Leakage Power Reduction of Embedded Memories on
FPGAs Through Location Assighment

Yan Meng

Timothy Sherwood

Ryan Kastner

University of California, Santa Barbara
Santa Barbara, CA 93106-9560

{yanmeng,kastner} @ece.ucsb.edu; sherwood @ cs.ucsb.edu

ABSTRACT

Transistor leakage is poised to become the dominant source
of power dissipation in digital systems, and reconfigurable
devices are not immune to this problem. Modern FPGAs
already have a significant amount of memory on the die, and
with each generation the proportion of embedded memory to
logic cells is growing. While assigning high V;, can limit the
leakage power, embedded memory timing is critical to per-
formance and will draw an increasingly significant amount
of leakage current. However, unlike in many processor based
systems, on-chip memory accesses are often fully determinis-
tic and completely under the control of the scheduler. In this
paper we explore a variety of techniques to battle the prob-
lem of leakage in FPGA embedded memories that range in
complexity and effectiveness. Through the addition of sleep
and drowsy modes, controlled by the scheduler, the amount
of leakage power can be reduced by several orders of mag-
nitude. We show how even very simple schemes offer large
amounts of benefit, and that further reductions are possible
through careful leakage-aware data placement.

Categories and Subject Descriptors

B.3.0 MEMORY STRUCTURES]: General; J.6 [Computer-

Aided Engineering]: Computer Aided Design

General Terms

Algorithms, Design, Performance, Experimentation

Keywords

Embedded memory, leakage power, location assignment

1. INTRODUCTION

Transistor leakage is a growing problem in reconfigurable
devices and will soon become the dominant source of power
dissipation. FPGAs are an attractive option when imple-
menting a variety of applications due to their high process-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

N
S

=)
s

80

60

40

2 H
= M o

[
|
[
[
—
-
=

=
=

o

Ratio of Embedded Memory Bits/Logic Cells

XSMIA

xxxxxxx

oL X374 (veer) []
0009 X374 (2661)
1 X30V
FxoUIA
eUIA

W3 3-xeul
0194
yeds
nens
nens

-uepeds
GUIA
@UIA
GUIA
nens

1l suopA

mmmmmm

3 =%

02 X3dV
nx

o

Ir-ut

qx/ueveds
3e-uepeds

aru
Te/e-u

X1 p-Xxoul,

X4 9

XS ¥

Mature/others

-4
@
2

Mainstream

Figure 1: Ratio of embedded memory bits/logic cells
on modern FPGAs. The number in the parentheses
shows the release year of the device. New devices
have 20 to 100 times more embedded memory bits
than logic cells.

ing power, flexibility and non recurring engineering (NRE)
cost. While there is some preliminary work on leakage power
reduction in FPGAs, tackling the leakage problem requires
solutions that consider the growing die area consumed by
embedded memories, a problem which so far has been left
unaddressed. In this paper, we argue that leakage in embed-
ded memories will be of growing importance, and we propose
a leakage-aware design flow with five power saving schemes
to initiate the exploration.

To justify the importance of this research area, we col-
lected information on all Xilinx and Altera FPGA devices [1,
2] over the past 10+ years and grouped them into three cat-
egories — mature, mainstream, and new. Figure 1 plots the
ratio of embedded memory bits to logic cells of the largest
FPGA! for each family of devices. It clearly illustrates the
growing importance of embedded memory as newer devices
have increasingly larger amounts of embedded memory. For
example, there are over 100 times more embedded memory
bits in Virtex-4 SX than logic cells. This points to a press-
ing need for optimizations that target embedded memories
of current and future generations of FPGA architectures.

As FPGA manufacturers move to advanced technology
nodes?, there are significant increases in leakage current due
to the technology scaling of supplied voltage (Vaq), threshold
voltage (Vin), channel length, and gate oxide thickness [10,

!The largest means that the chip has the largest number of
logic cells, or logic elements, with each logic cell containing
a 4-input LUT and a D-type flip-flop.

290nm FPGAs are in production and 65nm is on the horizon.

22]. These changes are making leakage power the dominant
component of total power consumption, and new techniques
are needed to address the leakage power concerns of FPGAs.

While dynamic power is dissipated only when transistors
are switching, leakage power is consumed even if transistors
are idle. Therefore, leakage power is proportional to the
number of transistors [10]. An effective method in reducing
leakage power is to put transistors into low power states.
Since embedded memory blocks occupy an increasingly large
area they are an ideal target for reducing overall power.

