1. Given dict = {“Abc”:6, “Def”:8, “Ghi”:11, “Jkl”: 7, “Mno”:3}, what values will be printed by the following codes:

 a. for x in dict:
 print(x)

 b. for i in dict:
 print(dict[i])

 c. for i in dict:
 print(dict[dict[i]])

2. Consider the following functions:

 def func1(a):
 x = a + b
 return x

 def func2(a,b):
 y = a*a + b*b
 return y

What will the following code segments print?

(a) a = b = 1
 x = y = 2
 func1(a)

(b) a = b = 2
 x = y = 3
 func1(b)

(c) a = b = 3
 x = y = 4
 func1(x)

(d) a = b = 4
 x = y = 5
 func2(a,b)

(e) a = b = 5
 x = y = 6
 func2(a,y)

(f) a = b = 6
 x = y = 7
func2(y, y)

(g) \[a = b = 7 \]
 \[x = y = 8 \]
 \[\text{func1(func2(a, b))} \]

3. Consider the following functions:
 \[
 \text{def func1}(a):
 \hspace{1em} x = a^2 + a + 1
 \hspace{1em} \text{return } x
 \]
 \[
 \text{def func2}(a, \text{func}):
 \hspace{1em} x = a^2 - a + 1
 \hspace{1em} y = \text{func}(x)
 \hspace{1em} z = x + y
 \hspace{1em} \text{return } z
 \]
 \[
 \text{def func3}(a, b, \text{func}):
 \hspace{1em} x = a^2 + b^2
 \hspace{1em} y = \text{func}(x)
 \hspace{1em} z = x - y
 \hspace{1em} \text{return } z
 \]

What will the following code segments compute?
(a) \[a = 2 \]
 \[\text{func1}(a) \]
(b) \[a = 3 \]
 \[\text{func2}(a, \text{func1}) \]
(c) \[a = 4 \]
 \[b = 5 \]
 \[\text{func3}(a, b, \text{func1}) \]
(d) \[a = 6 \]
 \[b = 7 \]
 \[\text{func3}(a, a, \text{func1}) \]
(e) \[a = 8 \]
 \[b = 9 \]
 \[\text{func3}(a, b, \text{func1}) \]

4. Write the definition of a Python function called \texttt{isNeg} which takes a single parameter \texttt{myList}, which is a list of integers. The function \texttt{isNeg} should return \texttt{True} if \texttt{myList} consists entirely of negative integers and should return \texttt{False} otherwise.
5. Below is a transcript of a shell session in Python. Write what the Python shell would print out after each line.

```python
>>> 'Hello Dolly'.split()
['Hello', 'Dolly']
>>> 'Hello Dolly\n'.strip()
'Hello Dolly'
>>> 'Hello'*2
'HelloHello'
>>> list('Hello')
['H', 'e', 'l', 'l', 'o']
>>> print('Hello')
Hello
```

6. What do we mean when we say that a dictionary is *mutable*, but a string is *immutable*?

7. Write statements in Python assigning to the three variables `eString`, `eList` and `eDict` the empty string, the empty list and the empty dictionary, respectively.

8. Consider the list `dist = [555, 30, 30, 51, 45]`. What would the output be if you type the following instructions at the Python prompt?

 a) `dist[-2]`
 b) `dist[:3]`
 c) `dist[1:3]`
 d) `dist*3`
 e) `type(dist) == dict`
 f) `type(dist[0]) == int`
 g) `min(dist)`

9. You have been given the following two lists of stars and their distances to us in light years:

   ```python
   stars = ['Aludra', 'Zosma', 'Deneb', 'Aldebaran', 'Spicka', 'Castor']
   distances = [320, 58, 1425, 67, 250, 51]
   ```

 Write a function called `makeDic`, that takes the two lists and returns a dictionary with the names as the keys and distances as the values. Assign the result of `makeDic` to `disDict`.

 a) Using `disDict`, write a Python instruction that would give the distance of ‘Aldebaran’.
 b) Write a Python instruction that would add the distance of 20 for ‘Menkar’ to `disDict`.
 c) Write a Python instruction that would update the score of ‘Aludra’ to 3200 in `disDict`.
 d) Delete ‘Castor’ and its distance from `disDict`.