL [5] are both Python-based hard-
ware design tools. MyHDL is built around generators and
decorators; the semantics of this embedded language are close
to Verilog and allow asynchronous logic and higher-level mod-
eling. Much like traditional HDLs, though, only a structural
“convertible subset” of the language can be automatically
synthesized into real hardware. PyMTL allows simulation and
modeling at multiple levels of the design process. Like My-
HDL, parsing of the Python AST allows executable software
descriptions to be (under certain restrictions) automatically

converted into implementable hardware. In contrast with these
approaches, PyRTL always uses a single clock domain and
does not contain any unsynthesizable hardware primitives (i.e.,
bottom-up design based on the use of composable set of data
structures), which is of great help to less-experienced users,
for whom it can be very unclear why certain code can be syn-
thesized and certain code cannot. Moreover, PyRTL introduces
a hardware instrumentation framework that provides methods
of walking and augmenting accelerator functionality concisely
and efficiently (e.g. insertion of counters, probes, and other
arbitrary analysis logic).

The SysPy project [6] looks at the hardware realization
problem from a different perspective. To bridge the gap be-
tween software expressions and hardware implementations, the
authors proposed a “glue software” solution between ready-
to-use VHDL components and programmable processor soft
IP cores. PHDL [7] is also aiming to enable the utilization
of available HDL components, importable from pre-existing
libraries. Although these approaches are interesting, we do
not consider them PyRTL’s counterparts, as their focus is
different.

III. PYRTL OVERVIEW

PyRTL is a new hardware design language based on Python.
The main motivation behind PyRTL’s design is to help the user
concisely and precisely describe a digital hardware structure
through a set of Python classes. To achieve simplicity and clar-
ity, PyRTL intentionally restricts users to a set of reasonable
digital design practices. For instance, clock and reset signals
are implicit, block memories are synchronous by default, there
are no undriven or high-impedance states, and no unregistered
feedbacks are allowed. That way, any design expressed as valid
code always corresponds to synthesizable hardware. Moreover,
Python’s dynamic and object-oriented nature allows the user
to write introspective containers and build hardware using
common software abstractions.

A. PyRTL Datatypes & Operators

The primary data structure users interact with is
WireVector. To allow users to build on their exist-
ing experience with Python, we have designed multi-bit
WireVectors to act much as a list of individual wires. This
allows for WireVectors to use the various functionality
already built-in to Python, such as getting the length of a
wire through the built-in len() function, creating iterators
and comprehensions over WireVectors, and retrieving wire
subsets through both indexing and slicing.

wire2 = wire1[0] # indexing least significant bit
wire3 = wire1[-1] # indexing most significant bit
wire4 = wire1[:3] # slicing bits 0 through 2

Rather than require that every WireVector in the
system has a length (i.e. bitwidth) set explicitly, in
PyRTL WireVectors can get their length in one of the
following three ways: (a) the length can be set by the user at
the time of declaration, (b) the length can be inferred from the



producing operation when WireVector is created, or (c) it
can be inferred when the WireVector is assigned to.

In PyRTL, we have two different operators that perform
similar but distinct operations: the assignment operator = and
the connection operator <<=. The assignment operator is
executed by the Python runtime, binding a name on the left
hand side to an object on the right hand side; no hardware
is created. In contrast, the connection operator adds a net to
the circuit to directionaly connect the two WireVectors
together; the left hand side becomes driven by the right hand
side. Having both operators allows traditional HDL connec-
tions along with dynamic changes in names (for iterative and
recursive structures).

Fig. 2. Kogge Stone adder utilizing list-like properties of WireVector, as
well as Python lists of WireVectors.

In the Kogge-Stone [8] example shown in Figure 2, two lists
of WireVectors are used to iteratively store the propagate
and generate variables, allowing the adder to be described
as multiple rounds of operations. Specifically, in the example,
we first populate two lists of WireVectors: the original lists
of generate and propagate bits. Then, for each power of 2,
(denoted as prop dist) from 1 to the bit width of the longer
input, we create new generate and propagate bits from the
old ones. The generate bits are updated by OR-ing them with
the result of the AND of the propagate bit of the same index
and the generate bit that has an index prop dist less than
itself. The propagate bit is updated by AND-ing it with the
propagate bit with index (i − prop dist), where i is the
current loop index. Implicit in this is that all WireVectors
with index less than prop dist are not updated. After we
create the final generate and propagate signals, we shift the
generate wire list over by one to add the carry in to it. Finally,
we XOR the generate bits with the original propagate bits to
create the result of the addition. Note that while the ability to
operate on a list of WireVectors made it easy to implement
the concept of “updating” some of the WireVectors, we
are actually updating only the Python binding of the name,
without “updating” the WireVectors themselves. The logic
described in Figure 2 is fully combinational, and as the func-
tion executes it wires together this complex adder structure.

