Elliptic Curve Cryptography

- Introduction
- Computations on Elliptic Curves
- The Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware
Motivation

Problem:
Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and fields with parameters of more than 1000 bits.
- High computational effort on CPUs with 32-bit or 64-bit arithmetic
- Large parameter sizes critical for storage on small and embedded

Motivation:
Smaller field sizes providing equivalent security are desirable

Solution:
Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic schemes with coefficient sizes of 160-256 bits, reducing significantly the computational effort.
Computations on Elliptic Curves

- Elliptic curves are polynomials that define points based on the (simplified) Weierstraß equation:

\[y^2 = x^3 + ax + b \]

for parameters \(a, b\) that specify the exact shape of the curve

- On the real numbers and with parameters \(a, b \in \mathbb{R}\), an elliptic curve looks like this →

- Elliptic curves can not just be defined over the real numbers \(\mathbb{R}\) but over many other types of finite fields.

Example: \(y^2 = x^3 - 3x + 3\) over \(\mathbb{R}\)
In cryptography, we are interested in elliptic curves module a prime p:

Definition: Elliptic Curves over prime fields

The elliptic curve over \mathbb{Z}_p, $p > 3$ is the set of all pairs $(x, y) \in \mathbb{Z}_p$ which fulfill

\[y^2 = x^3 + ax + b \mod p \]

together with an imaginary point of infinity θ, where $a, b \in \mathbb{Z}_p$ and the condition

\[4a^3 + 27b^2 \neq 0 \mod p. \]

Note that $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$ is a set of integers with modulo p arithmetic.
Some special considerations are required to convert elliptic curves into a group of points:

- In any group, a special element is required to allow for the identity operation, i.e., given $P \in E$: $P + \theta = P = \theta + P$
- This identity point (which is not on the curve) is additionally added to the group definition.
- This (infinite) identity point is denoted by θ.

Elliptic Curve are symmetric along the x-axis:

- Up to two solutions y and $-y$ exist for each quadratic residue x of the elliptic curve.
- For each point $P = (x, y)$, the inverse or negative point is defined as $-P = (x, -y)$.

[Diagram of an elliptic curve with a point at infinity labeled θ and points P and $-P$.]
Computations on Elliptic Curves (ctd.)

- Generating a group of points on elliptic curves based on point addition operation \(P + Q = R \), i.e., \((x_P, y_P) + (x_Q, y_Q) = (x_R, y_R)\)

- Geometric Interpretation of point addition operation
 - Draw straight line through \(P \) and \(Q \); if \(P = Q \) use tangent line instead
 - Mirror third intersection point of drawn line with the elliptic curve along the x-axis

- Elliptic Curve Point Addition and Doubling Formulas

 \[
 x_3 = s_2 - x_1 - x_2 \mod p \quad \text{and} \quad y_3 = s(x_1 - x_3) - y_1 \mod p
 \]

 where

 \[
 s = \begin{cases}
 \frac{y_2 - y_1}{x_2 - x_1} \mod p & \text{if } P \neq Q \text{ (point addition)} \\
 \frac{3x_1^2 + a}{2y_1} \mod p & \text{if } P = Q \text{ (point doubling)}
 \end{cases}
 \]
Example: Given $E: y^2 = x^3 + 2x + 2 \mod 17$ and point $P=(5,1)$

Goal: Compute $2P = P+P = (5,1)+(5,1) = (x_3, y_3)$

\[
s = \frac{3x_1^2 + a}{2y_1} = (2 \cdot 1)^{-1}(3 \cdot 5^2 + 2) = 2^{-1} \cdot 9 \equiv 9 \cdot 9 \equiv 13 \mod 17
\]

\[
x_3 = s^2 - x_1 - x_2 = 13^2 - 5 - 5 = 159 \equiv 6 \mod 17
\]

\[
y_3 = s(x_1 - x_3) - y_1 = 13(5 - 6) - 1 = -14 \equiv 3 \mod 17
\]

