
A 4-mm2 180-nm-CMOS 15-Giga-
Cell-Updates-per-Second DNA Sequence Alignment

Engine Based on Asynchronous Race Conditions
Advait Madhavan

Electrical and
Computer Engineering

UC Banta Barbara
advait@ece.ucsb.edu

Timothy Sherwood
Computer Science
UC Banta Barbara

sherwood@cs.ucsb.edu

Dmitri Strukov
Electrical and

Computer Engineering
UC Banta Barbara

strukov@ece.ucsb.edu

Abstract—We have fabricated and successfully tested, for the
first time, a prototype chip of a Race Logic computing paradigm,
which makes positive use of race conditions for accelerating a
broad class of optimization problems, such as ones solved by
dynamic programming algorithms. In Race Logic, information is
encoded in signal propagation delay, rather than conventional
logic levels, and the result of the computation is observed
from relative timing differences between injected signals, i.e. the
outcome of races. The 2×2 mm2 chip, fabricated in standard 180-
nm CMOS technology, is designed to perform real-world DNA
sequence alignment. Measurement results on typical benchmark
data show 15 GCUPS sustained throughput at 70 mW power
consumption, with only ∼ 15 mW spent for actual computation.
These numbers compare very favorably with the state-of-the-art
implementations.

I. INTRODUCTION
As we enter into a leakage limited regime, faced with

transistor utilization issues, the proliferation of hardware accel-
erators seems inevitable [2], [9]. In order to extract maximum
performance and energy efficiency, researchers have begun
questioning fundamental assumptions of traditional designs
such as precision and binary encoding. Guided by error tolerant
applications and human perceptual imperfections, approximate
circuits are coming to the fore, in which the digital domain is
often abandoned to improve energy efficiency [4], [12], [13].
In this paper, we present a prototype of an architecture, that
seems to lie somewhere between traditional digital and analog
realms. Though all wires are driven to a ”1” or ”0” like in
digital systems, information is encoded in the delay of the
signal, which allows a continuum of values to be encoded onto
a single wire. Computation is then performed by observing
the relative timing differences between injected signals in a
reconfigurable circuit. Such a temporal information represen-
tation makes some arithmetic operations, such as additions
and comparisons, trivial to implement, allowing for significant
performance and energy gains.

The race formulation is especially well suited to solve
dynamic-programming-like problems. Though a whole host of
such problems exist [6], we chose the well studied problem of
DNA sequence alignment [1] such that a fair comparison can
be made. With the field of personalized medicine setting the
goal of a complete genome sequencing at a $1000, sequence
alignment has recently seen considerable research activity with
a number of general purpose [3], GPU [5], as well as ASIC
[11] implementations. In contrast to these methods, we present
for the first time a prototype of a fully custom 4 mm2 DNA
sequence alignment engine fabricated in 0.18 µm process, that
makes positive use of asynchronous race conditions.

II. BACKGROUND
The core idea behind race logic is to encode information

in a timing delay, which regardless of its implementation,
simplifies certain computation primitives [7]. For example,
in the case of addition, simply stacking two delay elements
one after another causes the resultant delay to be a sum of
the two. Similarly, in the case of comparisons, the smallest
(or largest) magnitude between multiple data values can be
easily computed by arranging the corresponding delay values
in parallel and selecting the first arriving (or last arriving)
signal. Figure 1a shows the hardware implementations of
simple addition and comparison operations with simple CMOS
primitives, under the basic assumption that the event that is
being delayed is a rising edge. It can be seen that selecting
the first (or last) arriving rising edge can be implemented with
OR (or AND) gates respectively. The simple ADD, MIN and
MAX primitives are not to be underestimated, as when chained
effectively, the can prove to be very powerful operations.

Fig. 1. (a) Race Logic basics showing unit delays, addition, and comparison
techniques. (b) Edit graphs with two highlighted paths representative of (c)
nominal case and (d) worst case alignments. Best case alignment would involve
only the major diagonal and is not representative of such a computation.

To understand how these simple primitives can be chained
effectively, we look to examples of shortest paths on directed
acyclic graphs (DAGs), e.g. as shown in Figure 1b, which are
known to be good representations of dynamic programming
algorithms. Starting from the root nodes, the shortest path
to the next node is computed by performing addition and
comparison operations at that node. Conventional software
methods implement this algorithm by stepping through nodes
and following graph dependencies one computation step at a
time, while GPU and FPGA based techniques aid in speedup
by concurrently compute the scores of independent nodes.

