What is PUF?

Examples of PUFs

PUF for identification and Authentication

PUF Notation, An approach to make a PUF experiment

Helper Data Algorithm or ECC based noise removal

BCH encoding and decoding for error correction

Security, Threats and Environmental Parameters
PUF as a Function

- Let \(x = 2^n \), \(y = 2^m \) where \(x \) denotes a set of \(n \)-bit challenges and \(y \) denotes a set of \(m \)-bit responses.
- Mapping between challenges and responses
- \((x_i, y_i)\) pairs are determined by manufacturing variations of the device.
Design philosophy

- $H(x_i, y_i)$ is distributed normally from 1 to n.
- $H(y_i, y_j)$ is approx. equal to $\frac{n}{2}$ when $H(x_i, x_j) = 1$ is given

"Apply crypt. hash function to response"
Ideal PUF

- Design philosophy
 - $H(x_i, y_i)$ is distributed normally from 1 to n.
 - $H(y_i, y_j)$ is approx. equal to $\frac{n}{2}$ when $H(x_i, x_j) = 1$ is given
 - “Apply crypt. hash function to response”
 - Observation requires evaluation of PUF
 - “Ring oscillator type PUF satisfies this”
Ideal PUF

- Design philosophy
 - $H(x_i, y_i)$ is distributed normally from 1 to n.
 - $H(y_i, y_j)$ is approx. equal to $\frac{n}{2}$ when $H(x_i, x_j) = 1$ is given
 - “Apply crypt. hash function to response”
 - Observation requires evaluation of PUF
 - “Ring oscillator type PUF satisfies this”

- Summary:
 - PUF_i should be unique to device i

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>100010101</td>
<td>110110</td>
</tr>
<tr>
<td>100010101</td>
<td>011010</td>
</tr>
<tr>
<td>101010101</td>
<td>010011</td>
</tr>
<tr>
<td>011010010</td>
<td>0101100</td>
</tr>
</tbody>
</table>

- Challenge
- Response

- Challenge
- Response
Ideal PUF

- **Design philosophy**
 - $H(x_i, y_i)$ is distributed normally from 1 to n.
 - $H(y_i, y_j)$ is approx. equal to $\frac{n}{2}$ when $H(x_i, x_j) = 1$ is given

 “Apply crypt. hash function to response”
 - Observation requires evaluation of PUF

 “Ring oscillator type PUF satisfies this”

- **Summary:**
 - PUF_i should be unique to device i
 - Each challenge and response pair should not be linkable

Ideal PUF

- **Design philosophy**
 - \(H(x_i, y_i) \) is distributed normally from 1 to \(n \).
 - \(H(y_i, y_j) \) is approx. equal to \(\frac{n}{2} \) when \(H(x_i, x_j) = 1 \) is given

 “Apply crypt. hash function to response”
 - Observation requires evaluation of PUF

 “Ring oscillator type PUF satisfies this”

- **Summary:**
 - \(PUF_i \) should be unique to device \(i \)
 - Each challenge and response pair should not be linkable
 - Challenge and response pairs should be independent

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>100010101</td>
<td>110110</td>
</tr>
<tr>
<td>100010101</td>
<td>010110</td>
</tr>
<tr>
<td>101010101</td>
<td>100011</td>
</tr>
<tr>
<td>011010010</td>
<td>011100</td>
</tr>
</tbody>
</table>

![Diagram](chart.png)
Principle of PUF

R1 \neq R2 \neq R3 \neq \cdots \neq Rm
Process variations in MOSFET

<table>
<thead>
<tr>
<th>Components (MOSFET)</th>
<th>Interconnect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td></td>
</tr>
<tr>
<td>Effective channel length</td>
<td>Line width and space</td>
</tr>
<tr>
<td>Gate length</td>
<td>Metal thickness</td>
</tr>
<tr>
<td>Component width</td>
<td>Contact and via size</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Parameters</td>
<td></td>
</tr>
<tr>
<td>Doping variations</td>
<td>Contact and via resistance</td>
</tr>
<tr>
<td>Deposition and anneal</td>
<td>Metal resistivity</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Parameters</td>
<td></td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>Line resistivity</td>
</tr>
<tr>
<td>Parasitic capacities</td>
<td>Line capacity</td>
</tr>
<tr>
<td>Gate and source resistivity</td>
<td></td>
</tr>
<tr>
<td>Leakage currents</td>
<td></td>
</tr>
</tbody>
</table>

Some important parameters that are affected by process variations, and the electrical parameters on which this is an impact.