A number of low-leakage circuit techniques [13, 22] have
been proposed that save power by putting memory bits into
lower power states. Sleep transistors can be employed to
shut off the power supply to the circuit and to put transis-
tors into a sleep mode. While efficient in saving power, sleep
mode does not retain data, and there is a large penalty to
restore the data if it needs to be reaccessed [8]. Dual/multi-
Vaa and dual/multi-V;, are other popular techniques that
can be effectively used to limit dynamic power and to re-
duce leakage power. In these drowsy [10] schemes, data is
preserved at a lower supply voltage and a small wakeup time
is required to change supply voltage from low to high, which
is necessary to access the data. Since drowsy mode does not
fully turn off transistors, it does not reduce leakage power
as much as sleep mode but preserves data.

In memory leakage power optimization, the above-illustrated

techniques have been employed mainly in caches of micro-
processors [8, 10]. Our research is specifically focused on
studying leakage reduction control methods of FPGA em-
bedded memories. While the central idea behind all leak-
age power saving techniques is to exploit temporal informa-
tion to control the supply voltage of regions of memory, em-
bedded memories have many fundamental differences from
caches. First, FPGAs memory accesses are usually statically
scheduled and cannot easily handle the variable latencies
associated with the predictive methods used by processor
caches. Second, the data in embedded memories are usu-
ally placed statically as opposed to the dynamic reshuffling
that caches try to do. Finally, embedded memories are not
necessarily part of an memory hierarchy with inclusion, and
thus more care must be taken not to lose important data.

In this paper, we explore embedded-memory leakage power
optimization in FPGAs and present an embedded memory
leakage-aware design flow. We further propose a spectrum
of leakage power management schemes for embedded mem-
ories. These schemes extract sleep and drowsy schedules
from scheduled memory accesses and further reduce power
through careful temporal control of, and data placement
in, a given RAM. Through experimental evaluation of the
schemes, we found that by simply turning off unused mem-
ory entries, 36.7% of the leakage power can be saved, while
by carefully placing data in a leakage-aware manner, 94.7%
of the memory leakage power can be eliminated.

The rest of the paper is organized as follows. We formu-
late the leakage power problem of embedded memories in
Section 2. In Section 3, we propose different schemes for
reducing leakage power. We report our experimental results
in Section 4. After reviewing related work in Section 5, we
draw our conclusions in Section 6.

2. PROBLEM FORMULATION

Considering that the embedded memory leakage problem
is very important, and we are unaware of any currently avail-

able design flow that takes into account the location of tvari-
ables within memory to optimize leakage power, our main
contribution is the introduction of two components, path-
traversal and location assignment into the design flow (Fig-
ure 2) to achieve the minimal leakage power consumption
of embedded memory. In our flow, the intermediate rep-
resentation (e.g., CDFG) of an application is first sched-
uled and its memory accesses intervals are then recorded
through the path-traversal component to build an acyclic
interval graph [16]. The interval graph, as exemplified by
a real world example, radix-2 fft (fft-2), in Figure 3, con-
sists of the temporal relationship of live and dead time of
all memory access intervals, with each vertex representing
a live interval and each edge representing a dead interval.
The location assignment component is added to figure out
the best power saving mode on each interval as well as the
best placement of the variables within the memory in order
to achieve the minimal leakage power consumption.

Application CDFG Partition RTL i i Configuration
Specification ¥ Compilation Schedule Log%;hey:i':al > Bitstream

(C.C++,) Bind

Scheduled Optimized

CDFG Mem-Layout
Interval

Path Graph Location
Traversal Assignment

Figure 2: Design flow for leakage power reduction
of embedded memory on FPGAs. Path traversal
and location assignment are introduced components
for deciding the best data layout within embedded
memory to achieve the maximal power saving.

If an embedded memory has been configured based on
the requirement of the bit-width, the number of memory
entries, denoted as N, is known. Through traversing the
scheduled intermediate representation of an application, a
set of memory access intervals I (|I| = n) with precedence
orders can be derived. Then, the memory leakage power
optimizing problem can be formulated as the following.

Problem: Given a memory with NV finite number of mem-
ory entries, and a set of memory access intervals I with tem-
poral precedence orders, find the best layout of the variables
within the memory so that the maximal leakage power sav-
ing can be achieved.

