Fields in Cryptography

Çetin Kaya Koç

http://cs.ucsb.edu/~koc/cs178
koc@cs.ucsb.edu
Field Axioms

- A field \mathcal{F} consists of a set S and two operations which we will call addition and multiplication, and denote them by \oplus and \otimes.
- The set S has two special elements, denoted by 0 and 1.
- The set S and the addition operation \oplus form an additive group denoted by $G_a = (S, \oplus)$ such that 0 is the neutral (identity) element of G_a.
- Also the set $S^* = S - \{0\}$ and the multiplication operation \otimes form a multiplicative group denoted by $G_m = (S^*, \otimes)$ such that 1 is the neutral (identity) element of G_m.
- Furthermore, the distributivity of multiplication over addition holds:

$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c) \quad \text{for} \quad a, b, c \in S$$
The number of elements in a field is the **size** of the field, which can be finite or infinite.

The **characteristic** k of a field is the smallest number of times one must use 1 (the identity element of G_m) in a sum (using the addition operation \oplus) to obtain 0 (the identity element of G_a)

$$1 \oplus 1 \oplus \cdots \oplus 1 = 0$$

The characteristic is said to be zero, if the repeated sum never reaches the additive identity element 0.

Koç (http://cs.ucsb.edu/~koc)
The set of integers \mathbb{Z} and the integer addition $+$ and multiplication operation \times does not form a field.

We can easily verify that $(\mathbb{Z}, +)$ is an additive group with identity 0.

However, $(\mathbb{Z} - \{0\}, \times)$ is not a multiplicative group; for example, the element $2 \in \mathbb{Z} - \{0\}$, however, it does not have an inverse: There is no such $x \in \mathbb{Z} - \{0\}$ that would give $2 \times x = 1$.

In fact, $(\mathbb{Z}, +, \times)$ forms a **ring**, another mathematical structure similar to field, which does not require a multiplicative group.

In a ring, the distributivity of multiplication over addition holds.
Infinite Fields

- A rational number is defined to be a number of the form $\frac{a}{b}$ such that $b \neq 0$ and $a, b \in \mathbb{Z}$

- The set of rational numbers \mathbb{Q} together with the usual addition $+$ and multiplication \times operations, with additive and multiplicative identities 0 and 1, respectively, forms a field.

- Indeed, $(\mathbb{Q}, +)$ is an additive group with identity 0; the additive inverse of $\frac{a}{b}$ is found as $-\frac{a}{b}$.

- Also, (\mathbb{Q}, \times) is a multiplicative group with identity 1; the multiplicative inverse of $\frac{a}{b}$ with $a \neq 0$ is found as $\frac{b}{a}$.

- The size of the field \mathbb{Q} is infinity; the characteristic of \mathbb{Q} is zero since the sum $1 + 1 + \cdots + 1$ can never be equal to 0.
Similarly, the set of real numbers \mathbb{R} together with the usual addition $+$ and multiplication \times operations, with additive and multiplicative identities 0 and 1, respectively, form a field.

Also, the set of complex numbers \mathbb{C} together with the usual addition $+$ and multiplication \times operations, with additive and multiplicative identities 0 and 1, respectively, forms a field.

Both of these fields have infinite size and zero characteristic.

In cryptography, we deal with computable objects, and we have finite memory, therefore, infinite fields are not suitable.

In cryptography, we deal with finite fields, a branch of mathematics where the name of Évariste Galois has a special place.
Évariste Galois (1811-1832) was a French mathematician born in Bourg-la-Reine.

While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a long-standing problem.

His work laid the foundations for Galois theory and group theory, two major branches of abstract algebra, and the subfield of Galois connections.

He was the first person to use the word “group” (French: groupe) as a technical term in mathematics to represent a group of permutations.

A radical Republican during the monarchy of Louis Philippe in France, he died from wounds suffered in a duel under questionable circumstances at the age of twenty.
Finite Fields

- First we observe that for a prime p the set \mathbb{Z}_p together with the addition and multiplication mod p operations forms a finite field of p elements: we will denote this field by $\text{GF}(p)$, the Galois field of p elements.

- The additive group $(\mathbb{Z}_p, +)$ has the elements $\mathbb{Z}_p = \{0, 1, 2, \ldots, p - 1\}$, the operation is addition mod p, and the additive identity element is 0.