Each challenge selects a unique pair of delay paths

Digital race condition on two paths with an identical delay in design
 - Random, uncontrollable process variations determines who will win
 - Arbiter output creates 1-bit output response
 - Multiple bits are obtained by duplicating the circuit or use of different challenge
Each challenge selects a unique pair of delay paths

Digital race condition on two paths with an identical delay in design
 - Random, uncontrollable process variations determines who will win
 - Arbiter output creates 1-bit output response
 - Multiple bits are obtained by duplicating the circuit or use of different challenge
Delay difference and so the arbiter output will be **device specific.** of an Arbiter PUF.

*** A *metastable state* occurs if both delays are nearly identical. After a short time, arbiter leaves the metastable state and outputs a random binary value.

In that case, the arbiter output is not device-specific. This phenomenon is the cause of unreliability (**noise**) of the responses.
Delay difference and so the arbiter output will be **device specific**. of an Arbiter PUF.

*** A *metastable state* occurs if both delays are nearly identical. After a short time, arbiter leaves the metastable state and outputs a random binary value.

In that case, the arbiter output is not device-specific. This phenomenon is the cause of unreliability (**noise**) of the responses.
Delay difference and so the arbiter output will be device specific. of an Arbiter PUF.

*** A metastable state occurs if both delays are nearly identical. After a short time, arbiter leaves the metastable state and outputs a random binary value.

In that case, the arbiter output is not device-specific. This phenomenon is the cause of unreliability (noise) of the responses.
Delay difference and so the arbiter output will be **device specific**. of an Arbiter PUF.

*** A *metastable state* occurs if both delays are nearly identical. After a short time, arbiter leaves the metastable state and outputs a random binary value.

In that case, the arbiter output is not device-specific. This phenomenon is the cause of unreliability (**noise**) of the responses.
Delay difference and so the arbiter output will be **device specific**. of an Arbiter PUF.

*** **A metastable state** occurs if both delays are nearly identical. After a short time, arbiter leaves the metastable state and outputs a random binary value.

In that case, the arbiter output is not device-specific. This phenomenon is the cause of unreliability (**noise**) of the responses.
Delay-based PUF: Arbiter PUF

- Delay difference and so the arbiter output will be device specific. of an Arbiter PUF.

*** A metastable state occurs if both delays are nearly identical. After a short time, arbiter leaves the metastable state and outputs a random binary value.

- In that case, the arbiter output is not device-specific. This phenomenon is the cause of unreliability (noise) of the responses.
Delay difference and so the arbiter output will be **device specific**. of an Arbiter PUF.

*** A *metastable state* occurs if both delays are nearly identical. After a short time, arbiter leaves the metastable state and outputs a random binary value.

In that case, the arbiter output is not device-specific. This phenomenon is the cause of unreliability (**noise**) of the responses.
Memory-based PUF: SRAM PUFs

(1) Logic circuit of an SRAM PUF (a cell)

(2) Transistor-level circuit of an SRAM PUF in a standard CMOS tech.
Memory-based PUF: Butterfly PUFs

(1) Logic circuit of an SRAM PUF (a cell)

(2) Schematic-level circuit of a butterfly PUF cell
PUF for Identification

- PUF-based identification method uses a unique and untamperable device identifier exploiting the physics of the device.

- Identification is similar to authentication but in this context it has weaker concept.

- PUF should provide the identity of the device without any convincing proof.

- In certain situations, identification is enough to achieve entity authentication.
PUF for Authentication

.toggle

- PUF gives a measure of the device specific physical feature.

- Therefore, device authentication is provided by PUF (not message authentication).

- Besides plain identification, also corroborative evidence of the device identity is required.

- Corroborative evidence means that it could only have been created by that particular device.

- For the device authentication:
 - the identity of a second party involved
 - the second party is active at the time of the evidence is created.
Device Authentication

Untrusted Supply chain

Is this device authentic to the manufacturer?