In our study, the leakage power saving problem of vari-
ables assigned in the bounded size (V) embedded memory
is modeled by an Extended Directed Acyclic Graph (Ex-
tended DAG) G(V, E), where V is a set of finite v (v €
{vs,v1,...,Un,vc}) vertices and F is a set of finite e directed
edges. A vertex v (v € V\{vs,ve}) in the DAG indicates
that the variable v is in the embedded memory, and the
weight on the vertex v shows the leakage power saving dur-
ing the live time of the variable, which is denoted by w(v;).
And edge, denoted as e;j, represents the precedence order
between two vertices v; and v;. Associated with the edge
is a nonnegative weight w(e;;) (the weight of an edge may
be zeroed when the two incident vertices are in the same
memory location), showing the leakage power saving during
the time difference between assigning the two vertices into
the memory, or the dead time of the vertex v;. The number
of edges is denoted by e. The source vertex of an edge is
called the parent vertex while the sink vertex is called the
child vertex. A vertex with no parent is called a starting
vertex vs, and a vertex with no child is called an ending

a) for (le=4, k=0; k<2; k++) {
le/=2;
for (j=0;j<le;j++) {

for (ii=j; i<4;i+=2*le) {

tmpi = imagl[i];

b)

imag[3]

imag[2]

imag[1]
imag[0]

imag[i] += imag[i + le];
ti = tmpi - imag[i + le];
imag[i + le] = ...

} 14.67

20 30
Time (cycles)

Figure 3: Problem formulation illustrated with the radix-2 fft example. The radix-2 fft example (a) is
scheduled to extract memory access intervals (b), and an Extended DAG model is built by assigning all the
intervals to N = 10 entries(c). The live intervals are indicated by the gray rectangles in (b) and the gray
vertices in (c), and the dead intervals are depicted by the white space in (b) and edges in (c). A vertex
includes the information of a variable name, its access number n and power saving. An edge shows the
precedence order and the power saving between the adjacent vertices. The length of a path i, defined as
the sum of all the weights on the vertices and edges along the path, indicates the leakage power saving of

memory entry .

vertex ve. There is an edge from the starting vertex vs to
every vertex in V\{vs,ve}, and similarly, there is an edge
from the vertex v; in V\{vs,ve} to the ending vertex ve.
The unused memory spaces, where no variables are assigned
into, are represented as edges from the starting vertex vs to
the ending vertex ve. The length of a path ¢ is the sum of all
the weights on the vertices and edges along the path, which
shows the power saving in memory entry 3.

Then, the memory leakage power problem is to assign n
variables to N memory locations so that the maximal leak-
age power saving can be achieved by covering the n nodes
V\{vs, ve} with N node-disjoint paths such that every node
in V\{vs,ve} is included in exactly one path. Each path
starts from the starting node and ends at the ending node.

According to the definition, the Extended DAG has the
following properties:

Property 1. After path covering, the in-degree and the
out-degree of the vertex v; (v; € V\{vs,ve}) are both equal
to 1 to ensure that the paths have no duplicated vertices
and edges assigned to the same entry.

Property 2. The number of edges from the starting ver-
tex vs to the ending vertex v is equal to N — k, where k is
the number of paths that cover all the n vertices {v1,...,vn}
and the corresponding edges.

The key to discovering the maximal leakage power sav-
ing is to choose the best operating mode on each interval,
either active, drowsy, or sleep mode. This can be fulfilled
by classifying an interval into one of the three categories: if

an interval is very long then it would be beneficial to put
that entry in sleep mode for the duration of that interval;
if an interval is very short, it should be simply put into the
active mode and powered with high-V;4 mode; if an interval
is somewhere in the middle, the drowsy mode would be the
best. For live intervals, only the active or drowsy operating
modes are allowed. It is because that the sleep mode does
not preserves data and once the data is lost, the system
will have to go to off-chip memory to refetch the data back,
which is too costly to get any gain in terms of power.