- The multiplicative group (\mathbb{Z}_p^*, \times) has the elements $\mathbb{Z}_p^* = \{1, 2, \ldots, p - 1\}$, the operation is multiplication mod p, and the multiplicative identity element is 1.

- The size of $\text{GF}(p)$ is p, while the characteristic is also p since

$$
\underbrace{1 + 1 + 1 + \cdots + 1}^p = 0
$$
The Smallest Field: GF(2)

- Since 2 is a prime, GF(2) is a Galois field of 2 elements.
- The set is given as \{0, 1\}; the size is 2, and the characteristic is 2.
- The additive identity is 0 while the multiplicative identity is 1.
- The addition and multiplication operations are as follows:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- In other words, the addition operation in GF(2) is equivalent to the Boolean exclusive OR operation, while the multiplication operation in GF(2) is the Boolean AND operation.
3 is also a prime, and thus, GF(3) is a Galois field of 3 elements.
The set is given as \{0, 1, 2\}; the size is 3, and the characteristic is 3.
The additive identity is 0 while the multiplicative identity is 1.
The additive group: (\{0, 1, 2\}, +), the multiplicative group: (\{1, 2\}, \times).
The addition and multiplication operations in GF(3) are defined as mod 3 addition and mod 3 multiplication, respectively:

\[
\begin{array}{c|ccc}
+ & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1 \\
\end{array}
\quad \quad \quad
\begin{array}{c|ccc}
\times & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 \\
2 & 0 & 2 & 1 \\
\end{array}
\]
Since the size p of $\text{GF}(p)$ is a prime, a question one can pose is whether there are fields of size other than a prime.

For example, is there a field with 6 elements?

We can try to see if mod 6 arithmetic works, however, we already know that multiplicative inverse of certain elements mod 6 do not exist.

For example, 3 does not have a multiplicative inverse in mod 6, since there is no number a that satisfies

$$3 \cdot a = a \cdot 3 = 1 \pmod{6}$$

So, our question remains: Is there a field with 6 elements?
Galois showed that the size of a finite field can only be a power of a prime number, in other words, p^k for $k = 1, 2, 3, \ldots$

There is a particular construction of such fields, in fact, we already know how to construct $\text{GF}(p)$, it is simply mod p arithmetic over \mathbb{Z}_p.

How does one construct $\text{GF}(p^2)$ or $\text{GF}(p^3)$, etc.

For example, what is the set and the arithmetic of $\text{GF}(7^3)$?

First we show how to construct the Galois field of 2^k elements: $\text{GF}(2^k)$

$\text{GF}(2^k)$ is based on the arithmetic of polynomials whose coefficients are from the base field $\text{GF}(2)$ and whose degree is at most $k - 1$.
Construction of \(\mathbb{GF}(2^k) \)

- The elements of \(\mathbb{GF}(2^k) \) is polynomials whose degree is at most \(k - 1 \) and coefficients from \(\mathbb{GF}(2) \), that is \(\{0, 1\} \)
- Let \(a(x), b(x) \in \mathbb{GF}(2^k) \), then they are written as

\[
\begin{align*}
 a(x) &= a_{k-1}x^{k-1} + \cdots + a_1x + a_0 \\
 b(x) &= b_{k-1}x^{k-1} + \cdots + b_1x + b_0
\end{align*}
\]

such that \(a_i, b_i \in \{0, 1\} \)

- The field addition \(c(x) = a(x) + b(x) \) is performed by polynomial addition, where the coefficients are added in \(\mathbb{GF}(2) \), therefore,

\[
 c(x) = a(x) + b(x) = c_{k-1}x^{k-1} + \cdots + c_1x + c_0
\]

where \(c_i = a_i + b_i \pmod{2} \)
Construction of $\text{GF}(2^k)$

- On the other hand, the field multiplication is performed by multiplying the polynomials, which would give a polynomial of degree at most $2k - 2$
- Then, reducing the product polynomial modulo an **irreducible polynomial** of degree k
- Therefore, in order to construct a Galois field $\text{GF}(2^k)$, we need an irreducible polynomial of degree k
- As we have seen, irreducible polynomials of any degree exist, in fact, usually there are more than one for a given k
- It turns out we can use any one of these degree k irreducible polynomials, and construct the field $\text{GF}(2^k)$ — it does not matter which one we choose, all of these size 2^k Galois fields are isomorphic to one another
Irreducible Polynomials over GF(2)