Device A

PUF A

(c_i, r_i)

Challenge

Response

10010101, 010110
10010101, 010110
10010101, 010110

PUF A

Challenge

Response

10010101, 010110
10010101, 010110
10010101, 010110

==
Creation of a PUF Instance:

\[\mathcal{P} \equiv \{ \text{puf}_i \leftarrow \mathcal{P}.\text{Create}(r^C_i) : \forall i, r^C_i \leftarrow \{0, 1\}^* \} \]

Random evaluation of PUF instance \(\text{puf}_i \) for challenge \(x \):

\[
y^{(j)}_i(x) \leftarrow \text{puf}_i(x).\text{Eval}(r^E_j \leftarrow \{0, 1\}^*)
\]

\[
Y_i(x) \leftarrow \text{puf}_i(x).\text{Eval}
\]

where \(r^C \) and \(r^E \) are randomization variables representing an undetermined fair coin tosses.
a PUF class generates responses for the challenges provided to it

\[Y_i(x) \leftarrow \text{puf}_i(x).\text{Eval} \]

where \(Y_i \)'s are responses for challenge \(x \).

Statistically, the distribution of PUF responses should be estimated.

This require experiments to understand the distribution statistics from observed PUF responses:

1. Experiments estimating the distribution for same challenge \(x \) on distinct evaluations.
2. These experiments should be repeated on responses for different challenges.
3. Experiments on responses from different PUF instances
PUF Experiment

- A PUF class generates responses for the challenges provided to it

\[
\text{Experiment}_P(N_{puf}, N_{chal}, N_{meas}) \rightarrow Y_{Exp(P)}
\]

\[
Y_{Exp(P)} = [y_i^{(j)}(x_k) \leftarrow \text{puf}_i(x_k).\text{Eval}(r_j^E)]
\]

with

\[
\forall 1 \leq j \leq N_{meas} : r_j^E \leftarrow \{0, 1\}^*,
\]

\[
\forall 1 \leq k \leq N_{chal} : x_k \leftarrow \mathcal{X}_P,
\]

\[
\forall 1 \leq i \leq N_{puf} : \text{puf}_i \leftarrow \mathcal{P},
\]

- If the conditions are important while doing experiments, then they should be specified with a parameter.
PUF Response Distances: \textit{intra} distance

- A PUF response \textit{intra} distance is a random variable refers to the distance between two responses from the same PUF instance and using the same challenge.

\[
D_{\text{intra}}^{\text{puf}_i}(x) \triangleq \text{dist}[Y_i(x); Y'_i(x)],
\]

with $Y_i(x)$ and $Y'_i(x)$ two distinct random evaluations of PUF instance puf_i on the same challenge x. $\text{dist}[;]$ denotes hamming distance between two random variables.

- For the \textit{reproducibility} of a PUF class, distribution of $D_{\text{intra}}^{\text{puf}_i}$ has some statistical properties.

- Estimation of mean ($\mu_{\text{intra}}^{\text{puf}_i}$), standard deviation ($\sum[D_{\text{intra}}^{\text{puf}_i}]$), histogram and order statistics should be found.
A PUF response **inter** distance is a random variable refers to the distance between two responses from different PUF instances and using the same challenge.

\[D_{\text{inter}}^P(x) \triangleq \text{dist}[Y(x); Y'(x)], \]

with \(Y(x) \) and \(Y'(x) \) two distinct random evaluations of two distinct PUF instances on the same challenge \(x \).

For the **reproducibility** of a PUF class, distribution of \(D_{\text{inter}}^\text{puf}_i \) has some statistical properties.

Estimation of mean \((\mu_{\text{inter}}) \), standard deviation \((\sum[D_{\text{inter}}^P]) \), histogram and order statistics should be found.
Quantitative tests yield to model a PUF by Hori et al., *Quantitative and Statistical Performance Evaluation of Arbiter Physical Unclonable Functions on FPGAs*. ReConFig2010, pp.298-303, 2010.
Experimental uniqueness results

<table>
<thead>
<tr>
<th>PUF</th>
<th>No</th>
<th>(N_{bits})</th>
<th>(\mu_{inter})</th>
<th>(\sigma_{inter})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM PUF</td>
<td>0</td>
<td>65536</td>
<td>49.59%</td>
<td>0.33%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>65536</td>
<td>49.61%</td>
<td>0.33%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>65536</td>
<td>49.68%</td>
<td>0.31%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>65536</td>
<td>49.72%</td>
<td>0.30%</td>
</tr>
<tr>
<td>Arbiter PUF (basic)</td>
<td>0</td>
<td>65536</td>
<td>47.13%</td>
<td>0.44%</td>
</tr>
<tr>
<td>Arbiter PUF (2-XOR)</td>
<td>0</td>
<td>32768</td>
<td>49.74%</td>
<td>0.29%</td>
</tr>
<tr>
<td>Ring Oscillator PUF (L.G.)</td>
<td>0</td>
<td>12544</td>
<td>46.86%</td>
<td>0.48%</td>
</tr>
<tr>
<td>Latch PUF</td>
<td>0</td>
<td>8192</td>
<td>34.84%</td>
<td>1.20%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>8192</td>
<td>37.01%</td>
<td>1.23%</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>8192</td>
<td>33.17%</td>
<td>1.62%</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8192</td>
<td>16.37%</td>
<td>2.02%</td>
</tr>
</tbody>
</table>