Finally $2P = (5,1) + (5,1) = (6,3)$
The points on an elliptic curve and the point at infinity θ form cyclic subgroups

\[
\begin{align*}
2P &= (5,1)+(5,1) = (6,3) & 11P &= (13,10) \\
3P &= 2P+P = (10,6) & 12P &= (0,11) \\
4P &= (3,1) & 13P &= (16,4) \\
5P &= (9,16) & 14P &= (9,1) \\
6P &= (16,13) & 15P &= (3,16) \\
7P &= (0,6) & 16P &= (10,11) \\
8P &= (13,7) & 17P &= (6,14) \\
9P &= (7,6) & 18P &= (5,16) \\
10P &= (7,11) & 19P &= \theta
\end{align*}
\]

This elliptic curve has order $\#E = |E| = 19$ since it contains 19 points in its cyclic group.
Number of Points on an Elliptic Curve

- How many points can be on an arbitrary elliptic curve?
 - Consider previous example: $E: y^2 = x^3 + 2x + 2 \mod 17$ has 19 points
 - However, determining the point count on elliptic curves in general is hard
- But Hasse’s theorem bounds the number of points to a restricted interval

\[p + 1 - 2\sqrt{p} \leq \#E \leq p + 1 + 2\sqrt{p} \]

Definition: Hasse’s Theorem:

Given an elliptic curve module p, the number of points on the curve is denoted by $\#E$ and is bounded by

Interpretation: The number of points is „close to“ the prime p

Example: To generate a curve with about 2^{160} points, a prime with a length of about 160 bits is required
Elliptic Curve Discrete Logarithm Problem

- Cryptosystems rely on the hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition: Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a primitive element \(P \) and another element \(T \) on an elliptic curve \(E \). The ECDL problem is finding the integer \(d \), where \(1 \leq d \leq \#E \) such that

\[
\underbrace{P + P + \ldots + P}_{d \text{ times}} = dP = T.
\]

- Cryptosystems are based on the idea that \(d \) is large and kept secret and attackers cannot compute it easily
- If \(d \) is known, an efficient method to compute the point multiplication \(dP \) is required to create a reasonable cryptosystem
 - Known Square-and-Multiply Method can be adapted to Elliptic Curves
 - The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm
Double-and-Add Algorithm for Point Multiplication

Double-and-Add Algorithm

Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits d_i
Output: $T = dP$

Initialization:
$T = P$

Algorithm:
FOR $i = t - 1$ DOWNTO 0
 $T = T + T \mod n$
 IF $d_i = 1$
 $T = T + P \mod n$
RETURN (T)

Example: $26P = (11010_2)P = (d_4d_3d_2d_1d_0)_2P$.

<table>
<thead>
<tr>
<th>Step</th>
<th>P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>#0</td>
<td>$P = 1_2P$</td>
<td>initial setting</td>
</tr>
<tr>
<td>#1a</td>
<td>$P + P = 2P = 10_2P$</td>
<td>DOUBLE (bit d_3)</td>
</tr>
<tr>
<td>#1b</td>
<td>$2P + P = 3P = 100_2P + 1_2P = 11_2P$</td>
<td>ADD (bit $d_3=1$)</td>
</tr>
<tr>
<td>#2a</td>
<td>$3P + 3P = 6P = 2(11_2P) = 110_2P$</td>
<td>DOUBLE (bit d_2)</td>
</tr>
<tr>
<td>#2b</td>
<td>$6P + 6P = 12P = 2(110_2P) = 1100_2P$</td>
<td>no ADD ($d_2 = 0$)</td>
</tr>
<tr>
<td>#3a</td>
<td>$12P + P = 13P = 1100_2P + 1_2P = 1110_2P$</td>
<td>DOUBLE (bit d_1)</td>
</tr>
<tr>
<td>#3b</td>
<td>$13P + 13P = 26P = 2(1110_2P) = 11010_2P$</td>
<td>ADD (bit $d_1=1$)</td>
</tr>
<tr>
<td>#4a</td>
<td>$13P + 13P = 26P = 2(11010_2P) = 11010_2P$</td>
<td>no ADD ($d_0 = 0$)</td>
</tr>
<tr>
<td>#4b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

- Given a prime \(p \), a suitable elliptic curve \(E \) and a point \(P=(x_p,y_p) \)
- The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