978-1-5090-5191-5/17/$31.00@2017 IEEE

ASIC implementations use either systolic arrays or heuris-
tic SRAM-based processing elements with clever encoding
schemes for density and performance.

Contrary to such implementations, the delay encoding ex-
plicitly constructs the graphical dependency chain in hardware
by replacing edges with delay elements and nodes with OR
gates respectively. A counter is used to calculate the total time
taken to traverse the graph which tells us the length of the
optimal path.

To highlight the full potential of Race Logic, we chose the
well studied problem of DNA sequence alignment, in which
the objective is to measure the similarity between two given
DNA sequences (also called patterns or strings) based on a
given metric, known as the edit distance. String similarity is a
typical bottleneck operation, whether it is in reference-assisted
or de-novo DNA sequencing and is performed billions of times
in the sequencing of a whole human genome [1]. Not only
does his problem map very effectively to a shortest path on a
graph, which can be implemented in a reconfigurable way for
different sequences, the resultant graph has a regular structure
with the edges weights having a dynamic range of about
an order of magnitude. This edit graph is a two-dimensional
representation of all the possible alignments between the two
input sequences as shown in Fig. 1b. Any specific alignment
is just a path in this graph where every edge corresponds to an
edit operation (vertical arrows = insertions, horizontal arrows
= deletions and diagonal arrows = matches or mismatches). To
select the alignment with the maximum number of matches,
a scoring function (or matrix) is introduced, which penalizes
mismatches with a higher score and a match with a lower
one. Determining the “best” alignment is therefore a matter of
finding the shortest path in the graph. Typical score matrices
can be written as as [1, 2, 1] [1, 4, 3] etc., where the scores
represent [match, mismatch, in-dels], respectively.

III. RACE LOGIC IMPLEMENTATION
In order to be representative of the state of the art, we

chose a problem size of 50 which lies within the nominal range
of NGS sequence data. Using two 50-symbol long strings, a
reconfigurable edit graph structure, similar to the one shown
in Fig. 1b, is implemented in which weights of the match
and mismatch conditions are based on the real score matrices
from Ref. [1]. Though the structure of the graph looks the
same for all query DNA sequence input, the magnitudes of
the particular edge weights (i.e. values of delays) are governed
only the by the specific input pair of sequences. For each new
pair of sequences, time spent in navigating the resultant graph
is measured using a clock, and is representative of the quality
of alignment/similarity between the respective sequences. The
choice of delay element is also an important one as previous
studies have shown that synchronous delay elements are very
area expensive and incur cubic energy scaling with problem
size[7]. Current starved inverter based asynchronous delay
elements have been proposed as a compact, fast and energy
efficient alternative [8]. The main result of this paper is that
we show that Race Logic with 10,000 delay elements can be
designed in a robust and variation-tolerant manner.

A. Race Logic Array and Bias Networks
The 2,500 cell array consists of repetitions of a funda-

mental unit cell whose tileable structure is shown in Fig. 2b.
Each cell implements 4 delay elements, XOR based matching

circuitry and a symmetric resettable OR gate at the input. The
timing on the array reset circuitry is adjusted externally to
ensure that all delay elements have been reset. Each delay
element is constructed out of a current starved inverter with its
output split by the current control transistor for better matching
[10], followed by a regular minimum size inverter to sharpen
the edge (Fig. 2c). Since only rising edges go through the
delay element, the current starved inverter only uses NMOS
bias and cascode control nodes. Each cell receives 2-bit symbol
input from the nucleotides being compared, to determine which
delays to choose based on match and mismatch conditions, and
rising edge input from its top, left and diagonal neighbours.
The symbol input goes into XOR-based matching circuitry
which chooses a diagonal delay element through a pass-
gate MUX to make sure that both paths have similar delay
characteristics. Dummy pass-gates were also added in off
diagonal paths to ensure similar delay across all delay paths.

In the design of this first prototype, functional correctness
and accuracy in the face of process variations and switch-
ing/coupling noise was a major concern. Intra-die process
variations by virtue of large array size (∼ 1 mm a side) as well
as switching noise from high speed switching activity could
both negatively affect correctness of the array with injected
noise being data dependant and hence more important to get
rid of. To address these issues, we proposed heavy decoupling
of bias nodes with MIM-caps to keep silicon area down to
a minimum, as well as partitioning of the array into regions
of 10 × 10 with their own local bias networks that allow for
decoupling of switching activity from one part of the array
to another as shown in Figure 3c. The local biases networks
(Fig. 3b) are generated by a set of global bias networks that
distribute timing information across the entire array. To ensure
that the generated currents are variable, yet tolerant to process
and supply variations, the global bias network uses an Op-Amp
to pin a fixed voltage across a precision potentiometer.