Inter-distances statistics (at nominal condition)

Two problems are solved with HDA or FE:

1. PUF responses are noisy. Some processing has to be employed to remove the noise.

2. PUF responses are not generally uniformly random. Hence, a processing is required to transform the possibly unknown distribution of the physical measurements into a uniform distributed response value.
FE in Secure Key Generation

Enrollment phase
Generating activation code

- $K \leftarrow \text{PUF}(x)$
- $C \leftarrow \text{ECC-Encoding}(r)$, r is random
- $h \leftarrow K + C$

Reconstruction phase

- $K' \leftarrow \text{PUF}(x)$
- $C' \leftarrow K' + h$
- $C \leftarrow \text{ECC-Decoding}(C')$
- $K \leftarrow C + h$
The action of eliminating noise found in the measurements is called Information Reconciliation.

Mapping the response X onto an element W of a set of Helper Data.

Helper Data has the following properties:

1. With a deterministic recovery function Rec, X can be recovered by means of W and a noisy response of the response X'.

2. The amount of uncertainty about an unknown response X only decreases with a limited amount when W for that response is known. This loss of useful uncertainty is unavoidable.

For the Helper Data W, the use of error correcting codes (ECC) is one of the solutions.
Privacy Amplification

- Besides noise removal, to guarantee a uniform distribution of the derived keys is another important issue and called as Privacy Amplification.

- Approximation of the distribution is obtained by collecting a lot of samples from different PUFs.

- There is a concept Strong Extractor:

 $$\text{Ext} : \{0, 1\}^n \rightarrow \{0, 1\}^l$$

 It can transform a random variable X, with an unknown distribution, into a new random variable K, with a distribution close to uniform.

 - Strong extractors can be implemented as pairwise independent universal hash functions.
 - A non-uniform selection of a hash function or keep using the same hash function for all the time gives only a minor deviation from uniformity in the distribution K.
A class of cyclic error correcting code
BCH Code: Bose-Chaudhuri-Hoequenghem

- A class of cyclic error correcting code
- It is constructed in Finite Fields
A class of cyclic error correcting code

It is constructed in Finite Fields

It is a generalized parity code.

BCH \((N,K,t)\) code can correct \(t\) bit errors

\[t = \left(\frac{N}{K}\right)^m - 1 \]

where \(m\) is an integer such that \(N = 2^m - 1\).
BCH Code: Bose-Chaudhuri-Hocequenghem

- A class of cyclic error correcting code
- It is constructed in Finite Fields
- It is a generalized parity code.
- Binary BCH codes are more popular
BCH Code: Bose-Chaudhuri-Hoquenghem

- A class of cyclic error correcting code
- It is constructed in Finite Fields
- It is a generalized parity code.
- Binary BCH codes are more popular
- Reed Solomon codes (RS) are a class of non-binary BCH codes
BCH Code: Bose-Chaudhuri-Hocquenghem

- A class of cyclic error correcting code
- It is constructed in Finite Fields
- It is a generalized parity code.
- Binary BCH codes are more popular
- Reed Solomon codes (RS) are a class of non-binary BCH codes
- Some special types of BCH codes are called as Golay code: $(23, 12), (31, 16)$, etc.
BCH Code: Bose-Chaudhuri-Hoequenghem

- A class of cyclic error correcting code
- It is constructed in Finite Fields
- It is a generalized parity code.
- Binary BCH codes are more popular
- Reed Solomon codes (RS) are a class of non-binary BCH codes
- Some special types of BCH codes are called as Golay code: (23, 12), (31, 16), etc.
- BCH \((N, K, t)\) code can correct \(t\) bit errors

\[
t = \frac{(N - K)}{m}
\]

(1)

where \(m\) is an integer such that \(N = 2^m - 1\).
Construction of \((N, K, t)\) BCH Code

- \(\alpha\) is the primitive element in GF\((p^m)\)
Construction of \((N, K, t)\) BCH Code

- \(\alpha\) is the primitive element in \(\text{GF}(p^m)\)
- \(N\) is the block length: \(N = 2^m - 1\)
- \(K\) is the message length
BCH Code