As memories are complex but critical elements of hardware
designs, they also have their own construct. In PyRTL, block
memories appear as an array of registers. They are written
as registers by default (e.g., mem[index] <<= 5) and

values become available in the following clock cycle. The
Register class acts just like a WireVector, meaning they
can be used in arbitrary expressions.

B. Instrospection and Hardware Comprehensions

In traditional hardware design languages, creating reusable
code relies on reusable or extensible modules — blocks
that correspond to a block of hardware. Capturing design
patterns or behaviors that don’t belong to a particular single
block is difficult in these languages, but the flexibility of
Python and PyRTL allow us to effectively abstract structured
behavior in addition to traditional blocks. This tends to rely
on introspection, where some code introspects and examines
runtime values in objects. We use this feature to implement a
set of Pipeline classes that abstract the common, structured
behavior of pipelines, such as inserting pipeline registers and
stopping on stalls. A designer instantiates an object of the class
and uses it as a container for the circuit signals. The object
tracks which stage is “active:” newly created logic and wires
belong to that stage. Calling a next_stage() function
“finishes” the logic for the stage and advances the active
stage. When the designer attempts to use a wire and access an
attribute of the object, it searches for the name in the current
and all previous pipelines stages. If the wire was created in
a previous stage, it automatically inserts pipeline registers to
bring it to the current stage. The overhead of tracking which
values need to be buffered, instantiating pipeline registers, and
inserting stall logic (on user-defined conditions) is handled
by the Pipeline class, allowing the user code to consist
solely of the actual logic of each stage, delineated by calls to
next_stage().

Besides making the code cleaner, this feature allows the
pipeline to be tested independently of the application logic.
It also helps users develop structures that are easy to reuse
and extend: for example, we added support for forwarding
with a class extension allowing wires in different stages
to be declared as sources and destinations of a forward,
circumventing the normal buffer-creation process for just those
wires; it required minimal code modifications. We use these
classes in the implementation of a five-stage pipelined MIPS
processor.

Complex interwoven structures are especially cumbersome
to specify in many hardware design languages. Python’s
comprehension syntax is particularly useful in such cases.
An implementation of AES decryption, for example, which
performs data unscrambling operations on 8-bit data blocks,
can concisely be performed using comprehensions in just a
few lines of code, as seen in Figure 3 (Bhargav et al.’s
implementation [9] gives us an intuition about its VHDL
equivalent). The 128-bit input vector is partitioned into 8-
bit slices and stored as a list. The elements of this list are
then scrambled using pyrtl.concat() to return one single
WireVector out vector.



Fig. 3. Concise code using comprehensions to implement the data unscram-
bling operation of Advanced Encryption Standard (AES).

IV. PYRTL IR

The goal of PyRTL’s intermediate representation is to
provide a complete set of operations and structures for the
description and manipulation of hardware, without compli-
cating factors. Users that want to use PyRTL to define a
hardware design do not have to bother with this representation
at all. However, knowledge of how our compiler works can be
useful for more complex operations, such as efficient hardware
instrumentation.

A. Circuit Logic & Interconnection

PyRTL provides two built-in data structures, Block and
WireVectors, to describe hardware in a bottom-up way.
A Block is a container composed of primitive operations
and stores both basic logic elements and references to their
interconnection. Each logic element is stored as a LogicNet,
a 4-tuple of:
• A primitive operation represented with a single character.
• A set of any additional parameters that the operation may re-

quire (such as the indexes used by the ‘s’ operator described
below). These parameters cannot change at runtime.

• A tuple of arguments listing the WireVectors connected
as inputs for the particular operation.

• A tuple of destinations, which list the WireVectors
driven as outputs for this particular operation.
Regarding interconnection, WireVectors represent a

bundle of wires that act much like a Python list of 1-bit nets.
Our IR contains five different types of WireVectors: Basic,
Input, Output, Const, and Register. Basic WireVectors con-
nect two or more different logic elements together. Input and
Output WireVectors represent dynamic input and output
signals of the circuit. The Const wires represent fixed values
in the circuit. Register WireVectors store the value from
its source for the next cycle.