B. I/O system, Clock and Control Logic
The I/O system consists of a binary coded SPI interface

for sequence inputs with the following encoding for DNA
nucleotides: A = “00”, G = “01”, C = “10” and D = “11”.
The system can load up to four 50-symbol long sequences
at once and run them in either patterned or burst mode. The
patterned mode allows for checking functional correctness of
each pattern against a reference, while the burst mode repeats
one sequence pair alignment at maximum allowable throughput
of the system until the user initiates stoppage. The idea here
is to allow enough time for correct measurement of power
through the external system.

The function of the clock generator block (Fig. 2a), is to
generate an output clock to count the time period of the critical
path race in unit delay steps. Since the exact unit delay is not
known post fabrication, we directly vary the supply voltage of
a 11-stage ring oscillator, to generate large dynamic range (700
ps to 15 ns), controllable, and calibratable clock. A differential
amplifier based level shifter was used to scale the clock signal,
which is then buffered out to the rest of the circuit, as well
as 12 bit pre-scaled counter that divides it down for off-chip
measurement.

The function of the control logic block is to take all
the elements discussed in this section and create a simple
state machine based interface that can be used externally for
performance and power measurement. The state machine of

Fig. 2. (a) Organization of the implemented chip. CS D1, D2 and OD represent current control for diagonal match, diagonal mismatch, and off diagonal delays,
respectively, while LCS represents the local current sources. (b) Unit cell of the Race Logic array and gate level implementation of its (c) symmetric OR gate,
and (d) delay element. The implemented delay element also has a cascode control node (not shown on panel d).

Fig. 3. (a) Micrograph of the Race Logic chip with its major functional units highlighted. The Race Logic array is an explicit implementation of the edit
graph, and is reconfigured every computation based on the input patterns. (b) and (c) show a 10 × 10 race array with MIM-caps and local bias network. The
local bias networks receive their control input from the global bias network as shown in Fig. 2a. Panels (d) and (e) show the circuit and layout of the unit cell
which is tiled to construct the whole array, while panels (f) and (g) show symmetric OR gate design and delay element.

such a control logic block is responsible for interfacing with
the array, and counter blocks, starting the race computation
(array and counter), detecting the end of the race resetting the
array and counter.

IV. RESULTS AND DISCUSSION
Characterization of the delay elements revealed a minimum

unit delay of approx 2 ns, with about an order of magnitude
of control over the dynamic range through the precision
potentiometer. By using specific input sequences, diagonal and
off diagonal paths can be specifically isolated allowing reliable
construction of score matrices from NCBI blast benchmark
(such as, e.g. [1, 2, 1] [1, 4, 3] [1, 6, 4] [1, 10, 6]).

To test the functionality of the designed circuit, we ran
similarity measures on real DNA sequence data from human

genome by simulating the process of its shotgun sequencing.
In particular, a section from chromosome 1 was partitioned
into 50-symbol long sequences taken at random places, with
a coverage of 15. These “shotgunned strands” are compared
against each other, both in simulation as well as our imple-
mentation. The results for score matrix [1, 4, 3] for a set of
100 sequence samples is shown in Figure 4. The measured
score closely tracks the expected one with about 2.9% error
due to process, mismatch and noise based variations, while
the average and maximum sequencing throughput are ∼ 1010

/ ∼ 2.5 × 1010 cell-updates-per-second (CUPS), respectively.
For the representative threshold value of 90 [8], the throughput
is close to ∼ 1.5× 1010 CUPS.

In order to understand the power distribution of the array,

Fig. 4. Expected versus measured alignment scores for the case when multiple
sequences are compared against a reference sequence.

we separated the power domains such that the array bias and
switching power could be measured independently of each
other. Using specific input we isolated the best case and worst
case array paths and compared energy numbers for various
score matrices (Table I). For very large delay values, bias
currents are very small and hence idle power is in the low mWs
range. When the match condition is isolated for maximum
speed, 25 local biases are simultaneously activated causing
an increase in bias power. Switching power is, however,
minimally affected as only the main diagonal is switching. For
the case of [1, inf, 1] score matrix, the bias power is almost
doubled as expected, but both best and worst case power
remains the same. Careful analysis reveals that though the best
case alignment takes half the time as the worst case one, only
the upper left triangle of the array switches, whereas in the
worst case the whole array switches. Hence both cases have
similar power. Looking at more representative score matrices
(bottom two rows of the table) we see that at maximum
throughput the power of the array is about 70 mW.

