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Abstract. The advantages of virtualization, including the ability to
migrate, schedule, and manage software processes, continues to drive
the demand for hardware and software support. However, the packag-
ing of software state required by virtualization is in direct conflict with
the trend toward accelerator-rich architectures where state is distributed
between the processor and a set of heterogeneous devices — a problem
that is particularly acute in the mobile SoC market. Virtualizing such
systems requires that the VMM explicitly manage the internal state of
all of the accelerators over which a process’s computation may be spread.
Public-key crypto engines are particularly problematic because of both
the sensitivity of the information that they carry and the long compute
times required to complete a single task.

In this paper we examine a set of hardware design approaches
to public-key crypto accelerator virtualization and study the trade-off
between sharing granularity and management overhead in time and
space. Based on observations made during the design of several such
systems, we propose a hybrid local-remote scheduling approach that pro-
motes more intelligent decisions during hardware context switches and
enables quick and safe state packaging. We find that performance can
vary significantly among the examined approaches, and that our new
design, with explicit accelerator support for state management and a
modicum of scheduling flexibility, can allow highly contended resources
to be efficiently shared with only moderate gains in area and power
consumption.

1 Introduction

Virtualization has emerged as a common means by which one may share and
more optimally utilize underlying physical resources. As custom hardware accel-
erators are called upon to take significant portions of the workload from tradi-
tional CPUs, the state of computing tasks is increasingly spread across a set of
highly heterogeneous devices. Effective virtualization of a system with such dis-
tributed and heterogeneous memory elements can be extremely complicated as
both fine-grained scheduling and the safe management of the underlying hard-
ware state may be required [8,12,13]. For each distinct type of accelerator, the
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virtual machine monitor (VMM) must be aware of what subset of the machine
state is critical to maintain correctness, which subset is potentially damaging
if leaked to other VMs, and how critical parts of the hardware state can be
managed and restored by the interface provided by that accelerator core.

This complexity also comes with a performance and system management
cost, specifically in that it leads to an inability to coordinate the accelerators
effectively. Switching the context for an accelerator can have a non-negligible cost
(driver/OS and driver/device communication, cleanup, power management, etc.)
and that cost can be variable based on time. If the VMM is to coordinate the
accelerators it must have an accurate view of what resources are free for schedul-
ing and what the costs of scheduling might be. The VMM must either be able
to estimate those costs from models, gather them through further communica-
tion with the accelerators (which may be then subject to delay due to resource
contention), or give up the opportunity for efficient coordinated control.

There are several ways in which a designer may approach this problem. First,
they might consider fixed pass-through (e.g. Intel VT-d [9]) where an accelerator
is exclusively assigned to one VM, but this exclusive relationship limits sharing.
A second approach is for the hypervisor to arbitrate between several VMs with
one VM having access at a time, where the hypervisor halts operation of the
accelerator and restores it to a known state between guests [17]. This approach
requires very little in the way of both additional memory and network communi-
cation, but carries a risk of significantly reduced throughput when interruptions
cause the loss of interrupted but unfinished work. A third approach is to avoid
dropping unfinished tasks, instead storing the intermediate results in memory
for future retrieval. This method prevents wasting of allocated timing slots, but
might incur heavy data communication [10,11]. A fourth option is to involve the
accelerator itself in the alleviation of context switch overhead. If the accelerator
is granted some leeway in when the context switch occurs through a modicum
of automation inside of a device, smarter switch timing might be possible saving
both time and space. This might require an understanding of the computation
and a careful re-architecting of the accelerator.

While performance is one important factor, the sharing of state also needs
to be completed in a way that is secure. Given the importance of crypto oper-
ations, both in performance and security, they are a natural space in which
to study accelerator design tradeoffs. To study the impact and suitability of
different accelerator virtualization strategies and to provide optimizations for
crypto devices, we implement a series of fast modular exponentiation engines.
By making minimum changes to the device interface, we enable hardware assisted
context management in such a way as to avoid exposing sensitive intermediate
results to the upper system and as to involve local scheduling to improve perfor-
mance. Our experimental results suggest that above certain switching frequen-
cies, the local context switch approaches achieve significantly higher throughput
rate than more traditional schemes and thus enable a new level of fine-grain and
fair scheduling. The additional area overhead for our baseline and optimized
design to implicitly accommodate four VMs is only 36 % and 15 %.
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2 Related Work