<table>
<thead>
<tr>
<th>k</th>
<th>irreducible polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>$x + 1$</td>
</tr>
<tr>
<td>2</td>
<td>$x^2 + x + 1$</td>
</tr>
<tr>
<td>3</td>
<td>$x^3 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^3 + x^2 + 1$</td>
</tr>
<tr>
<td>4</td>
<td>$x^4 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^4 + x^3 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^4 + x^3 + x^2 + x + 1$</td>
</tr>
<tr>
<td>5</td>
<td>$x^5 + x^2 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^5 + x^3 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^5 + x^3 + x^2 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^5 + x^4 + x^3 + x + 1$</td>
</tr>
<tr>
<td>6</td>
<td>$x^6 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^6 + x^3 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^6 + x^5 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^6 + x^4 + x^2 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^6 + x^5 + x^4 + x^2 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^6 + x^5 + x^4 + x + 1$</td>
</tr>
<tr>
<td>7</td>
<td>$x^7 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^3 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^4 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^6 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^3 + x^2 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^5 + x^2 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^4 + x^3 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^6 + x^4 + x^2 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^5 + x^4 + x^3 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^7 + x^6 + x^5 + x^4 + 1$</td>
</tr>
</tbody>
</table>
Irreducible Polynomials over GF(2)

<table>
<thead>
<tr>
<th>k</th>
<th>irreducible polynomials</th>
<th>irreducible polynomials</th>
<th>irreducible polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$x^8 + x^4 + x^3 + x + 1$</td>
<td>$x^8 + x^7 + x^2 + x + 1$</td>
<td>$x^8 + x^5 + x^3 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^8 + x^7 + x^2 + x + 1$</td>
<td>$x^8 + x^6 + x^5 + x + 1$</td>
<td>$x^8 + x^7 + x^5 + x + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^8 + x^7 + x^6 + x + 1$</td>
<td>$x^8 + x^4 + x^3 + x^2 + 1$</td>
<td>$x^8 + x^5 + x^3 + x^2 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^8 + x^6 + x^3 + x^2 + 1$</td>
<td>$x^8 + x^7 + x^3 + x^2 + 1$</td>
<td>$x^8 + x^6 + x^5 + x^2 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^8 + x^5 + x^4 + x^3 + 1$</td>
<td>$x^8 + x^6 + x^5 + x^3 + 1$</td>
<td>$x^8 + x^7 + x^5 + x^3 + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^8 + x^6 + x^5 + x^4 + 1$</td>
<td>$x^8 + x^7 + x^5 + x^4 + 1$</td>
<td>$x^8 + x^7 + x^5 + x^3 + 1$</td>
</tr>
<tr>
<td>257</td>
<td>$x^{257} + x^{12} + 1$</td>
<td>$x^{257} + x^{41} + 1$</td>
<td>$x^{257} + x^{48} + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^{257} + x^{51} + 1$</td>
<td>$x^{257} + x^{65} + 1$</td>
<td>$x^{257} + x^{192} + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^{257} + x^{206} + 1$</td>
<td>$x^{257} + x^{209} + 1$</td>
<td>$x^{257} + x^{216} + 1$</td>
</tr>
<tr>
<td></td>
<td>$x^{257} + x^{245} + 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Construction of GF(2^2)

- GF(2^2) has $2^2 = 4$ elements: $\{0, 1, x, x + 1\}$
- The field addition is performed by adding the field elements, where the coefficients are added in GF(2)

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
<th>x</th>
<th>x + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>x + 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>x + 1</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x + 1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x + 1</td>
<td>x + 1</td>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- To perform field multiplication in GF(2^2), we need an irreducible polynomial of degree 2
- There exists only one irreducible polynomial of degree 2 which is $p(x) = x^2 + x + 1$
Multiplication in $\text{GF}(2^2)$ is performed by first multiplying the given input polynomials, where the coefficient arithmetic is performed in $\text{GF}(2)$, and reducing the result mod $p(x) = x^2 + x + 1$.

