Strong Password Protocols
Strong Password Protocols

- Password authentication over a network
 - Transmit password in the clear.
 - Open to password sniffing.
 - Open to impersonation of server.
 - Do Diffie-Hellman exchange to establish a secure key and an encrypted tunnel.
 - Open to impersonation of server.
 - Establish a SSL connection. Use trust anchors for mutual authentication of machines.
 - Security depends on the security of the trust anchors.
Strong Password Protocols

- **Password authentication over a network**
 - Compute a hash of the password. Use the hash as a secret key in a challenge response scheme.
 - **Scheme:**
 - Alice to Bob: Login request
 - Bob to Alice: Here is challenge R.
 - Alice to Bob: $f(\text{hash(password)}, R)$
 - Open to dictionary attack by eavesdropper or someone impersonating Bob.
Strong Password Protocols

- Password authentication over a network
 - Use a one-time password
 - Lamport Hash
 - S/Key
 - Use a **strong password protocol**
 - Secure from dictionary attacks by impersonator or eavesdropper.
 - Secure against impersonator on either side.
Lamport Hash

- Bob stores
 - Username Alice
 - int n
 - $h^n(password)$, h – one way function

- Password generation:
 - Alice chooses a password.
 - Alice calculates $h^n(password)$ and sends the hash value and n to Bob.
 - Bob initializes the database entry.
Lamport Hash

Protocol:

Alice

password

Alice’s Workstation

Bob checks:
Is $h(Alice\’s\ answer) = h^n(password)$.
If yes, authenticate.
Then replace n with $n-1$ and store $h^{n-1}(password)$.
To prevent password guessing, randomly generate a salt and store it at the server.

Calculate $h^i(pwd,salt)$
Lamport’s Hash

- Alice’s workstation needs to regenerate the scheme with a **new** password whenever n counts down to 1.
- There is no mutual authentication.
- Vulnerable to the “small n” attack.
Lamport’s Hash

- Mallory impersonates Bob.
- Alice tries to log on to Bob, but talks to Mallory.
- Mallory sends a small $m < n$.
- Alice sends $h^{m-1}(pwd)$
- Mallory calculates $h^{n-1-m+1}(h^{m-1}(pwd))$
- Mallory can now login to real Bob
S/Key

- Deployed version of Lamport hash
- RFC 1938
- http://www.openbsd.org/faq/faq8.html#SKey
Encrypted key exchange

- Alice has a “weak” password pswd.
- Bob stores a hash $W = h(\text{pswd})$ of the password.
- Alice’s workstation knows how to calculate W on the fly, once Alice types in her password.
- Use W in a way that does not give any hints on W.
Alice and Bob share a weak secret $W = h(\text{password})$.

Alice chooses a random number a. She sends: $W \{g^a\}$

Bob chooses a random b and a challenge C_1. He sends: $W \{g^b, C_1\}$

Both Bob and Alice use their knowledge of W to encrypt their mutual messages. They both calculate $K = g^{ab}$.

Alice then proves her knowledge of W by her ability to calculate K. She also picks a challenge C_2 and sends $K \{C_1, C_2\}$ to Bob.

Bob encrypts this message and finds that Alice has solved his challenge C_1. Finally, Bob authenticates himself to Alice. He proves his knowledge of W by his knowledge of K, which he proves by being able to correctly encrypt Alice’s challenge C_2. He sends $K \{C_2\}$ to Alice.
Encrypted key exchange

EKE: Diffie-Hellman exchange with encryption.

<table>
<thead>
<tr>
<th>Alice: "Alice", $E_W(g^a)$</th>
<th>Bob: $E_W(g^b)$, Challenge C_{Bob}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At this point, both Alice and Bob calculate $K = g^{ab}$</td>
</tr>
</tbody>
</table>

$E_K(C_{Alice}, C_{Bob})$

$E_K(C_{Alice})$
EKE: Encrypted Key Exchange

- Secure against eavesdropper because all data are undistinguishable from random numbers. Eavesdropper cannot decide whether the g^a, g^b are the correct decryption.

- Secure against impersonation:
 - If treacherous Trudy impersonates Bob, she guesses a single value W in the first exchange.

See the definition again.
Encrypted key exchange

EKE: Diffie-Hellman exchange with encryption.

W \[
\text{hash of password. (Bob stores it, Alice can recalculate it).}
\]

<table>
<thead>
<tr>
<th>Alice: "Alice", $E_W(g^a)$</th>
<th>Bob: $E_W(g^b)$, Challenge C_{Bob}</th>
</tr>
</thead>
<tbody>
<tr>
<td>At this point, both Alice and Bob calculate $K = g^{ab}$</td>
<td></td>
</tr>
<tr>
<td>$E_K(C_{Alice}, C_{Bob})$</td>
<td>$E_K(C_{Alice})$</td>
</tr>
</tbody>
</table>
SPEKE: Simple Password Exponential Key Exchange

- Use W in place of g in the Diffie Hellman exchange.