The management of accelerator-rich architectures is a very active topic of
research, but much of the work is focused on application partitioning and fair
scheduling, but less with VM-level sharing. HiPPAI [20] alleviates the overheads
of system calls and memory access by using a uniform virtual memory address-
ing model based on IOMMU support and direct user mode access to acceler-
ators. While it is efficient in limiting overheads at the user/kernel boundary,
it lacks support in resource sharing. Traditional accelerator scheduling schemes
still rely heavily on usage statistics collected from hardware. Pegasus [8] manages
accelerators as first class schedulable entities and uses coordinated scheduling
methods to align accelerator resource usage with platform-level management.
Disengaged scheduling [13] advocates a strategy in which the kernel intercedes
between applications and the accelerator on an infrequent basis, with overuse
control that guarantees fairness. Some work tackles the management problem
by simplifying accelerator/application integration. VEAL [3] proposes a hybrid
static-dynamic compilation approach to map a loop to a template for inner loop
accelerators. DySER, [7] utilizes program phase and integrates a configurable
accelerator into specialized data-path to dynamically encode program regions
into custom instructions. While these approaches are intelligent in software par-
titioning and mapping, they fail to take advantage of hardware assistance in
resource managing. Some work starts to look into hardware device reusabil-
ity: CHARM [6] and CAMEL [5] tackle the sharing and management problem
mainly by automating composition of accelerator building blocks (ABBs), pri-
marily stateless arithmetic units in ASICs.

Some projects favor managing hardware states implicitly. Task specific access
structures(TSAS) [10] inserts a multiplexer as the input of each FF to select
between updating its value from the combinational logic or from previously
stored data, or simply remaining its value from the last cycle. This scheme
takes the majority of the context switch workload within the device and enables
fast switching, but at the sacrifice of non-negligible augmented logic and mem-
ory. Hardware checkpointing [11] where the hardware states of a device can be
stored and be rolled back regarding checkpoint, hold the potential to minimize
area overhead wisely. We recognize the value of hardware checkpointing - in fact
we extend its role in coordinated resource management: for accelerators like an
RSA engine that implements real-time requests, hardware support in context
management will be of great help to fast and fine-grained accelerator sharing.

3 Baseline RSA Accelerator Architecture

3.1 Montgomery’s Modular Multiplication and Exponentiation

The core computation in an RSA crypto engine is modular exponentiation,
consisting of a number of modular multiplications. Montgomery’s modular mul-
tiplication algorithm [15] employs simply additions, subtractions, and shift oper-
ations to avoid expensive divisions. In this paper we work with an extension to



Hardware-Assisted Context Management for Accelerator Virtualization 75

UMS Module

Lm0 > SelectA
—/ || ]
SelectPP

N
4-to-2 CSA
—

o W sl RebuiaB l KSA }— -~
-

)
J—{ wointerace }—

Fig. 2. State diagram of the original
RSA accelerator design. PRE/PRFC

)
[ controtler J—{

o @ and POST/POFC are the preprocess-

ing and the post-processing states for

Fig.1. Traditional RSA accelerator domain format and carry-save for-
block architecture mat conversions. MUL and SQR stand

for modular multiplication and square
operation respectively.

this algorithm [18]. Three k-bit integers, the modulus N, the multiplicand A and
the multiplier B are needed as inputs for computation.

Algorithm MM_UMS is defined as follows:

for i=0toi=k —1:

q=(S+ Ax B[i]) mod 2 (1)
S=(S+AxBli]+qxN)/2 (2)

S is restructured in carry-save form as (Se, Ss) where Sc and Ss respectively
denotes the carry and sum components of S. H-algorithm [2] transforms the
computation of modular exponentiation into a sequence of squares and multipli-
cations. Square operation could be performed when both multiplicand and multi-
plier are identical. The modular exponentiation algorithm, ME_UMS(M, E, N),
iteratively applies a unified multiplication or square operation, where for each
bit E[i] in exponent E, both a single square operation and multiplication will
be performed when E[i] = 1 while only a square operation will be performed
otherwise.