To classify intervals into those three categories, two inflec-
tion points are introduced in our study: the active-drowsy
inflection point and the drowsy-sleep inflection point. In-
flection points are defined as the interval length where the
operating mode changes. The active-drowsy inflection point
is the point between active and drowsy modes. It can be
calculated as the sum of the durations within which the
voltage changes either from Vyq to Vaa,,,, or from Vg, to
Vaa. The drowsy-sleep inflection point is the point between
drowsy and sleep modes. It is derived as the access interval
length when the sleep and the drowsy modes consume the
same amount of energy. If the interval is of a length less than
the inflection point then drowsy mode would be optimal. If
it is greater than the inflection point then sleep mode would
be optimal. It has been proved that with perfect knowledge
of the lengths of all intervals, the optimal leakage power sav-
ing can be achieved by applying the proper operating mode
on each interval [17, 20].

3. EMBEDDED MEMORY LEAKAGE POWER

REDUCTION SCHEMES

In this section, we will explore different leakage reduc-
tion schemes step-by-step to understand how the maximal
leakage power saving can be achieved through carefully as-
signing the variables into memory entries. We start with
keeping every entry active as our baseline, and move for-
ward to the schemes that have different data layouts (see
Figure 4).

Full-active. It assigns one variable per memory entry.
All memory entries are kept active, and there is no leak-
age power saving.

Used-active. Similar to full-active, it assigns one variable
per memory entry and powers on the memory entries that
are used. But it turns off the rest of the entries that are not
used. The power saving is the percentage of entries that are
unused.

Min-entry. It assigns all variables to the minimal number
of memory entries. Those entries that have been used are
powered on and the rest of the unused entries are turned off.
The power saving is also the percentage of the entries that
are unused.

Sleep-dead. Similar to min-entry, it uses the minimal num-
ber of entries. But it also has power savings on the intervals
that are dead. So the total power saving consists of two
parts: savings in unused entries and savings in dead inter-
vals of the used entries.

Drowsy-long. Similar to Sleep-dead, it uses the minimal
number of entries and saves power on the dead intervals.
But it also saves power in live intervals using the drowsy
technique. So the total power saving consists of three parts:
savings in unused entries, savings in dead intervals, and sav-
ings in the live intervals of the used entries.

Path-place. Different from the above schemes that use the
least number of entries, path-place picks the N path-covers
that can lead to the maximal power saving.

Figure 4 illustrates the above-mentioned schemes. From
the figure, we can see that when the precedence orders of all
the live and dead intervals are taken into account, different
data layouts result in different power savings.

The path-place algorithm (Table 1) is a greedy approach
that can find the N paths to achieve the maximal leakage
power saving. It works by first sorting all the vertices in
a topological order. Then a vertex v; (v; € V\{vs,ve}) is
picked each time in the sorted list to calculate the maximal
power saving from the starting vertex vs up to v;, or simply
the length of the longest path reaching it. Note that the
edges from the starting vertex vs to the ending vertex wve
are the edges with the lowest priority to pick. In the end,
the total power saving is computed as the sum of three com-
ponents: the weights of all the final level vertices that have
no child except the ending vertex v, the weights of their
edges that connect to ve, and the weights of the (N — k)
edges from the starting vertex vs to the ending vertex v, if
k is less than N. The path(v;) function is used to calculate
the path ID of the vertex v;. Each time it sets the path ID
of the vertex v; as the path ID of its parent that can lead to
the largest power saving of the vertex v;. The complexity of
the algorithm is O((n + €) * N).

While employing leakage control techniques at the entry
level of embedded memory may cause the controller over-
head, it decreases the cooling cost in package and increases

ALGORITHM PATH_PLACE
Input(G, N)
Output(totalSaving, path)
//G: the Extended DAG; N: the number of entries
//path: the path for each vertex

Begin

1 Construct a list of all vertices V' in topological order,
call it Toplist

2 for each vertex v; € V\{vs,ve} in Toplist do

3 max =0

4 for each parent v, € V of v; do

5 if (saving_level(vp) + w(v;) + w(ep;) > mazx) then

6 max = saving-level(vp) + w(v;) + w(ep;)

7 id = path(vp)

8 endif

9 endfor

10 path(v;) = id

11 saving-level(v;) = max

12 endfor

13 totalSaving =0

15 for each parent v, € V of ve do

16 totalSaving += saving_level(vp) + w(epe)

17 endfor

Table 1: The path-place algorithm.

circuit reliability [22]. Moreover, adding the components of
path-traversal and location assignment does not affect cur-
rent design flows for placement and routing in any way. It
only gains additionally leakage power saving on embedded
memory, which is a dominant portion on FPGAs.