Construction of \((N, K, t)\) BCH Code
- \(\alpha\) is the primitive element in \(\text{GF}(p^m)\)
- \(N\) is the block length: \(N = 2^m - 1\)
- \(K\) is the message length
- \(u(X)\) is the message polynomial where
 \[u(X) = u_{K-1}X^{K-1} + \cdots + u_1X + u_0\]
BCH Code

Construction of \((N, K, t)\) BCH Code
- \(\alpha\) is the primitive element in \(GF(p^m)\)
- \(N\) is the block length: \(N = 2^m - 1\)
- \(K\) is the message length
- \(u(X)\) is the message polynomial where \(u(X) = u_{K-1}X^{K-1} + \cdots + u_1X + u_0\)
- it is capable of correcting \(t\) errors
Construction of \((N, K, t)\) BCH Code

- \(\alpha\) is the primitive element in \(\text{GF}(p^m)\)
- \(N\) is the block length: \(N = 2^m - 1\)
- \(K\) is the message length
- \(u(X)\) is the message polynomial where
 \[u(X) = u_{K-1}X^{K-1} + \cdots + u_1X + u_0\]
- it is capable of correcting \(t\) errors
- bit length of the redundancy is \(N - K\)
BCH Code

Construction of \((N, K, t)\) BCH Code

- \(\alpha\) is the primitive element in \(\text{GF}(p^m)\)
- \(N\) is the block length: \(N = 2^m - 1\)
- \(K\) is the message length
- \(u(X)\) is the message polynomial where
 \[u(X) = u_{K-1}X^{K-1} + \cdots + u_1X + u_0 \]
- it is capable of correcting \(t\) errors
- bit length of the redundancy is \(N - K\)
- \(N - K \leq mt\)
- \(d_{min} \geq 2t + 1\)
BCH Code

Construction of (N, K, t) BCH Code

- α is the primitive element in $\text{GF}(p^m)$
- N is the block length: $N = 2^m - 1$
- K is the message length
- $u(X)$ is the message polynomial where $u(X) = u_{K-1}X^{K-1} + \cdots + u_1X + u_0$
- it is capable of correcting t errors
- bit length of the redundancy is $N - K$
- $N - K \leq mt$
- $d_{min} \geq 2t + 1$
- $g(X)$ is the generator polynomial and it is computed by LCM of minimal polynomials

$$ g(X) = \text{LCM} \{ \Lambda_1(X), \cdots, \Lambda_{2t}(X) \} $$

$$ g(X) = g_{N-K}X^{N-K} + \cdots + g_1X + g_0 $$

where $\Lambda_i(X)$ is the minimal polynomials of α^i, and $\Lambda_i(X) = \Lambda_{i \times 2}(X)$
Galois Field

- \(\text{GF}(p) \)
 - Elements: \(\{0, 1, 2, \ldots, p - 1\} \)
 - \(p \) is prime and operation is “modulo-\(p \)” addition and multiplication
Galois Field

- \(\mathbb{GF}(p) \)
 - Elements: \(\{0, 1, 2, \cdots, p - 1\} \)
 - \(p \) is prime and operation is “modulo-\(p \)” addition and multiplication

- \(\mathbb{GF}(p^m) \)
 - Primitive polynomial of degree \(m \) over \(\mathbb{GF}(p) \) with a root \(\alpha \)

\[
p(X) = X^m + p_{m-1}X^{m-1} + \cdots + p_1X + p_0
\]
Galois Field

- **GF\((p)\)**
 - Elements: \(\{0, 1, 2, \cdots, p - 1\}\)
 - \(p\) is prime and operation is “modulo-\(p\)” addition and multiplication

- **GF\((p^m)\)**
 - Primitive polynomial of degree \(m\) over \(GF(p)\) with a root \(\alpha\)

 \[
p(X) = X^m + p_{m-1}X^{m-1} + \cdots + p_1X + p_0\]

 - Elements: \(\{0, 1, \alpha, \alpha^2 \cdots, \alpha^{p^m-2}\}\)
Galois Field

- **GF(p)**
 - Elements: \(\{0, 1, 2, \cdots, p - 1\} \)
 - \(p \) is prime and operation is “modulo-\(p \)” addition and multiplication