Figure1l shows the baseline design. The wunified modular multiplica-
tion/square module is highlighted in the shadowed region. The nine states in
Fig. 2 capture the major stages of the entire modular exponentiation process, as
discussed in the algorithm ME_UMS.

3.2 Sharing an RSA Accelerator

One traditional method of device sharing is hard preemptive multitasking. The
obvious drawback is that as the switching frequencies increase during heavy
sharing, the throughput rate might suffer significant degradation.
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To avoid the cost, two options are clear, either the OS relaxes its schedule to
wait for the task to complete or the intermediate results from hardware have to be
saved for future retrieval. The first option is becoming increasingly difficult since
an application can occupy several accelerators simultaneously, thus a perfect
point where all devices have just finished their current tasks can be extremely
hard to identify or even exist. The latter option seems to comply well with
software schedules, but the data movement required to store the intermediate
results, coupled with the corresponding memory updates, making this option
surprisingly tricky to execute well in practice. Moreover, exposing intermediate
results to DMA are also risky due to DMA attacks [19]. A good solution should
manage these burdens carefully and a new set of interfaces is needed to simplify
the synchronization process.

4 Tightly Integrated Virtual Accelerator Approaches

The simplest tightly integrated design might store all local state in a set of D
flip-flops sprinkled throughout the design. However, this approach is also pro-
hibitively expensive. Simulation results suggest that regarding area (and power)
efficiency, such virtualized accelerator can add up to a 78 % area overhead.

So what can we do if we want to maintain the accelerator’s capability of being
fast switched without giving up almost nearly all of our efficiency? We describe
two different solutions — the simplest being to replace the local and distributed
storage elements with a set of RAMs.

4.1 Baseline Virtual RSA Accelerator Design Overview
In general, most sharing patterns fall into one of the four categories:

— Double Vacancy. No VM is occupying the device.

— Single occupancy. The accelerator is currently dominated by one VM while
another VM requires input data streaming for starting a new task.

— Double occupancy. One VM is scheduled to resume a previous uncompleted
computation while the other VM is in the process of computing.

— Single occupancy. One VM requires to resume a suspended task while the
other VM is performing output data streaming.

Note that in scenario 3, two whole sets of states need to be stored. Based on
this, we include 2 KB of RAM alongside the core for temporary storage. We build
a simple layer above the RSA accelerator to forward switching commands rather
than changing the slave interface directly. We add a switch signal underneath
the layer to help the controller determine the next state. In order to be able to
interrupt a task in the middle of such computation, four more states are added
to the FSM. We show the resulting state diagram in Fig. 3.

By enabling hardware preemption, the proposed accelerator virtualization
approach successfully realizes the goal of abstracting away hardware details from
software without abandoning tasks, at the sacrifice of increasing critical path
delay by 16 %.
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4.2 Optimized Accelerator Virtualization Strategy - Making
Virtual Accelerator Out of Area Efficiency

In order to eliminate the increased critical path delay, we examine the registers
that contain useful intermediate results along the entire process of a single mod-
ular exponentiation task. We measure the amount of memory needed to store
these intermediate results against execution time cycle Fig. 4.

At the completion of a modular multiplication or a square computation,
only the value of Sc and Ss (1025-bit register arrays) are a must-save among
all the large register arrays. These transition points, which we informally call
SP (sweetspots), can be intuitively pinned from the FSM inside the device
controller. If we can make sure all switching operations happen at these sweet
spots, we can significantly reduce the RAM size required.

To achieve this goal, the device controller is slightly modified to ensure switch-
ing always happens at these spots. Upon each major state transition, the contents
of Sc and Ss will be forwarded to two designated register arrays Sc_.SW and
Ss_SW. Note that the contents of these two registers will be refreshed every
time an SP is identified and will be flushed during switching operation Fig. 5.