B. Basic Operations

The complete list of primitive operations is shown below.
All of the properties described are checked as the circuit is
constructed to certify that the working model of hardware is
always valid. This ensures that user-defined transforms never
violate the IR semantics and create invalid hardware states.
• Logical and arithmetic operations have their standard def-

inition, each taking exactly two arguments and performing
the arithmetic or logical operation specified. This includes
AND, OR, XOR, and unsigned addition, subtraction, and
multiplication (& | ∧ + − ∗). All inputs must be the
same bitwidth. Logical operations produce WireVectors

with as many bits as the input, while + and − produce
(n+ 1) bits, and ∗ produces 2n bits.

• In addition, basic comparison operations are supplied. The =
op checks to see if the bits of the vectors are equal, while <
and > do unsigned arithmetic comparisons. All comparisons
generate a WireVector of length 1.

• The w operator is simply a buffer with no logic function,
while n is an inverting buffer (NOT gate).

• The x operator is a MUX, which takes a single select bit
(WireVector of length 1) and two other WireVectors
of arbitrary but equal length. If the value of the first
argument (select bit) is 0, it selects the second argument;
if it is 1, it selects the third argument.

• The c operator is the concat operator and combines any
number of WireVectors (a0, a1,..., an) into a single
new WireVector with a0 in the MSB and an in the LSB
position.

• The s operator is the selection operator and chooses, based
on the constant parameters specified, a subset of the logic
bits from a wire vector to select. Repeats are accepted.

• The r operator is a register. On positive clock edges, it
simply copies the value from the input to the output of the
register.

• The m operator is a single memory read port, which supports
asynchronous or synchronous reads (acting like combina-
tional logic). Multiple read (and write) ports are possible
on the same memory. The extra parameters field holds a
tuple containing two references: a memory identifier, and a
reference to the memory instance containing this port. Each
read port additionally has one address (an argument) and
one data (a destination).

• The @ operator is a memory write port, supporting syn-
chronous writes (writes are positive edge triggered). As with
read ports, each @ defines only one write. The parameters
are the same as the read port: the mem id, and the memory
instance. Writes have three input arguments: address, data,
and write-enable. Written value changes are not applied until
the following cycle.

A summary of PyRTL’s “core” set of primitives is shown
in Table I.

Primitives Number of Number of Output length
inputs outputs (bits)

{and, or, xor} 2 1 max(len(inputs))
{add, sub} 2 1 max(len(inputs)) + 1)

mult 2 1 2*max(len(inputs))
{lt, gt, equal} 2 1 1
{not, wire} 1 1 len(input))

mux 3 1 max(len(inputs))
concat n 1 sum(len(inputs))

bitselect 1 (+tuple) 1 tuple length
register 1 1 len(input)

memread 1 1 datawidth
memwrite 3 0 -

TABLE I
PYRTL’S CORE SET OF PRIMITIVES.



V. INSTRUMENTATION & TRANSFORMS

Binary instrumentation is a method commonly used by
software engineers to uncover performance bottlenecks and
identify bugs, race conditions, and how information flows
through their system. Given its usefulness, one may ask
how to easily extend the idea of instrumentation to reconfig-
urable logic accelerators. In our experience, Verilog is a poor
language on which to develop an instrumentation platform.
Doing even simple modifications to the netlist involves fragile
custom scripts or lots of manual work. In addition, there is no
common representation for some commonly used objects, such
as block memories; instead, these are often described in vendor
specific formats. For these reasons, we opted to use our cus-
tom intermediate representation to simplify the development
and use of instrumentation tools and support transforms. In
contrast with other HDLs, PyRTL is actually built to enable
direct designer manipulation of the IR. Although this type of
manipulation can affect the original design’s performance, it
opens the door to the rapid evaluation of research questions,
structured optimizations and transforms, static analysis, and
deep debugging.

A. Instrumentation API

Despite the simplicity of PyRTL’s IR, there are still some
complexities involved in making tools that modify the hard-
ware efficiently. Naive implementations of such functionality
often have bad performance when scaling, or bugs appear in
corner cases. To facilitate the creation of instrumentation tools,
we provide a set of easy to use API calls to get commonly
needed information, as well as do common modifications to
the hardware block.

