Modular Multiplication

Given \(A, B < n \), compute \(P = A \cdot B \mod n \)

Methods:

- Multiply and reduce:
 Multiply: \(P' = A \cdot B \) (\(2k \)-bit number)
 Reduce: \(P = P' \mod n \) (\(k \)-bit number)

- Interleave multiply and reduce steps

- Montgomery’s method
Montgomery’s Method

This method replaces division by \(n \) operation with division by \(2^k \)

Assuming \(n \) is a \(k \)-bit odd integer, we assign \(r = 2^k \), and map the integers \(a \in [0, n - 1] \) to the integers \(\bar{a} \in [0, n - 1] \) using the one-to-one mapping

\[
\bar{a} = a \cdot r \pmod{n}
\]

We call \(\bar{a} \) the \(n \)-residue of \(a \)

The **Montgomery product** of two \(n \)-residues is defined as

\[
\text{MonPro}(\bar{a}, \bar{b}) = \bar{a} \cdot \bar{b} \cdot r^{-1} \pmod{n}
\]

where \(r^{-1} \) is the inverse of \(r \) modulo \(n \)
Montgomery Product

Property of the Montgomery product:

If \(c = a \cdot b \mod n \), then \(\bar{c} = \text{MonPro}(\bar{a}, \bar{b}) \)

\[
\bar{c} = a \cdot b \cdot r^{-1} \quad (\mod n)
\]

\[
= (a \cdot r) \cdot (b \cdot r) \cdot r^{-1} \quad (\mod n)
\]

\[
= \text{MonPro}(\bar{a}, \bar{b})
\]

In order to compute \(\text{MonPro}(\bar{a}, \bar{b}) \), we need \(n' \)

\[
r \cdot r^{-1} - n \cdot n' = 1
\]

(Use the extended Euclidean algorithm)

\textbf{function} \(\text{MonPro}(\bar{a}, \bar{b}) \)

1. \(t := \bar{a} \cdot \bar{b} \)
2. \(u := (t + (t \cdot n' \mod r) \cdot n)/r \)
3. \(\text{if } u \geq n \text{ then return } u - n \text{ else return } u \)

Only modulo \(r \) arithmetic is required
Montgomery Exponentiation

Montgomery’s method is not suitable for a single modular multiplication because preprocessing operations are time consuming.

function ModExp(M, e, n) { n is odd }
1. Compute \(n' \) using Euclid’s algorithm
2. \(\bar{M} := M \cdot r \mod n \)
3. \(\bar{C} := 1 \cdot r \mod n \)
4. for \(i = h - 1 \) down to 0 do
5. \(\bar{C} := \text{MonPro}(\bar{C}, \bar{C}) \)
6. if \(e_i = 1 \) then \(\bar{C} := \text{MonPro}(\bar{C}, \bar{M}) \)
7. \(C := \text{MonPro}(\bar{C}, 1) \)
8. return \(C \)

Note for Step 7:

\[
C = (C \cdot r) \cdot 1 \cdot r^{-1} \pmod{n} \\
= \text{MonPro}(\bar{C}, 1)
\]
Algorithms for Montgomery Product

Separated Operand Scanning
First computes $t = a \cdot b$ and then interleaves the computations of $m = t \cdot n' \mod r$ and $u = (t + m \cdot n)/r$. Squaring can be optimized.

This method requires $2s + 2$ words of space.

Finely Integrated Product Scanning
Interleaves computation of $a \cdot b$ and $m \cdot n$ by scanning the words of m

It uses the same space to keep m and u, reducing the temporary space to $s + 3$ words.

Coarsely Integrated Hybrid Scanning
The computation of $a \cdot b$ is split into 2 loops, and the second loop is interleaved with the computation of $m \cdot n$

This method also requires $s + 3$ words of space.
Montgomery Algorithms

Finely Integrated Operand Scanning
The computation of $a \cdot b$ and $m \cdot n$ is performed in a single loop

This method also requires $s+3$ words of space

Coarsely Integrated Operand Scanning
Improves the SOS method by integrating the multiplication and reduction steps. Instead of computing the entire product $a \cdot b$, then reducing, we alternate between iterations of the outer loops for multiplication and reduction.

This method also requires $s+3$ words of space
Comparing Montgomery Algorithms

Operation and space requirements:

<table>
<thead>
<tr>
<th></th>
<th>Add</th>
<th>Read/Write</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOS</td>
<td>$4s^2 + 4s + 2$</td>
<td>$8s^2 + 13s + 5$</td>
<td>$2s + 2$</td>
</tr>
<tr>
<td>FIPS</td>
<td>$6s^2 + 2s + 2$</td>
<td>$14s^2 + 16s + 3$</td>
<td>$s + 3$</td>
</tr>
<tr>
<td>CIHS</td>
<td>$4s^2 + 4s + 2$</td>
<td>$9.5s^2 + 11.5s + 3$</td>
<td>$s + 3$</td>
</tr>
<tr>
<td>FIOS</td>
<td>$5s^2 + 3s + 2$</td>
<td>$10s^2 + 9s + 3$</td>
<td>$s + 3$</td>
</tr>
<tr>
<td>CIOS</td>
<td>$4s^2 + 4s + 2$</td>
<td>$8s^2 + 12s + 3$</td>
<td>$s + 3$</td>
</tr>
</tbody>
</table>

All of these five methods require $2s^2 + s$ multiplications.

Timings in milliseconds on a i486DX4-100:
Cryptographer’s Wish List
(From Computer Architect)

• Single instruction cycle for Multiply-Add:

\[(C, S) := S + A \times B + C\]

\(A, B, C,\) and \(S\) are 32-bit integers

• Single instruction cycle for Square-Add:

\[(D, C, S) := S + 2 \times A \times B + C + D \times 2^{32}\]

\(A, B, C,\) and \(S\) are 32-bit, \(D\) is 1-bit integers.

• Single instruction cycle for Multiply-Add:

\[(C(x), S(x)) := S(x) + P(x) \times Q(x) + C(x)\]

\(A(x), B(x), C(x),\) and \(S(x)\) are degree 31 (length 32) polynomials with coefficients from the field \(GF(2)\).
Cryptographer’s Wish List

Example:

\[P(x) = x^3 + x^2 = 1100 \]
\[Q(x) = x^3 + x^2 + 1 = 1101 \]

\[(x^3) \cdot (x^3 + x^2 + 1) = x^6 + x^5 + x^3 \]
\[(x^2) \cdot (x^3 + x^2 + 1) = x^5 + x^4 + x^2 \]
\[P(x) \cdot Q(x) = x^6 + x^4 + x^3 + x^2 \]

\[(1000) \cdot (1101) = 1101000 \]
\[(0100) \cdot (1101) = 0110100 \]
\[P(x) \cdot Q(x) = 1011100 \]