We also want to make sure that the OS gets control of the preemption delay
so that it can make scheduling decisions easily when it needs to context switch
among a number of concurrent applications. Upon receiving the switching com-
mand, the device will compare the time bound to its backward counter and
make a decision about whether to reach the next SP or to simply fall back to
the last stored one. If the time bound is equal to or smaller than the value of the
counter, the current multiplication computation will be abandoned and contents
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of Sc_.SW and Ss_SW will be stored to RAM. An extra state, SW EFET, is added
to allow data transfers between registers and RAMs during task switching. The
state that leads to SWEFET will be recorded. The relaxed timing bound can
be very convenient for scheduling purposes, considering it is difficult for OS to
decide the exact best timing to switch in a device. Granted with local scheduling
power, the device can wisely help a task fully utilize its time slots. We show an
example state transition scenario in Fig. 6 for illustration.

The design removes multiplexer arrays from the critical paths, significantly
lowering area cost. Meanwhile responsiveness to interrupts or context switch
commands is still guaranteed. Note that these modifications can be generally
applied to public-key crypto accelerators. By simplifying the device interfaces,
the VMM'’s scheduling becomes easier and more flexible. Tasks with higher
priorities can always be ensured a quick access to hardware acceleration. The
hardware accelerator manages to secure itself in a blackbox, without exposing
hardware information unnecessarily.

5 Experimental Evaluation

Our evaluations are based on RTL prototypes of accelerators with standard
AHB I/0 interfaces written in Verilog under the ModelSim [14] environment.
We test through the encryption process and use a Verilog testbench with a public
exponent 65537 and modulus generated from OpenSSL [16] for encryption. We
synthesize all of the RTL designs using the Synopsys Design Compiler [4] with
a 45nm library and collect critical path delays and executing clock frequencies.
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The area and peak power models for our embedded memories are based on
CACTI 5.3 [1] and for logic and registers based on the results from Design
Compiler.

5.1 Relative Performance

One important measure of performance is the total virtualized device through-
put as measured by the numbers of encryptions per second. We compare the
virtualized throughput rate from each of the designs to the upper bound of per-
formance where each VM is given a completely independent copy of the device
(i.e. no interference at all). We simulate three scenarios representing light (con-
currently running two VMs while requests from each VM fills 10 % of its time-
line), medium (two VMs with 20 % requests) and near-saturating workloads (four
VMs with 20 % requests) respectively. The only contention for the crypto accel-
erator is from multiple VMs attempting to access the engine at the same time.
Figure Ta—c depict the relative performance of virtualized devices under these
loads respectively.

The y-axis of each of these plots is the relative performance of the different
schemes (as compared to our ideal case). The x-axis is the time slice granular-
ities under which the VMs are driving our accelerators. To simulate the fact
that one does not switch between VMs instantaneously, a running task will not
attempt to switch in a period smaller than a defined time slice. In real-time,
latency sensitive, or reactive systems a design may be called upon to switch very
quickly. To quantify the suitability of each of the previously described acceler-
ator virtualization under various different switching speeds, we inject requests
with the size of one task (for us, the crypto operation) but constrain the mini-
mum window under which those switches might occur. The courser the minimum
time between switches, the less we would expect to lose in wasted cycles as com-
putation is abandoned on a switch, but more applications will have to wait to
get their computation onto the accelerator. On each of the graphs there are
3 different bars labeled “Tra” for “Traditional” which drops unfinished tasks
on a switch. “Base” saves all of the hardware state as described in Sect.4.1.
Finally, “Opti” adds the hardware necessary to allow the accelerator to delay
the switching under a fixed bound as described in Sect. 4.2.

As can be seen in these graphs, when the request workload is comparatively
low, the performance disparities among the three approaches are not as sig-
nificant as those when task workload is heavier. However, the performance of
the optimized design is consistently the highest throughout all the switching
frequencies simulated. The base design has a slight advantage over traditional
design when the time slice is smaller than the time for one encryption operation.
The advantage more fully manifests when the amount of requests increases. The
performance of all three approaches in all the scenarios reaches a peak around
and slightly above 25 pus time slice. However, when we compare 25 us to 100 ps
granularities of the three figures, we can clearly see that the peak period tends
to shrink as the workload increases. When reaching a comparatively coarse grain
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Fig. 7. Relative performance under light (a), medium (b) and near-saturating (c) work-
load scenarios. V-2 and v-4 denotes the default maximum number of VMs allowed to
concurrently occupy the device.

scenario around 200 us the performance of all of the virtual devices suffer sig-
nificantly. In these situations the bounds on switching time is large enough to
cause a significant amount of idle time in the hardware. The optimized design
outperforms the baseline consistently because the more restricted save points
limit the hardware needed and the longer paths they cause.

