
Rx: Treating Bugs As
Allergies: A Safe Method to
Survive Software Failures

Feng Qin, Joseph Tuccek, Jagadeesan

Sundaresan and Yuanyuan Zhou

University of Illinois at Urbana Champaign

Presented at SOSP 05

Outline

Introduction

Main idea

Architecture

Design and Implementation Issues

Evaluation and Results

Related work

Conclusion

Introduction

Motivation

An hour of downtime for a financial
company costs company costs $6mil

Software failures reduce system availability

Software defects - 40%

Memory-related+concurrency bugs - 60%

Cannot get rid of bugs

Need highly available applications

Previous Solutions

Four categories:

Rebooting

checkpointing, rollback, re-execute

Application-specific recovery

Speculate on programmer intentions

Allergies are an inspiration

When a person suffers from an allergy, the most
common treatment is to remove the allergens from
their living environment

In software, many bugs resemble allergies: their
manifestation can be avoided by changing the
execution environment

The idea
Rollback the program to a recent checkpoint when a bug is
detected

Dynamically change the execution environment based on
the failure symptoms

Re-execute the buggy code region in the new environment

Examples of allergen bugs

Memory corruption

Buffer overrun

Un-initialized reads

Data races

malicious request

Rx does it better

Comprehensive

Safe

Noninvasive

Efficient

Informative

Main idea

Main Idea

Checkpoint

Sense bug

Analyze symptoms and determine cure

Re-execute from checkpoint
New environment

Repeat until it goes away
Or time out

The execution environment

Definition: Almost everything that is external
to application:

Low level: hardware devices, processor
architecture..

mid level: OS kernel scheduling, virtual memory
manager, drivers, file system, network

High level: standard libraries, third party libraries

Requirement for environmental change
Correctness-preserving: execute according to the
APIs

Useful: potentially avoid software bugs

Categorizing useful changes

Working with the changes

Successful change - record

Failure - see if it occurred before

Else

Try low overhead changes first

If failure doesn’t go away with useful change

keep rollback to previous checkpoint OR

Make another change

Architecture

Rx Design

Sensors

dynamically monitoring application

execution

Exception sensors

Bug-specific sensor

Dynamic bug detection tools

send failure signature to Control Unit

Checkpoint & Rollback

Memory snapshots

File versioning

Less checkpoint maintenance

Environment Wrappers

Perform changes in the execution

environment (re-execution)

Memory wrapper

Message wrapper

Process scheduling

Signal delivery

Dropping user requests

Proxy

Control Unit

Coordinates all of the components in

the Rx

Three functions

Directs the checkpointing and rollback

process

Diagnose failure based on symptoms and

experiences

Provides feedback to programmer

Design and Implementation
Issues

Design and Implementation

Issues

Inter-Server Communication

Multi-threaded Process Checkpointing

Unavoidable Bug/Failure of Rx

Evaluation and Results

Evaluation

Effectiveness

Performance

Performance

Related Work

Related Work

Recovery-Oriented Computing

Shadow drivers

Noisemakers

Conclusion

safe, non-invasive and informative

method for quickly surviving software

failures

Caused by common software defects

Like all approaches it has its limitations

It can effectively and efficiently recover

from many software failures, but not all