- **GF(p^m)**
 - Primitive polynomial of degree \(m \) over \(GF(p) \) with a root \(\alpha \)
 \[
p(X) = X^m + p_{m-1}X^{m-1} + \cdots + p_1X + p_0
 \]
 - Elements: \(\{0, 1, \alpha, \alpha^2 \cdots, \alpha^{p^m-2}\} \)
 - \(p \) is prime and operation is “modulo-\(p \)” addition and multiplication
Galois Field

- **$\mathbb{GF}(p)$**
 - Elements: $\{0, 1, 2, \cdots, p - 1\}$
 - p is prime and operation is "modulo-p" addition and multiplication

- **$\mathbb{GF}(p^m)$**
 - Primitive polynomial of degree m over $\mathbb{GF}(p)$ with a root α
 \[p(X) = X^m + p_{m-1}X^{m-1} + \cdots + p_1X + p_0\]
 - Elements: $\{0, 1, \alpha, \alpha^2, \cdots, \alpha^{p^m-2}\}$
 - p is prime and operation is "modulo-p" addition and multiplication
 - Construction
 1. $f(X) = q(X)p(X) + r(X)$, where $\text{deg } r < \text{deg } p$.
 2. $\alpha^i = \left(r_{i,m-1}, \cdots, r_{i,1}, r_{i,0}\right)$
Enumeration of the elements of $\text{GF}(2^4)$

- **$\text{GF}(2^4)$ and $p(X) = X^4 + X + 1$**

<table>
<thead>
<tr>
<th>Power representation</th>
<th>Polynomial representation</th>
<th>Binary representation</th>
<th>Decimal representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>α^0</td>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>α^1</td>
<td>α</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>α^2</td>
<td>α^2</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>α^3</td>
<td>α^3</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>α^4</td>
<td>$\alpha + 1$</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>α^5</td>
<td>$\alpha^2 + \alpha$</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>α^6</td>
<td>$\alpha^3 + \alpha^2$</td>
<td>1100</td>
<td>12</td>
</tr>
<tr>
<td>α^7</td>
<td>$\alpha^3 + \alpha + 1$</td>
<td>1011</td>
<td>11</td>
</tr>
<tr>
<td>α^8</td>
<td>$\alpha^2 + 1$</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>α^9</td>
<td>$\alpha^3 + \alpha$</td>
<td>1010</td>
<td>10</td>
</tr>
<tr>
<td>α^{10}</td>
<td>$\alpha^2 + \alpha + 1$</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>α^{11}</td>
<td>$\alpha^3 + \alpha^2 + \alpha$</td>
<td>1110</td>
<td>14</td>
</tr>
<tr>
<td>α^{12}</td>
<td>$\alpha^3 + \alpha^2 + \alpha + 1$</td>
<td>1111</td>
<td>15</td>
</tr>
<tr>
<td>α^{13}</td>
<td>$\alpha^3 + \alpha^2 + 1$</td>
<td>1101</td>
<td>13</td>
</tr>
<tr>
<td>α^{14}</td>
<td>$\alpha^3 + 1$</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>α^{15}</td>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
</tbody>
</table>
Galois Field

- Minimal polynomial of α

$$\Lambda(X) = \lambda_d X^d + \cdots + \lambda_1 X + \lambda_0$$

where $\lambda_i \in \text{GF}(p)$ and d is the least integer such that $\Lambda(\alpha)|_{\alpha \neq 0} = 0$
Galois Field

- Minimal polynomial of α

\[\Lambda(X) = \lambda_d X^d + \cdots + \lambda_1 X + \lambda_0 \]

where $\lambda_i \in \text{GF}(p)$ and d is the least integer such that $\Lambda(\alpha)|_{\alpha \neq 0} = 0$

- Conjugates of α in $\text{GF}(p^m)$

\[\alpha, \alpha^p, \alpha^{p^2}, \cdots, \alpha^{p^m} \]

It is due to: $\Lambda(\alpha) = \Lambda(\alpha^p) = \Lambda(\alpha^{p^2}) = \cdots = \Lambda(\alpha^{p^m}) = 0$
Galois Field

- Minimal polynomial of α

 \[\Lambda(X) = \lambda_d X^d + \cdots + \lambda_1 X + \lambda_0 \]

 where $\lambda_i \in \mathbb{GF}(p)$ and d is the least integer such that $\Lambda(\alpha)|_{\alpha \neq 0} = 0$

- Conjugates of α in $\mathbb{GF}(p^m)$

 $\alpha, \alpha^p, \alpha^{p^2}, \cdots, \alpha^{p^m}$

 It is due to: $\Lambda(\alpha) = \Lambda(\alpha^p) = \Lambda(\alpha^{p^2}) = \cdots = \Lambda(\alpha^{p^m}) = 0$

