Anonymous communication

- Bob and the server want to prevent outsiders from knowing they are communicating
 - Unlinkability
- Bob wants to prevent the server from knowing his identity
 - Source anonymity
Previous work: Chaum-Mix

- Standard model for anonymous routing:
 - Forward message through a static path of nodes \((P_1, \ldots, P_L)\)
 - Encrypt message \(M\) using public node keys in reverse order
Previous work: Chaum-Mix

- **Drawback**: path is fragile and hard to maintain
 - When any node/link fails, must rebuild entire path (expensive)
 - Source can not receive error messages, must use E2E timeouts

- **Drawback**: computationally expensive
 - Each message is encrypted with layers of asymmetric encryption
Other related work

• Chaum-Mix based
 – Onion routing [Syverson et. al 1997]
 • Pair-wise symmetric keys between nodes
 – Tarzan [Freedman et. al 2002]
 • Symmetric session keys and relay through nodes
 – Many other systems, e.g. Tor, etc.

• Probabilistic random walk
 – Crowds [Reiter et. al 1998]
 • No destination anonymity
 • Lower source anonymity [Diaz et. al 2002]

• Dining cryptographer network based
 – E.g. Herbivore [Sirer et. al 2004], P5 [Sherwood et. al 2001]
Cashmere overview

- Anonymous routing layer
 - Resilient to node churn, temporary node/link failures
 - Reduces path rebuild frequency
 - Result: much more stable paths
- Use structured overlays for group maintenance and inter-relay routing
- Comparable anonymity to Chaum-Mix
- Reduced vulnerability to predecessor attack [Wright et. al 2003 & 2004]
Outline

• Background & previous work
• Cashmere design
• Evaluation
• Summary
Design: use relay groups

- Instead of single nodes, use groups to relay traffic
- Relay functions if at least one member is reachable
- Leverage structured overlays (prefix based)
 - Relay group membership maintenance
 - Inter-relay routing
Relay group membership

- Each node assigned a nodeID
 - Assigned by a CA
 - Selected uniformly at random

- A relay group is a set of nodes sharing a common prefix
 - $\text{groupID} \equiv$ the shared prefix

- For example (Network size: N)
 - Relay group “$0XXXXX$”
 - Group size $\approx \frac{N}{2}$
Each node assigned a nodeID
- Selected uniformly at random

A relay group is a set of nodes sharing a common prefix
- $\text{groupID} \equiv$ the shared prefix

For example (Network size: N)
- Relay group “00XXX”
- Group size $\approx N/4$

Nodes estimate N locally
- Routing table depth
- Source decides relay group size per session
Inter-relay routing

- Select a set of relay groups
 - Destination is member of a relay group
- Route message along the sequence of prefixes
 - 001XX → 100XX → 101XX → 010XX
- First relay member to receive the message is “root”
 - Broadcast to group members
 - Route to next relay group
- B receives broadcast message
Summary

- Benefits from structured overlay
 - Relay group maintenance
 - Inter-relay routing
 - Group broadcast
 - Locality-aware overlay routing
- No extra routing state per node
Prefix keys for relay groups

- Based on prefix, each relay group has key pair K_{pub}, K_{priv}
 - Each member uses K_{priv} for group decryption
- Each node keeps key pairs for prefixes it shares
 - E.g. 12345 keys: 1XXXX, 12XXX, 123XX, 1234X, 12345
 - Retrieve from offline CA during ID assignment
- Store list of public keys for random prefixes
 - Obtained from trusted offline CA
Decoupling path and payload

- Chaum-Mix
 - Path embedded in encrypted layers around each payload
 - L relays \Rightarrow L asymmetric operations at source and relay
Decoupling path and payload

- Cashmere
 - Decouple path and payload components
 - Path component: layered using asymmetric encryption
 - \(P_x \): prefix identifier for next hop
 - Payload component: symmetric encrypted layers w/ random keys
 - \(R_x \): random key
 - Symmetric encryption ensures message modified per hop
 - Path fixed per session (cacheable), payload changes per message
- Further extension: establish symmetric session key
 - All payload encrypted using symmetric key
 - See paper for further details

\[
\text{Path} = \langle P_{i+1}, R_i, P_i, R_{i-1}, P_{i-1}, R_{i-2} \rangle
\]

\[
\text{Payload} = \langle M \rangle_{\text{dest pub}}
\]

PubKey(P)

\(R_{i-1} \)
\(R_{i-2} \)
Message replies in Cashmere

• Destination replies without sacrificing source anonymity
 – Source generates random return path
 • Return path independent from forwarding path
 – Embed return path in original payload
 – Destination can send arbitrary reply message
 • Decoupling path and payload enables this
 – Further details in paper
Outline

• Background & previous work
• Cashmere design
• Evaluation
• Summary
Experiment setup

• Simulation
 – Analysis performed on random generated paths
 – Network size: 2^{14} (16K)
 – Prefix length: 12 bits
 – All attackers collude with zero latency

• Evaluation on PlanetLab
 – Implemented on FreePastry, (with RSA and Blowfish)
 – 128 Cashmere nodes
 • 32 machines geographically distributed over USA
 • 4 virtual nodes per machine
 • Four relay groups of size 4
Unlinkability

Anonymity using entropy metric [Diaz et. al 2002]
Resilience: expected path lifetime

• Churn
 – Exponentially distributed session times
 • median session time = 60 mins
 – Rate of node joins and failures is identical
 – Expected Cashmere path lifetime
 • Over one order of magnitude longer than node-based path
Path resilience based on Kazaa dataset

- Real distribution of Kazaa download time from [Gummadi et al. 2003]
- Reduce number of path rebuilds also reduce vulnerability to predecessor attack [Wright et. al 2003 & 2004]

NSDI, May 2005
Evaluation on PlanetLab

![Graph showing relative delay penalty vs. IP latency for Pastry and Cashmere protocols.]

- Y-axis: Relative Delay Penalty
- X-axis: IP Latency (ms)
- Two lines: Pastry (blue) and Cashmere (magenta)

NSDI, May 2005
Conclusion and future work

• Flexible and resilient anonymous routing
 – Relay messages through groups of nodes
 – Leverages structured overlay networks
 – Performance overhead is reasonable under churn

• Ongoing work
 – Scalable public key distribution
 • Leverage Identity-based encryption [Boneh et. al 2003]
 – Extending anonymous routing to multicast

http://www.cs.ucsb.edu/~ravenben/cashmere
Thank you!