Joint Rate and Channel Width Adaptation for 802.11 MIMO Wireless Networks

Lara Deek
Eduard Garcia-Villegas
Elizabeth Belding
Sung-Ju Lee
Kevin Almeroth
802.11 Rate Adaptation

<table>
<thead>
<tr>
<th>Legacy 802.11 a/b/g clients</th>
<th>802.11 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Traditional 20MHz</td>
<td>- Traditional 20MHz</td>
</tr>
<tr>
<td>- Single-Input Single-Output (SISO)</td>
<td>✓ Channel Bonding 40MHz</td>
</tr>
</tbody>
</table>

4 PHY rates 802.11 b
8 PHY rates 802.11 a/g

- 4x4 MIMO : 256 PHY rates & channel width combinations!
802.11 Rate Adaptation

<table>
<thead>
<tr>
<th>Legacy 802.11 a/b/g clients</th>
<th>802.11 n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions fall short when applied in 802.11n MIMO settings</td>
<td></td>
</tr>
</tbody>
</table>

- Traditional 20MHz
- ✓ Channel Bonding 40MHz
- ✓ Multiple-Input Multiple-Output (MIMO)

4x4 MIMO: 256 PHY rates & channel width combinations!
802.11n Rate Adaptation

Desired 802.11n RA solution

1. Standard-compliant
2. Channel bonding support
3. Practical link metric that accurately characterizes MIMO link performance
4. Agile, per-packet, response to changing channel conditions

Existing 802.11n RA solutions

- Incur unnecessary overhead to determine best rate
 - Require form of guided search [Pefkianakis10, Peng07]
 - Adopt form of random sampling [Ath9k, MinstrelHT]
- Do not consider Channel Bonding [Kim09, Ath9k, Pefkianakis10, Peng07]
- Built over expensive link layer metrics, ex. CSI [Halperin10, Xi08]
802.11n Rate Adaptation

<table>
<thead>
<tr>
<th>Desired 802.11n RA solution</th>
<th>Existing 802.11n RA solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Standard-compliant</td>
<td></td>
</tr>
<tr>
<td>2. Channel bonding support</td>
<td></td>
</tr>
<tr>
<td>3. Practical link metric that accurately characterizes MIMO link performance</td>
<td></td>
</tr>
<tr>
<td>4. Agile, per-packet, response to changing channel conditions</td>
<td>We need a new solution!</td>
</tr>
</tbody>
</table>

Our RA solution achieves these goals
Overview of ARAMIS (Agile Rate Adaptation for MIMO Systems)

- Estimates PRR* of a link for all rates and bandwidth.
- Improves accuracy of PRR surfaces using statistics of received frames.
- Maintains updated information on channel conditions using data traffic.
- Stores measurement-based performance models.
- Determines best operating point based on performance model.
- Encapsulates information on best operating point in ACK frames.

PRR* = Packet Reception Rate
Overview of ARAMIS (Agile Rate Adaptation for MIMO Systems)

Maintains updated information on channel conditions using data traffic.

Estimates PRR* of a link for all rates and bandwidth.

Improves accuracy of PRR surfaces using statistics of received frames.

Stores measurement-based performance models.

Determines best operating point based on performance model.

Encapsulates information on best operating point in ACK frames.

PRR* = Packet Reception Rate
An 802.11 OFDM MIMO Link Metric

- **SNR**
 - Unreliable metric [Pefkianakis10, Aguayo04, Reis06, Zhang08]

- **Channel State Information (CSI)** [Halperin10]
 - Costly to obtain [Crepaldi10]
 - Not supported by all 802.11n devices
A Practical MIMO Link Metric: diffSNR

- Link i: $\text{Tx}_i \rightarrow \text{Rx}_i$ for $i \in \{1, 2, 3\}$

- $\text{SNR}_1 \approx \text{SNR}_2 \approx \text{SNR}_3 \approx 40\,\text{dB}$

- Best: $\text{diffSNR}_1 = 0.3\,\text{dB}$

- Worst: $\text{diffSNR}_3 = 13.41\,\text{dB}$
A Practical MIMO Link Metric: \textit{diffSNR}

Performance depends on both SNR and \textit{diffSNR} together.

80\% certainty \textit{diffSNR} peaks correspond to fading!
A Practical MIMO Link Metric: \(\text{diffSNR} \)

Well-behaved, measurement-based surfaces that allow us to predict the PRR of a link for a given MCS and bandwidth combination.
A Practical MIMO Link Metric: \textit{diffSNR}

Average 95% accuracy in predicting link performance!
ARAMIS Testbed Environment

20 testbed links
Throughput performance
Average over 5 runs

11:05pm
5GHz

WiSpy Spectrum Analyzer
802.11n 2x3 MIMO PC Card w/ Atheros chipset
Ath9k driver
Interference Results

• From 40MHz channel leakage
Interference Results

- From *20MHz channel leakage*
ARAMIS Outcomes

ARAMIS **consistently performs well** and **outperforms** existing solutions

<table>
<thead>
<tr>
<th>ARAMIS</th>
<th>Minstrel</th>
<th>Ath9k</th>
<th>RAMAS [Nguyen11]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference-free</td>
<td>+26%</td>
<td>+124%</td>
<td>+287%</td>
</tr>
<tr>
<td>Mobility</td>
<td>+7%</td>
<td>+15%</td>
<td>+25%</td>
</tr>
<tr>
<td>Interference</td>
<td>+251-412%</td>
<td>+366-1908%</td>
<td>+76-220%</td>
</tr>
</tbody>
</table>

(%) ARAMIS **throughput** performance improvement

Image of a diagram showing the processes involved in ARAMIS, including Receiver, Link Predictor, Decision maker, Frame Monitor, Feedback Generator, Data frames, MCS feedback in ACK frames, Rate Management, Feedback Receiver, and Timer.
Conclusion

• Satisfies need for **intelligent** and **adaptive** 802.11n MIMO transmission strategy

• Drives need for **per-packet, joint rate and channel width adaptation** solutions for complex systems

• Proposes model to operate in conjunction with a **channel management** solution through **Channel** and **MCS feedback**

• Model can be applied in 802.11ac
Thanks!

Lara Deek
laradeek@cs.ucsb.edu