- Example α in $\mathbb{GF}(2^4)$ and $p(X) = X^4 + X + 1$
 1. $\{\alpha, \alpha^2, \alpha^4, \alpha^8\}$, where min poly is $X^4 + X + 1$
 2. $\{\alpha^3, \alpha^6, \alpha^9, \alpha^{12}\}$, $\rightarrow X^4 + X^3 + X^2 + X + 1$
 3. $\{\alpha^5, \alpha^{10}\}$, $\rightarrow X^2 + X + 1$
 4. $\{\alpha^7, \alpha^{11}, \alpha^{13}, \alpha^{14}\}$, $\rightarrow X^4 + X^3 + 1$
BCH Code: $g(X)$

- Minimal polynomial sets: α in $\text{GF}(2^4)$ and $p(X) = X^4 + X + 1$

1. $\{\alpha, \alpha^2, \alpha^4, \alpha^8\}$, where min poly is $X^4 + X + 1$
2. $\{\alpha^3, \alpha^6, \alpha^9, \alpha^{12}\}$, $\rightarrow X^4 + X^3 + X^2 + X + 1$
3. $\{\alpha^5, \alpha^{10}\}$, $\rightarrow X^2 + X + 1$
4. $\{\alpha^7, \alpha^{11}, \alpha^{13}, \alpha^{14}\}$, $\rightarrow X^4 + X^3 + 1$
BCH Code: \(g(X) \)

- Minimal polynomial sets: \(\alpha \) in \(GF(2^4) \) and \(p(X) = X^4 + X + 1 \)
 1. \(\{ \alpha, \alpha^2, \alpha^4, \alpha^8 \} \), where min poly is \(X^4 + X + 1 \)
 2. \(\{ \alpha^3, \alpha^6, \alpha^9, \alpha^{12} \} \), \(\rightarrow X^4 + X^3 + X^2 + X + 1 \)
 3. \(\{ \alpha^5, \alpha^{10} \} \), \(\rightarrow X^2 + X + 1 \)
 4. \(\{ \alpha^7, \alpha^{11}, \alpha^{13}, \alpha^{14} \} \), \(\rightarrow X^4 + X^3 + 1 \)

- When \(t = 2 \),

\[
g(X) = \text{LCM} \{ \Lambda_1(X), \Lambda_3(X) \}
\]
BCH Code: $g(X)$

- **Minimal polynomial sets:** α in $\text{GF}(2^4)$ and $p(X) = X^4 + X + 1$
 1. $\{\alpha, \alpha^2, \alpha^4, \alpha^8\}$, where min poly is $X^4 + X + 1$
 2. $\{\alpha^3, \alpha^6, \alpha^9, \alpha^{12}\}$, $\rightarrow X^4 + X^3 + X^2 + X + 1$
 3. $\{\alpha^5, \alpha^{10}\}$, $\rightarrow X^2 + X + 1$
 4. $\{\alpha^7, \alpha^{11}, \alpha^{13}, \alpha^{14}\}$, $\rightarrow X^4 + X^3 + 1$

- **When $t = 2$,**

 $$g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X)\}$$

- **When $t = 3$,**

 $$g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}$$
(N, K, t) BCH Code

- \(c(X) = u(X) \cdot g(X) \)
- \(X^{N-K}u(X) = q(X) \cdot g(X) + r(X) \)
- \(c(X) = X^{N-K}u(X) + r(X) \)
(\(N, K, t\)) \(\text{BCH Code}\)

\[
\begin{align*}
 c(X) &= u(X) \cdot g(X) \\
 X^{N-K}u(X) &= q(X) \cdot g(X) + r(X) \\
 c(X) &= X^{N-K}u(X) + r(X)
\end{align*}
\]

Encoding as simple as computing polynomial modulo

\[
r(X) = X^{N-K}u(X) \mod g(X)
\]
(15, 5, 3) BCH Code in GF(2^4) and \(p(X) = X^4 + X + 1 \)
BCH Code Encoding: An Example

- (15, 5, 3) BCH Code in GF(2^4) and $p(X) = X^4 + X + 1$
- Message is (0, 1, 1, 0, 1) where $u(X) = X^4 + X^2 + X$
BCH Code Encoding: An Example