For example, if $a(x) = x$ and $b(x) = x + 1$, then we have

$$c(x) = x \cdot (x + 1) = x^2 + x$$

We now divide $c(x)$ by $p(x)$ and find the remainder $r(x)$ as

$$\begin{array}{c|cc}
 & x^2 + x & 1 \\
\hline
x^2 + x + 1 & x^2 + x + 1 \\
1 & 1
\end{array}$$

Since $r(x) = 1$, the product of x and $x + 1$ in $\text{GF}(2^2)$ is equal to 1.
Multiplication in GF(2^2)

- We only need perform reduction mod $p(x)$ if the degree of the resulting polynomial is more than 1.
- Reduction mod $p(x)$ brings down the degree to k, and therefore, finding an element of GF(2^k) which are polynomials whose coefficients are in GF(2) and the degree at most $k - 1$.
- If we continue with the construction of the multiplication table for GF(2^2), we find the following:

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>x</th>
<th>$x + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>$x + 1$</td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>x</td>
<td>$x + 1$</td>
<td>1</td>
</tr>
<tr>
<td>$x + 1$</td>
<td>0</td>
<td>$x + 1$</td>
<td>1</td>
<td>x</td>
</tr>
</tbody>
</table>
Representing the Elements of GF(2^k)

- An element $a(x)$ of GF(2^k) is a polynomial of degree at most $k - 1$, with coefficients from GF(2), as

$$a(x) = a_{k-1}x^{k-1} + \cdots + a_1x + a_0$$

- While the polynomial representation is the natural representation of the elements of GF(2^k), we can also represent $a(x)$ using the coefficient vector as $(a_{k-1} \cdots a_1 a_0)$

- This is a binary vector, but it should not be confused with binary numbers

- Whenever we perform arithmetic with these vectors, we need to make sure that they are correctly operated on, for example, addition of $a(x)$ and $b(x)$ using their binary vector representation is performed by adding the individual vector bits mod 2
Construction of GF(2^3)

- GF(2^3) has 2^3 = 8 elements:
 \[\{0, 1, x, x + 1, x^2, x^2 + 1, x^2 + x, x^2 + x + 1\} \]

- We can represent the field elements more compactly using the binary vectors as \{000, 001, 010, 011, 100, 101, 110, 111\}, for example, 011 represents \(x + 1\), 100 represents \(x^2\), and so on.

- The field addition is performed by adding coefficients in GF(2), which corresponds to bitwise XOR operation.

\[
\begin{array}{c}
011 \\
\oplus 110 \\
\hline
101
\end{array}
+ \begin{array}{c}
x + 1 \\
\hline
x^2 + x \\
\hline
x^2 + 1
\end{array}
\]
Addition Table in GF(2^3)

<table>
<thead>
<tr>
<th>+</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>001</td>
<td>001</td>
<td>000</td>
<td>011</td>
<td>010</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>110</td>
</tr>
<tr>
<td>010</td>
<td>010</td>
<td>011</td>
<td>000</td>
<td>001</td>
<td>110</td>
<td>111</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>011</td>
<td>011</td>
<td>010</td>
<td>001</td>
<td>000</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
</tr>
<tr>
<td>101</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>110</td>
<td>001</td>
<td>000</td>
<td>011</td>
<td>010</td>
</tr>
<tr>
<td>110</td>
<td>110</td>
<td>111</td>
<td>100</td>
<td>101</td>
<td>010</td>
<td>011</td>
<td>000</td>
<td>001</td>
</tr>
<tr>
<td>111</td>
<td>111</td>
<td>110</td>
<td>101</td>
<td>100</td>
<td>011</td>
<td>010</td>
<td>001</td>
<td>000</td>
</tr>
</tbody>
</table>
Multiplication Table in GF(2^3)

To perform multiplication in GF(2^3), we need a polynomial of degree 3 over GF(2), which we select from the list as $p(x) = x^3 + x + 1$