4. EXPERIMENTS

In section 3, we have discussed different schemes for re-
ducing leakage power of embedded memory. In this section,
we report our experimental results gathered from several
DSP applications [5]: dft, idft, radiz-2 fft ([ft-2), radiz-4
It (fft-4), filter, and mp, a real design for efficient wireless
channel estimation [19]. We first derive inflection points for
different configurations of the memory block. We then show
the comparison results of applying different schemes on dif-
ferent applications.

Due to the lack of the detailed information of commer-
cial embedded memories, in our study we use configura-
tion schemes similar to dedicated blocks of on-chip memory,
Block SelectRAM [2], of Xilinx Virtex family devices. That
is to say, our targeted embedded memory is a true dual-
read/write port synchronous RAM with 18 Kb memory bits.
Each port can be independently configured as a read/write
port, a read port, or a write port. Each port can also be
configured to have different bit-widths: 1 bit, 2 bits, 4 bits, 9
bits (including 1 parity bit), 18 bits (including 2 parity bits),
and 36 bits (including 4 parity bits). A read or a write op-
eration requires only one clock edge. Both ports can read
the same memory cell simultaneously, but can not write to
the same memory cell at the same time. Therefore, there is
no write conflict. In our experiments, the bit-width of each
entry is set to be 18 bits, which is reasonable in those DSP
applications. So the number of entries N is equal to 1K.

4.1 Deriving Inflection Points

The active-drowsy and drowsy-sleep inflection points are
used to categorize all the live and dead access intervals.
They are also used to select the best operating mode on
each interval. In our study, we use the parameters in [20]

full-active used-active min-entry

sleep-dead

drowsy-long path-place

@ <« live interval
i . ,' > [active mode
5 — [drowsy mode
© > I » I | I sleep mode
= | =S (G TSRS |
0 t 0 t 0 t 0 t

0 time— t

Figure 4: Different schemes to save leakage power of embedded memories on FPGAs. Full-active and used-
active has one variable per entry. Min-entry, sleep-dead, and drowsy-long use the minimal number of entries,
and apply power saving modes on unused entries, dead, and live intervals incrementally. Path-place layouts
variables with leakage awareness, and uses power savings on all unused entries, dead, and live intervals.

to calculate inflection points, and assume that 3 cycles is
needed to change the supply voltage from high to low and
vice versa, and 30 cycles from high to off, and 3 cycles from
off to high. So the active-drowsy inflection point can be
calculated as 6 cycles. When calculating the drowsy-sleep
inflection point, we simulated our target memory using mod-
ified eCACTI [18] to get both dynamic power and leakage
power consumptions, and derived the point where drowsy
and sleep modes consume the same amount of energy [20].

—®—2 bits

—*— 9 bits —*— 18 bits

—— 1 bit
‘ —e— 36 bits

—a— 4 bits ‘

120

100 | '\

80

60 | \.
40 T

20

Inflection point (Cycles)

130 100 70
Technology(nm)

Figure 5: The drowsy-sleep inflection points are de-
rived for different bit-width configurations of the
embedded memory.

Figure 5 shows the inflection points for different config-
urations under different technologies. From the figure, we
can see that under the same technology, drowsy-sleep in-
flection points for different configurations are the same; and
when the technology scales down from 130nm to 70nm, the
drowsy-sleep inflection point decreases from 102 to 43 cy-
cles. Since 70nm is the most advanced technology available
in eCACTI, and features the next generation FPGA design
technology, we used the 70nm technology and picked 43 cy-
cles as the drowsy-sleep inflection point in our study. Note
that we also varied the drowsy-sleep inflection point from 43
to 640 cycles, and found the total leakage power savings are
about the same. It is because that intervals that contribute
to most of the saving are very long, and small changes of the
drowsy-sleep inflection point will not limit the power saving
from those long intervals.

4.2 Comparing Different Schemes

‘We have proposed five different schemes to reduce memory
leakage power: used-active, min-entry, sleep-dead, drowsy-
long and path-place. We now study the power savings of
the five schemes are on DSP applications. To assign the

variables to the minimal number of entries (for min-entry,
sleep-dead, and drowsy-long), the left-edge algorithm [11]
was implemented in our experiments, which colors the graph
in O(nlog(n)) time. To evaluate the different schemes we
compared the five schemes against the full-active scheme,
which is used as the baseline and has no power saving. Fig-
ure 6 shows the comparison results for all the applications.
From the figure, we can make the following observations:

(1). By simply putting a single interval per entry and turn-
ing off the rest, as used-active does, 36.7% of leakage power
can be saved on-average.