<table>
<thead>
<tr>
<th>Alice: "Alice", W^a</th>
<th>Bob: W^b, Challenge C_{Bob}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At this point, both Alice and Bob calculate $K = W^{ab}$</td>
</tr>
<tr>
<td>$E_K(C_{Alice}, C_{Bob})$</td>
<td>$E_K(C_{Alice})$</td>
</tr>
</tbody>
</table>
PDM: Password Derived Moduli

- PDM uses modulus p that is a function of the password and uses 2 for g in Diffie Hellman.

<table>
<thead>
<tr>
<th>Alice: "Alice", $E_W(2^a \mod p)$</th>
<th>Bob: $E_W(2^b \mod p)$, Challenge C_{Bob}</th>
</tr>
</thead>
<tbody>
<tr>
<td>At this point, both Alice and Bob calculate $K = 2^{ab}$</td>
<td></td>
</tr>
<tr>
<td>$E_K(C_{Alice}, C_{Bob})$</td>
<td>$E_K(C_{Alice})$</td>
</tr>
</tbody>
</table>
Strong Passwords: EKE

- A bad implementation of EKE allows an eavesdropper to exclude passwords.
 - Assume that we calculate in the field of number modulo p, p a prime.
 - Then g^a and g^b are both m bit numbers smaller than p.
 - Attacker maintains a dictionary of possible passwords and observes many authentication rounds.
 - If W is in the dictionary, he encrypts Alice’s round 1 message M. If $W^{-1}\{M\} > p$, then attacker excludes W.
 - Chance of excluding a false password W is $2^m - p / p$.
 - If this chance is about 80%, then 50 rounds determine the password out of a normal dictionary.
Augmented Strong Password Protocols

- If someone knows W in EKE, they can impersonate Alice.
- Augmented Protocols
 - Trudy can steal Bob’s database
 - Trudy can do a dictionary attack.
 - If the dictionary attack is unsuccessful, then she cannot impersonate Alice.
 - Knowledge of W is not enough.
Augmented EKE

- Bob stores “Alice, p, g^w mod p”

<table>
<thead>
<tr>
<th>Alice: "Alice", g^a mod p</th>
<th>Bob: g^b + g^w mod p, u, Challenge C_{Bob}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At this point, both Alice and Bob calculate K = g^{b(a+uW)} mod p</td>
</tr>
<tr>
<td>Alice: E_k(C_{Bob}), C_{Alice}</td>
<td>Bob: E_k(C_{Alice})</td>
</tr>
</tbody>
</table>
Strong Passwords

- Augmented PDM
 - Server Information Creation
 - Alice has password $pssw$
 - Alice sends to Bob
 - $p = f (pssw)$ [this is a prime]
 - $W = hash (pssw)$ [one-way hash]
 - Bob stores:
 - Alice, p, W,
Strong Passwords: Augmented PDM

Alice creates random number \(a \).
She re-computes \(W \) and \(p \) from her password.

\[
\text{Alice} \quad 2^a \mod p \quad \text{Bob}
\]

Bob chooses a random number \(b \).
Bob calculates \(2^b \mod p \).
Bob sends \(2^b, \text{hash}_1(2^{ab} \mod p, 2^{bw} \mod p) \) to Alice

Alice knows that Bob is Bob because Bob proves that he knows \(2^{bw} \). Alice now sends \(\text{hash}_2(2^{ab} \mod p, 2^{bw} \mod p) \)

Bob knows that Alice is Alice because she proves to him that she knows \(W \). If Alice had just broken into the server, she would have to calculate \(2^{bw} \) from \(2^W \mod p \).
Augmented PDM

- Bob stores Alice, \(p \), \(2^w \mod p \) and picks \(b \)
- Alice computes \(p \) and \(W = \text{hash(passwd)} \) from the password and picks \(a \).

<table>
<thead>
<tr>
<th>Alice: "Alice", ((2^a \mod p))</th>
<th>Bob: ((2^b), \text{Hash}_1(2^{ab} \mod p, 2^{bw} \mod p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice: Hash(_2)((2^{ab} \mod p, 2^{bw} \mod p))</td>
<td></td>
</tr>
</tbody>
</table>
Strong Passwords

- Secure Remote Password
 - RFC 2945
 - Bob stores \{Alice, \(g^W \mod p \)\}, where \(W = f(\text{passwd}) \).
Strong Passwords

Secure Remote Password (SRP)

Alice creates random a and sends g^a to Bob.

Bob creates random b, challenge C_{BOB} and 32b number u.

Bob sends $g^b + g^W \mod p$, u, C_{BOB} to Alice.

Both calculate $K = g^{b(a+uW)} \mod p$.

Alice sends $K \{C_{Bob}\}$, C_{Alice} to Bob.

Bob sends $K \{C_{Alice}\}$ to Bob.