1) Net Connections: According to the PyRTL IR descrip-
tion provided above, LogicNets contain information about a
set of logic elements and the wires that are connected to them.
The wires, though, do not store any information regarding
which nets they are connected to. To alleviate potential pain
points due to this limitation, we provide net connections. This
function returns a dictionary that, for each wire, notes which
net is its source and which nets use the wire. With both
this information and the information contained in the nets
themselves, an instrument is able to efficiently traverse and
transform the circuit.

2) Wire and Logic Replacement: All of the instrumentation
tools involve modifications to the original hardware design.
These actions can range from replacing a logic operation to
adding in extra instrumentation to an existing circuit design.
Adding new logic and wires is trivial; however, modifying
existing logic can become complicated. To address this issue,
our framework provides two API functions to facilitate the
replacement of existing hardware: wire_transform() and
net_transform(). Both of these functions take as input
a function that maps a single wire or net to new wires and
nets (with which the original will be replaced). This allows
the user to focus on the changes that need to be done instead
of their integration to the rest of system.

3) Data-flow Respecting Iterator: While some forms of
instrumentation depend only on an unordered list of circuit
elements, for many others a well-defined data-flow preserving
iteration order can be extremely useful. Without such an order-
ing, many transformations would require extra checks in order
to verify whether required related logic elements were already
created, and generate them if not present. For example, in
the case of a Gate Level Information Flow Tracking (GLIFT)
analysis [10], such a data-flow respecting iterator guarantees
that the tainted wires for a gate’s input operations already exist
and can be referenced when adding the GLIFT tracking for
each logic operation. Our framework supports this feature as
a default iterator on a Block.

B. Transforms

PyRTL supports transforms explicitly through an interface
similar to binary instrumentation toolkits [11], [12], [13]
popular in the software world. The back end of the transform
interface takes care of the hard question of how to replace
wires and nets and stitch the circuit back together. We note that
the majority of transforms can be categorized into two major
types: (a) operation transforms, and (b) connection transforms.

1) Operation Transformer: The operation-transformer is
a higher order function which takes as input a block to
be transformed and a procedure (the transform function),
which will be called on every LogicNet in the system. The
transform function takes as argument a reference to a specific
LogicNet, which it will modify as needed (typically by
adding to it). In addition, the transform function must return
a Boolean, which will let the operation-transformer know if
the original LogicNet should be kept in the Block . (The
identity transform function is simply lambda x: True.)
In this way, it is easy to augment or modify designs on an
operation-by-operation basis. Error coding, information flow
analysis, and cryptographic analysis all follow this pattern.

NAND Synthesis Example:
As an example of the operation transformer, consider the
problem of lowering a design to a subset of functionality. For
example, consider the problem of lowering and/or/not gates
down to a set of nand gates as a simple transformation, shown
in Figure 4.

Fig. 4. Reduction to NAND gates using operation transforms

2) Connection Transformer: Like the operation-
transformer, the connection-transformer is a higher order
function which takes both a block and a transform function
as input. In PyRTL, a WireVector is really a net; it should



have exactly one driver but may have many consumers.
Replacing a specific connection is thus a bit more involved.
The transform function takes as input a WireVector, and
returns a pair of WireVectors, (src,dest), which
corresponds to a new consumer and producer for that
connection “slot”. Thus the identity for this transform is a
function lambda x:(x,x), which says the original wire
should connect the same thing it used to. However, one can
use this transform to replace a connection with arbitrary
logic. This pattern comes up in debugging, re-factoring, and
error modeling [14].

Modeling Transient Errors Example:
Using the transform tools, we can easily treat our hardware
designs as both code and data to perform analysis and exper-
imentation. For example, one such question would be: does
the behavior of a specific design change when in the face of
transient errors? Such a question can be used to determine
where error correction can be most judiciously applied [15],
or to understand the effect of transient errors on application-
level metrics of performance [16]. We can write the transform
very simply on a PyRTL design as shown in Figure 5. For
example, if we want to quantify the effect of some fraction
of potentially vulnerable wires (0.001 in the example), we
simply need to XOR those WireVectors with a source of
run-time transient noise (the transient function generates such
a WireVector on demand). While this gives a very simple
example, it should be easy to see how this could be trivially
extended to support stuck-at faults or just errors on specific
types of connections based on other models.