 Alice
 - Choose \(k_{PrA} = a \in \{2, 3, \ldots, #E-1\} \)
 - Compute \(k_{PubA} = A = aP = (x_A, y_A) \)
 - Compute \(aB = T_{ab} \)

 Bob
 - Choose \(k_{PrB} = b \in \{2, 3, \ldots, #E-1\} \)
 - Compute \(k_{PubB} = B = bP = (x_B, y_B) \)
 - Compute \(bA = T_{ab} \)

- Joint secret between Alice and Bob: \(T_{AB} = (x_{AB}, y_{AB}) \)
- Proof for correctness:
 - Alice computes \(aB = a(bP) = abP \)
 - Bob computes \(bA = b(aP) = abP \) since group is associative
- One of the coordinates of the point \(T_{AB} \) (usually the x-coordinate) can be used as session key (often after applying a hash function)
The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) (ctd.)

- The ECDH is often used to derive session keys for (symmetric) encryption
- One of the coordinates of the point T_{AB} (usually the x-coordinate) is taken as session key

Alice

Choose $k_{PrA} = a \in \{2, 3, \ldots, \#E-1\}$

Compute $k_{PubA} = A = aP = (x_A, y_A)$

Compute $aB = T_{ab} = (x_T, y_T)$

Define key $k_{AES} = x_T$

Given a message m:
Encrypt $c = AES_{k_{AES}}(m)$

Bob

Choose $k_{PrB} = b \in \{2, 3, \ldots, \#E-1\}$

Compute $k_{PubB} = B = bP = (x_B, y_B)$

Compute $bA = T_{ab} = (x_T, y_T)$

Define key $k_{AES} = x_T$

Received ciphertext c:
Decrypt $m = AES^{-1}_{k_{AES}}(c)$

- In some cases, a hash function (see next chapters) is used to derive the session key
Security Aspects

- Why are parameters significantly smaller for elliptic curves (160-256 bit) than for RSA (1024-3076 bit)?
 - Attacks on groups of elliptic curves are weaker than available factoring algorithms or integer DL attacks
 - Best known attacks on elliptic curves (chosen according to cryptographic criterions) are the Baby-Step Giant-Step and Pollard-Rho method
 - Complexity of these methods: on average, roughly \sqrt{p} steps are required before the ECDLP can be successfully solved

- Implications to practical parameter sizes for elliptic curves:
 - An elliptic curve using a prime p with 160 bit (and roughly 2^{160} points) provides a security of 2^{80} steps that required by an attacker (on average)
 - An elliptic curve using a prime p with 256 bit (roughly 2^{256} points) provides a security of 2^{128} steps on average
Implementations in Hardware and Software

- Elliptic curve computations usually regarded as consisting of four layers:
 - Basic modular arithmetic operations are computationally most expensive
 - Group operation implements point doubling and point addition
 - Point multiplication can be implemented using the Double-and-Add method
 - Upper layer protocols like ECDH and ECDSA

- Most efforts should go in optimizations of the modular arithmetic operations, such as
 - Modular addition and subtraction
 - Modular multiplication
 - Modular inversion
Implementations in Hardware and Software

- Software implementations
 - Optimized 256-bit ECC implementation on 3GHz 64-bit CPU requires about 2 ms per point multiplication
 - Less powerful microprocessors (e.g., on SmartCards or cell phones) even take significantly longer (>10 ms)

- Hardware implementations
 - High-performance implementations with 256-bit special primes can compute a point multiplication in a few hundred microseconds on reconfigurable hardware
 - Dedicated chips for ECC can compute a point multiplication even in a few ten microseconds
Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem. It requires, for instance, arithmetic modulo a prime.

ECC can be used for key exchange, for digital signatures and for encryption.

ECC provides the same level of security as RSA or discrete logarithm systems over \mathbb{Z}_p with considerably shorter operands (approximately 160–256 bit vs. 1024–3072 bit), which results in shorter ciphertexts and signatures.

In many cases ECC has performance advantages over other public-key algorithms.

ECC is slowly gaining popularity in applications, compared to other public-key schemes, i.e., many new applications, especially on embedded platforms, make use of elliptic curve cryptography.

Lessons Learned