<table>
<thead>
<tr>
<th>×</th>
<th>000</th>
<th>001</th>
<th>010</th>
<th>011</th>
<th>100</th>
<th>101</th>
<th>110</th>
<th>111</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>001</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>010</td>
<td>000</td>
<td>010</td>
<td>100</td>
<td>110</td>
<td>011</td>
<td>001</td>
<td>111</td>
<td>101</td>
</tr>
<tr>
<td>011</td>
<td>000</td>
<td>011</td>
<td>110</td>
<td>101</td>
<td>111</td>
<td>100</td>
<td>001</td>
<td>010</td>
</tr>
<tr>
<td>100</td>
<td>000</td>
<td>100</td>
<td>011</td>
<td>111</td>
<td>110</td>
<td>010</td>
<td>101</td>
<td>001</td>
</tr>
<tr>
<td>101</td>
<td>000</td>
<td>101</td>
<td>001</td>
<td>100</td>
<td>010</td>
<td>111</td>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>110</td>
<td>000</td>
<td>110</td>
<td>111</td>
<td>001</td>
<td>101</td>
<td>011</td>
<td>001</td>
<td>100</td>
</tr>
<tr>
<td>111</td>
<td>000</td>
<td>111</td>
<td>101</td>
<td>010</td>
<td>001</td>
<td>110</td>
<td>100</td>
<td>011</td>
</tr>
</tbody>
</table>

An example: $101 \cdot 100 \rightarrow (x^2 + 1) \cdot x^2 = x^4 + x^2$, then the reduction gives the product as $x^4 + x^2 = x \pmod{x^3 + x + 1}$ which is 010
The Galois Field GF(3^2)

- We have seen that the set of GF(3) is \{0, 1, 2\} while its arithmetic is addition and multiplication modulo 3
- Similar to the GF(2^k) case, in order to construct the Galois field GF(3^k), we need polynomials degree at most \(k - 1\) whose coefficients are in GF(3)
- For example, GF(3^2) has 9 elements and they are of the form \(a_1x + a_0\), where \(a_1, a_0 \in \{0, 1, 2\}\), which is given as
 \[
 \{0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2\}
 \]
- The addition is performed by polynomial addition, where the coefficient arithmetic is mod 3, for example:
 \[
 (x + 1) + (x + 2) = 2x
 \]
In order to perform multiplication in $\text{GF}(3^2)$, we need an irreducible polynomial of degree 2 over $\text{GF}(3)$.

This polynomial will be of the form $x^2 + ax + b$ such that $a, b \in \{0, 1, 2\}$.

Note that $b \neq 0$ (otherwise, we would have $x^2 + ax$ which is reducible).

Therefore, all possible irreducible candidates are

$$x^2 + 1, \ x^2 + 2, \ x^2 + x + 1, \ x^2 + x + 2, \ x^2 + 2x + 1, \ x^2 + 2x + 2$$

A quick check shows that $x^2 + 1$ is irreducible.

The other two irreducible polynomials are $x^2 + x + 2$ and $x^2 + 2x + 2$.
Multiplication of \(a(x) \) and \(b(x) \) in GF\((3^2) \) can be performed using

\[
c(x) = a(x) \cdot b(x) \pmod{x^2 + 1}
\]

For example, \(a(x) = x + 1 \) and \(b = 2x + 1 \) gives

\[
c(x) = (x + 1) \cdot (2x + 1) \pmod{x^2 + 1}
\]
\[
= 2x^2 + 3x + 1 \pmod{x^2 + 1}
\]
\[
= 2x^2 + 1 \pmod{x^2 + 1}
\]
\[
= 2
\]

Note in the construction of a Galois field, we select and use only one of the irreducible polynomials.
The Galois Field $\text{GF}(2^8)$

- The Galois field $\text{GF}(2^8)$ has $2^8 = 256$ elements:
 \[
 \{0, 1, x, x + 1, x^2, x^2 + 1, \ldots, x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1\}
 \]

- We can represent the field elements using the binary vectors of length 8 (or simply bytes) as
 \[
 \{00000000, 00000001, \ldots, 11111110, 11111111\}
 \]

- The addition and multiplication tables are quite large, each of which has 256 rows and 256 columns, and each entry is 8 bits (1 byte), requiring $256 \times 256 = 64k$ bytes of memory space for each table.

- $\text{GF}(2^8)$ is the building block of the Advanced Encryption Standard.

- The irreducible polynomial is $p(x) = x^8 + x^4 + x^3 + x + 1$.

Koç (http://cs.ucsb.edu/~koc) ucsb cs 178 intro to crypto winter 2014