Fig. 5. Inserting the possibility of transient errors into a randomly chosen set
of connections in a PyRTL design for testing and analysis.

VI. PERFORMANCE ANALYSIS & SOC INTEGRATION

PyRTL’s goal is to provide the community with a program-
ming language and interface able to empower digital hardware
design teaching and research. Therefore, simplicity, usability,
clarity and extensibility are our system’s main overarching
goals.

A. PyRTL’s Performance

PyRTL has been used so far for the design of both simple
and complex hardware systems. The latest example is the Zarf
architecture for recursive functions [17], recently presented by
McMahan et al. Among other sample designs developed with
PyRTL are: a 32-bit five-stage MIPS pipeline, the AES block
cipher algorithm for decryption, and a 32 bit Wallace tree
multiplier.

Table II shows how our system performs in terms of
simulation time when compared to existing popular solutions,

such as Icarus [18] and Mentor Graphics ModelSim, that use
traditional HDLs. Our simulator first generates C code as
well as an interface to Python to pass results back to it. The
compilation of the generated code directly updates the machine
state, removing the overhead of calculating the wire evaluation
order at run time (walking the circuit graph at every step).

Design PyRTL Icarus Verilog ModelSim
MIPS Pipeline 2.641s 1.327s 1.990s

AES 2.695s 55.065s 7.644s
Wallace Tree Multiplier 0.835s 0.654s 0.521s

TABLE II
SIMULATION TIME FOR PYRTL DESIGNS AND COMPARABLE

HAND-CODED VERILOG.

Summarizing these examples, we also observe a significant
reduction in terms of code size when compared to traditional
RTL implementations. For example, we implemented AES
block (128 byte key) using PyRTL in 303 lines of code (LOC),
whereas Strombergson’s [19] (it supports both 128 and 256
byte keys) and Usselmann’s [20] Verilog implementations are
2729 (PyRTL code is 9x denser) and 1405 (PyRTL code
is 4.6x denser) LOC long, respectively. Regarding MIPS
pipeline, PyRTL implementation is 655 LOC, when 936 and
2419 LOCs where required for its Verilog (PyRTL code is
1.42x denser) [21] and VHDL (PyRTL code is 3.7x denser)
[22] implementations.

B. SoC Integration

As a proof-of-concept, we are also using the Xilinx PYNQ
board to demonstrate the quick and easy SoC integration and
on-board evaluation of PyRTL-generated designs.

PYNQ is an open-source project that provides an easy
software interface and framework for Zynq designs. Develop-
ers can use Python (in Jupyter Notebook) to load hardware
libraries and overlays on the programmable logic in order
to speed up software running on the board’s ARM proces-
sor. Although PYNQ makes it easier for embedded systems
designers to exploit the benefits of hardware acceleration in
their applications, it does not provide any new way of creating
these overlays. Considering that one of this paper’s goals is to
demonstrate the prototyping and evaluation of FPGA-based
SoCs using Python, the “under-test” accelerated hardware
designs were developed in PyRTL.

Fig. 6. System architecture.

Figure 6 shows an overview of our system architecture. To
be more specific, an ARM Cortex-9 processor is responsible
for running software, and the loading and control of the



hardware core. Moreover, the use of two dual-ported BRAMs
allows the data transfer between the Programmable System
(Zynq PS) and Programmable Logic (Zynq PL) parts (where
our PyRTL-generated hardware cores are mapped). As can be
seen, AXI-Lite is also used for the transfer of control signals to
our hardware core. Generally, AXI protocol can be considered
as an alternative to the BRAM interface for the data transfer
between the PS and PL parts. Considering that PyRTL exports
Verilog code, the designer should use common practices to
wrap and package the generated hardware IPs before starting
the system development.

The described solution is actually applicable to any Zynq
platform. However, PYNQ allows the use of Python for the
programming of the board’s on-chip processor. This feature
simplifies our hardware’s verification as we do not have to
leave Python to use hardware libraries and overlays. More
specifically, we can just use the same Python validation code
for both software simulation and on-board hardware evalua-
tion. Taking advantage of Python’s multi-threading feature, the
user can run a Python golden reference model of our design
in “parallel” with its hardware equivalent and make cross-
comparisons “locally”. Besides speed, this approach helps the
user verify the communication between PS and PL, especially
in cases where the on-chip processor is offloading part of its
workload to the FPGA.