(2). If the minimal number of entries are used, the leak-
age power savings is 75.6%, 77.3% and 86.0% for min-entry,
sleep-dead, and drowsy-long, respectively, and the savings
are increasing because more intervals are put into power
saving modes. The reason that min-entry does well is that
it packs the data very tightly (see Figure 4), and more en-
tries that could be completely turned off to save power are
left unused. Moreover, due to the effect of compact pack-
ing, the dead intervals that are in the used entries are very
short, which leaves very little space for sleep-dead to save
power. Consequently, sleep dead performs at a similar level
in efficiency as min-entry.

(3). Among all, path-place achieves the best leakage power
saving, 94.7%, which is about 8.7% better than the drowsy-
long scheme. It is because path-place layouts the data in
a way that the sleep mode can be explored to the largest
extent on all the intervals, and among all three operating
modes: active, drowsy, and sleep, the sleep mode can pro-
vide the maximal power saving.

(4). In terms of best schemes, both min-entry and path-
place are favorable. Min-entry is very simple but effective.
It only needs to use sleep techniques to turn off the unused
entries after interval packing and can achieve a good amount
of power saving. By contrast, path-place is very effective but
a bit more costly in terms of running time to discover the
best layout. If drowsy techniques are incorporated along
with sleep techniques, path-place could accomplish the best
leakage power saving.

(5). For filter, the simple used-active scheme does not
save too much power. It is because that different from other
applications, the number of its variables is close to the total
number of entries, and only few entries that are unused can
be put into sleep to save power. But when the variables are
layout carefully, significant power saving can be achieved, as
path-place does.

These provide us the answer that the layout of the data
within memory entries has a significant impact on the leak-
age power optimization. Moreover, with available circuit
techniques, careful placement of intervals within memory
can reduce leakage power by a large magnitude.

O Full-active O Used-active B Min-entry
Sleep-dead Drowsy-long M Path-place

z,100%

g

& 80%

o}

Z 60%

&

S 40%

=)

s

§ 20%

53

& 0%

idft dft fft-4 fft-2 filter mp average

Figure 6: Comparison of the leakage power savings
for different schemes.

5. RELATED WORK

We have reviewed low-leakage circuit techniques in Sec-
tion 1 for optimizing leakage power of ASICs and micropro-
cessors [6, 7, 8, 9, 10, 12, 22]. Now we see what are the dif-
ferent techniques that have been proposed to reduce leakage
power for FPGAs, which has been in focus only recently [4,
3, 15, 23, 24]. Shang et al. [23] analyzed dynamic power con-
sumption in Virtex-II FPGA family based on measurement
and simulation. Tuan and Lai studied the leakage power
of Xilinx architecture, and Li et al [14] proposed fpgaEVA-
LP for power efficiency analysis of LUT based FPGA ar-
chitectures. Several techniques for reducing leakage power
on FPGAs have been proposed. Gayasen et al. [3] stud-
ied region constraint placement to disable unused portions
by employing sleep transistors. Anderson et al. [4] consid-
ered selecting polarities for signals at the inputs of LUTSs so
they spend the majority of time in low leakage states. Li
et al. [15] proposed to use pre-defined dual-Vy4 and dual-V;
fabrics to reduce FPGA power. Rahman et al. [21] evaluated
the trade-offs of different low-leakage design techniques for
FPGAs. While there has been work in low power FPGAs
and other work in architectural-level policies for controlling
memory leakage, we believe this to be the first paper to
address embedded memory leakage power in FPGAs.

6. CONCLUSIONS

In this paper we argue that embedded memory leakage
power will be a large and growing concern for FPGAs and
that design flows can be effective in reducing this power.
We further present a leakage-aware design flow and pro-
posed five schemes for reducing leakage power of embedded
memory on FPGAs. The new flow takes into account the
leakage-aware location assignment of variables within mem-
ory. The five proposed schemes employ sleep and drowsy
techniques, and exploit the live and dead interval informa-
tion of memory accesses to save power. They function by
choosing the best operating mode, active, drowsy or sleep,
on each interval. Through the experimental evaluation, we
found that the simple scheme like used-active can provide
a good amount of benefits, and by carefully placing data
into memory entries, a significant amount of leakage power
saving can be further achieved.