One interesting observation is the non-monotonic performance of the tradi-
tional design. The throughput rate drops as the switching frequency rises until
it reaches around 1/25 us. The reason behind this pattern is that when a task is
switched off and dropped, the device is more likely to waste more computation
cycles when the device is only allowed to be switched at a granularity slightly
smaller than time of one operation. Provided that the v-4 optimized design shows
at most a 3.6X performance improvement compared to the traditional design, in
20 % workload scenario and reliably high efficiency throughout fine-grain gran-
ularities, the optimized design appears to be a clear choice in systems requiring
very fine-grain switching when we consider performance alone.

5.2 Area Cost and Power Consumption

To model the area overhead and power consumption of the three virtual accel-
erators, we synthesized our RTL design in the TSMC 45 nm technology. Results
show that the original accelerator occupies 0.11 mm? with a peak power con-
sumption of 54.7mW at 1.6 GHz. Due to the lack of publicly available SRAM
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compilers in this technology, we use CACTI 5.3 [1] to estimate the area and
power of RAMs.

The area cost is shown in Fig. 8. The y-axis of the area plot is the absolute
area costs measured in mm? unit of the different schemes. The x-axis is the num-
ber bounds of VMs that are allowed to be running concurrently on the accelerator
(e.g. 2 corresponds to v-2 design). As we can see in the graph, the additional area
overhead of the baseline design compared to the traditional design can increase
area by up to 29 % for v-2 and up to 36 % for v-4. This extra price paid is primar-
ily due to the additional arrays of multiplexers needed to switch between states
and the additional RAMs needed to store the contents of all registers. Note that
the optimized design scales better than the baseline. The area overhead is merely
12% and 15 % for v-2 and v-4 respectively.

Similar to the area costs trends, plots of the peak power consumption present
an increasing pattern somewhat proportional to area costs. As we can see from
Fig. 9, where the y-axis denotes the absolute peak power consumption measured
in mW unit of the different devices, the optimized design scales better from v-1
to v-4 than the baseline design as the default bounds of running VMs increase.
The traditional design stands out due to its more uniform power consumption.

An important conclusion is that the baseline design performs slightly worse
than both the traditional and the optimized design regarding power consump-
tion, whereas the traditional one suffers significantly reduced throughput/watt
rate for near saturating workloads when the time slice is small. While baseline
and optimized design already provide with most responsiveness, it is as well likely
that energy consumption can be compensated from simplified software level syn-
chronization. Moreover, the internal memory read/write structure guarantees a
quick and safe access to intermediate data without dealing with I/O hazards.

Due to its performance and power-friendly benefits, the optimized design
improves the throughput /watt rate by at most 3.1X over traditional design when
above switching frequency of 45 KHz magnitude and remains competitive to
traditional design throughout all sharing granularity range under examination.
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6 Conclusions

Growing heterogeneity in hardware devices continues to put easy and safe man-
agement in direct conflict with fine-grain scheduling and virtualization. Rather
than take a top-down approach requiring that all accelerators be implemented
in a particular style, we take a bottom up approach, looking at what it takes to
manage the state of a device. In particular we found that there is a small but
non-negligible penalty for adding in explicit access to the accelerator state both
in terms of area and power. However, we also observe that there is an interesting
and previously unexplored trade-off between the scheduling power one imbues
the accelerator with and the efficiency with which the schedule can be managed
to minimize the waste of timing slots.

With that said, under these limitations we presented comparisons of three
different accelerator virtualization schemes working to manage a critical device -
an RSA accelerator. When a high degree of sharing and switching is required, the
traditional task-dropping scheme can suffer significant performance degradation.
If such conditions are expected, a hardware preemption scheme can be adopted,
and with a bit of analysis, is able to alleviate the burden of resource scheduling
and context management, and to prevent sensitive intermediate data exposure.
Results show that our proposed approach manages to dramatically diminish the
performance degradation of the traditional scheme and to compensate a naive
TSAS in a low-overhead manner both in area and power.
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