TABLE I. MEASURED POWER NUMBERS FOR BEST AND WORST CASE
ALIGNMENTS FOR VARIOUS SCORE MATRICES.

The performance compares very favorably with those of
state-of-the-art implementations [5], [11], [3] (Table II). (The
table only shows results for comparable alignment algorithms,
and, e.g., does not include recent work with higher reported
throughput due to much simpler, dynamic-range-of-2 score
matrix.) Clearly, the throughput could be easily increased
for DNA sequence alignment problem by processing multiple
strings in parallel in different arrays, and will roughly scale
linearly with chip area for Race Logic implementation. A crude
estimates show that the Race Logic implementation based on
the same process and comparable chip area could have at
least two orders of magnitude higher throughput at similar
power consumption as compared to GPU implementations [5].
Moreover, threshold-based strategies, discussed in Refs. [8],
[1], can be used to further improve Race Logic throughput and
power consumption. It should be noted, that though this work

focus on accelerating a particular task, we expect that Race
Logic would be useful for variety of other applications which
heavily rely on dynamic programming algorithms, such as
protein alignment, image seam carving, dynamic time warping,
stereo correspondence [6].

TABLE II. COMPARISON OF THIS WORK WITH RECENT ASIC, GPU
AND SIMD IMPLEMENTATIONS.

V. CONCLUSION
This paper presents a functional prototype of a DNA

sequence alignment engine based on radically different com-
puting paradigm - asynchronous Race Logic to perform high
throughout and low energy computation. A 4 mm2 prototype
chip, fabricated in 180 nm CMOS process, allows for 15×109

CUPS throughput at 70 mW power when running practical
DNA sequence alignment tasks, which compares very favor-
ably with state-of-the-art results.

ACKNOWLEDGMENT
The authors would like to thank Melika Payvand for her

help in chip layout and tapeout.

REFERENCES
[1] R. Ekblom and J. B. Wolf. A field guide to whole-genome sequencing,

assembly and annotation. Evolutionary applications, 7(9):1026–1042,
2014.

[2] H. Esmaeilzadeh, E. Blem, et al. Dark silicon and the end of multicore
scaling. In Proc. ISCA’11, pages 365–376, 2011.

[3] M. Farrar. Striped smith–waterman speeds database searches six times
over other simd implementations. Bioinformatics, 23(2):156–161, 2007.

[4] Y. Huang, N. Guo, M. Seok, Y. Tsividis, and S. Sethumadhavan.
Evaluation of an analog accelerator for linear algebra. In Proc. ISCA’16,
pages 570–582, 2016.

[5] Y. Liu, A. Wirawan, and B. Schmidt. Cudasw++ 3.0: accelerating
smith-waterman protein database search by coupling cpu and gpu simd
instructions. BMC bioinformatics, 14(1):1, 2013.

[6] A. Madhavan. Abusing hardware race conditions to perform useful
computation. PhD thesis, UC Santa Barbara, 2016.

[7] A. Madhavan, T. Sherwood, and D. Strukov. Race logic: A hardware
acceleration for dynamic programming algorithms. In Proc. ISCA’14,
pages 517–528. IEEE, 2014.

[8] A. Madhavan, T. Sherwood, and D. Strukov. Energy efficient compu-
tation with asynchronous races. In Proc. DAC’16, page 108, 2016.

[9] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor. Asic clouds:
Specializing the datacenter. In Proc. ISCA’16, pages 178–190, 2016.

[10] P. Mroszczyk and P. Dudek. Tunable CMOS delay gate with reduced
impact of fabrication mismatch on timing parameters. In Proc. NEW-
CAS’13, pages 1–4, 2013.

[11] N. Neves, N. Sebastião, D. Matos, P. Tomás, P. Flores, and N. Roma.
Multicore simd asip for next-generation sequencing and alignment
biochip platforms. IEEE Trans. VLSI, 23(7):1287–1300, 2015.

[12] R. St Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger. General-purpose code acceleration
with limited-precision analog computation. ACM SIGARCH Computer
Architecture News, 42(3):505–516, 2014.

[13] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan.
Approximate computing and the quest for computing efficiency. In
Proc. DAC’15, page 120, 2015.