7. ACKNOWLEDGMENT

This work was supported by National Science Foundation
Grants CNS-0411321 and CNS-0524771.

8 REFERENCES

[1] Altera press releases and device data sheets.
http://www.altera.com.

[2] Xilinx press releases and device data sheets.
http://www.xilinx.com.

[3] A.Gayasen, Y.Tsai, N. Vijaykrishnan, M. Kandemir, M.J.
Irwin, and T. Tuan. Reducing leakage energy in fpgas using
region-constrained placement. In FPGA, 2004.

[4] J.H. Anderson, F.N. Najm, and T. Tuan. Active leakage
power optimization for fpgas. In FPGA, Monterey, CA,
2004.

(5] P. M. Embree and B. Kimble. C' Language Algorithms for
Digital Signal Processing. Prentice Hall, Englewood Cliffs,
1991.

(6] P. Gupta, A. B. Kahng, P. Sharma, and D. Sylvester.
Selective gate-length biasing for cost-effective runtime
leakage control. In DAC, 2004.

[7] M. Kandemir, M. J. Irwin, G. Chen, and I. Kolcu. Banked
scratch-pad memory management for reducing leakage
energy consumption. In JCCAD, San Jose, CA, 2004.

(8] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
exploiting generational behavior to reduce cache leakage
power. In the 28th ISCA, G6teborg, Sweden, June 2001.

[9] K. S. Khouri and N. K. Jha. Leakage power analysis and
reduction during behavioral synthesis. IEEE Trans. on
VLSI, 10(6), Dec. 2002.

[10] N. Kim, K. Flautner, D. Blaauw, and T. Mudge. Circuit
and microarchitectural techniques for reducing cache
leakage power. IEEE Trans. VLSI, 12(2):167-184, Feb.
2004.

[11] F. J. Kurdahi and A. C. Parker. Real: A program for
register allocation. In DAC, 1987.

[12] E. Kusse and J. Rabaey. Low-energy embedded fpga
structures. In ISLPED, 1998.

[13] D. Lee, D. Blaauw, and D. Sylvester. Gate oxide leakage
current analysis and reduction for VLSI circuits. I[EEE
Trans. on VLSI, 12(2), Feb. 2004.

[14] F. Li and L. He. Power modeling and characteristics of field
programmable gate arrays. IEEE Trans. on
Computer-aided design, 24(11):1712-1724, Nov. 2005.

[15] F. Li, Y. Lin, L. He, and J. Cong. Low-power fpga using
pre-defined dual-vdd/dual-vt fabrics. In FPGA, Monterey,
CA, 2004.

[16] Y. D. Liang and G. K. Manacher. An O(nlogn) algorithm
for finding a minimal path cover in circular-arc graph. In
ACM Conference on Computer Science, pages 390-397,
1993.

[17] J. Liu and P. Chou. Optimizing mode transition sequences
in idle intervals for component-level and system-level
energy minimization. In ICCAD, 2004.

[18] M. Mamidipaka and N. Dutt. ecacti: An enhanced power
estimation model for on-chip caches. Technical Report
Tech. Report TR-04-28, UC. Irvine, Sept. 2004.

[19] Y. Meng, A. Brown, R. Iltis, T. Sherwood, H. Lee, and
R. Kastner. Mp core: Algorithm and design techniques for
efficient channel estimation in wireless applications. In
DAC, 2005.

[20] Y. Meng, T. Sherwood, and R. Kastner. On the limits of
leakage power reduction in caches. In HPCA, 2005.

[21] A. Rahman and V. Polavarapuv. Evaluation of low-leakage
design techniques for field programmable gate arrays. In
FPGA, 2004.

[22] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand.
Leakage current mechanisms and leakage reduction
techniques in deep-submicrometer CMOS circuits.
Proceedings of the IEEE, 91(2), Feb. 2003.

[23] L. Shang, A. S. Kaviani, and K. Bathala. Dynamic power
consumption in Virtex-II FPGA family. In FPGA, 2002.

[24] T. Tuan and B. Lai. Leakage power analysis of a 90nm
FPGA. In CICC, 2003.