VII. CONCLUSION

Python has easily become one of the most popular pro-
gramming languages world wide. PyRTL is an open-source
Python-based HDL aiming to enable rapid prototyping, instru-
mentation and analysis of complex digital hardware systems.
Opening the problem of digital design both to a broader
community of “non-experts” and to students earlier in their
engineering training has the potential to help and empower
designers as the traditionally hard line between hardware and
software continues to blur. With this approach, interesting
design patterns can be expressed concisely, and it encourages
the rapid co-generation of tooling and transforms on the
intermediate representation. We describe the underlying mech-
anisms, the opportunities for generalization, and techniques
for instrumenting such designs in PyRTL. The integration
of PyRTL-generated hardware overlays into Xilinx PYNQ
platfrom also shows the potential to design FPGA-based
embedded systems and SoC validation and test environments
using Python. The full system is open source and available for
install via pip.

REFERENCES

[1] C. Wolf, “Yosys manual.”
[2] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,

J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Proceedings of the 49th Annual Design
Automation Conference. ACM, 2012, pp. 1216–1225.

[3] C. Baaij, “Clash: From haskell to hardware,” Master’s thesis, University
of Twente, 2009.

[4] J. Decaluwe, “Myhdl: a python-based hardware description language,”
Linux journal, vol. 2004, no. 127, p. 5, 2004.

[5] D. Lockhart, G. Zibrat, and C. Batten, “Pymtl: A unified framework for
vertically integrated computer architecture research,” in 47th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec 2014, pp. 280–292.

[6] E. Logaras and E. S. Manolakos, “Syspy: using python for processor-
centric soc design,” in Electronics, Circuits, and Systems (ICECS), 2010
17th IEEE International Conference on. IEEE, 2010, pp. 762–765.

[7] A. Mashtizadeh, “Phdl: A python hardware design framework,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2007.

[8] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE transactions
on computers, vol. 100, no. 8, pp. 786–793, 1973.

[9] S. Bhargav, L. Chen, A. Majumdar, and S. Ra-
mudit, “FPGA-based 128-bit AES decryption,” 2008.
[Online]. Available: https://http://www.cs.columbia.edu/ sed-
wards/classes/2008/4840/reports/AES.pdf

[10] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
SIGPLAN Not., vol. 44, no. 3, pp. 109–120, Mar. 2009. [Online].
Available: http://doi.acm.org/10.1145/1508284.1508258

[11] A. Srivastava and A. Eustace, ATOM: A system for building customized
program analysis tools. ACM, 1994, vol. 29, no. 6.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in ACM Sigplan
Notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[13] N. Nethercote, R. Walsh, and J. Fitzhardinge, “Building workload
characterization tools with valgrind,” 2006. [Online]. Available:
http://valgrind.org/docs/iiswc2006.pdf

[14] A. Pellegrini, K. Constantinides, D. Zhang, S. Sudhakar, V. Bertacco,
and T. Austin, “Crashtest: A fast high-fidelity fpga-based resiliency
analysis framework,” in Computer Design, 2008. ICCD 2008. IEEE
International Conference on. IEEE, 2008, pp. 363–370.

[15] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 2003, p. 29.

[16] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain¡ t¿: A first-
order type for uncertain data,” ACM SIGARCH Computer Architecture
News, vol. 42, no. 1, pp. 51–66, 2014.

[17] J. McMahan, M. Christensen, L. Nichols, J. Roesch, S.-Y. Guo,
B. Hardekopf, and T. Sherwood, “An architecture supporting formal and
compositional binary analysis,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’16, 2017.

[18] S. Williams and M. Baxter, “Icarus verilog: Open-source verilog more
than a year later,” Linux J., vol. 2002, no. 99, pp. 3–, Jul. 2002.
[Online]. Available: http://dl.acm.org/citation.cfm?id=513581.513584

[19] J. Strombergson, “Verilog implementation of the symmetric block cipher
AES,” 2017. [Online]. Available: https://github.com/secworks/aes

[20] R. Usselmann, “AES (Rijndael) IP Core,” 2016. [Online]. Available:
https://opencores.org/project,aes core

[21] J. Mahler, “MIPS CPU implemented in Verilog,” 2016. [Online].
Available: https://github.com/jmahler/mips-cpu

[22] E. Lujan, “VHDL Implementation of a basic Pipeline MIPS processor,”
2016. [Online]. Available: https://opencores.org/project,vhdl-pipeline-
mips