- \((15, 5, 3)\) BCH Code in \(\text{GF}(2^4)\) and \(p(X) = X^4 + X + 1\)
 - Message is \((0, 1, 1, 0, 1)\) where \(u(X) = X^4 + X^2 + X\)
 - \(N = 15, K = 5, t = 3\)
(15, 5, 3) BCH Code in $\mathbb{GF}(2^4)$ and $p(X) = X^4 + X + 1$

- Message is $(0, 1, 1, 0, 1)$ where $u(X) = X^4 + X^2 + X$
- $N = 15$, $K = 5$, $t = 3$
- $15 - 5 \leq 4 \times 3$
BCH Code Encoding: An Example

- **(15, 5, 3) BCH Code in GF(2^4) and p(X) = X^4 + X + 1**
 - Message is (0, 1, 1, 0, 1) where \(u(X) = X^4 + X^2 + X \)
 - \(N = 15, \ K = 5, \ t = 3 \)
 - \(15 - 5 \leq 4 \times 3 \)
 - \(d_{min} \geq 2 \times 3 + 1 \)
(15, 5, 3) BCH Code in GF(2^4) and $p(X) = X^4 + X + 1$
- Message is (0, 1, 1, 0, 1) where $u(X) = X^4 + X^2 + X$
- $N = 15$, $K = 5$, $t = 3$
- $15 - 5 \leq 4 \times 3$
- $d_{min} \geq 2 \times 3 + 1$

$g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}$
BCH Code Encoding: An Example

(15, 5, 3) BCH Code in GF(2^4) and \(p(X) = X^4 + X + 1 \)
- Message is (0, 1, 1, 0, 1) where \(u(X) = X^4 + X^2 + X \)
- \(N = 15, \ K = 5, \ t = 3 \)
- \(15 - 5 \leq 4 \times 3 \)
- \(d_{min} \geq 2 \times 3 + 1 \)

\[
g(X) = \text{LCM}\{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}
= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1)
\]
BCH Code Encoding: An Example

- \((15, 5, 3)\) BCH Code in \(\text{GF}(2^4)\) and \(p(X) = X^4 + X + 1\)
 - Message is \((0, 1, 1, 0, 1)\) where \(u(X) = X^4 + X^2 + X\)
 - \(N = 15, K = 5, t = 3\)
 - \(15 - 5 \leq 4 \times 3\)
 - \(d_{\text{min}} \geq 2 \times 3 + 1\)

\[
g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}
\]
\[
= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1)
\]
\[
= (X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1)
\]
BCH Code Encoding: An Example

- \((15, 5, 3)\) BCH Code in \(GF(2^4)\) and \(p(X) = X^4 + X + 1\)
 - Message is \((0, 1, 1, 0, 1)\) where \(u(X) = X^4 + X^2 + X\)
 - \(N = 15, K = 5, t = 3\)
 - \(15 - 5 \leq 4 \times 3\)
 - \(d_{\text{min}} \geq 2 \times 3 + 1\)

\[
g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}
\]
\[
= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1)
\]
\[
= (X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1)
\]

\[
P(X) = X^{15-5} u(X) = (X^{14} + X^{12} + X^{11})
\]
BCH Code Encoding: An Example

- (15, 5, 3) BCH Code in GF(2^4) and $p(X) = X^4 + X + 1$
 - Message is (0, 1, 1, 0, 1) where $u(X) = X^4 + X^2 + X$
 - $N = 15$, $K = 5$, $t = 3$
 - $15 - 5 \leq 4 \times 3$
 - $d_{min} \geq 2 \times 3 + 1$

 $$g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}$$
 $$= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1)$$
 $$= (X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1)$$

 $$P(X) = X^{15-5}u(X) = (X^{14} + X^{12} + X^{11})$$

 $$r(X) = P(X) \mod g(X)$$
BCH Code Encoding: An Example

- \((15, 5, 3)\) BCH Code in \(\text{GF}(2^4)\) and \(p(X) = X^4 + X + 1\)
 - Message is \((0, 1, 1, 0, 1)\) where \(u(X) = X^4 + X^2 + X\)
 - \(N = 15\), \(K = 5\), \(t = 3\)
 - \(15 - 5 \leq 4 \times 3\)
 - \(d_{\text{min}} \geq 2 \times 3 + 1\)

\[
g(X) = \text{LCM}\{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}
\]
\[
= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1)
\]
\[
= (X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1)
\]

\[
P(X) = X^{15-5}u(X) = (X^{14} + X^{12} + X^{11})
\]

\[
r(X) = P(X) \mod g(X)
\]
\[
= X^8 + X^4 + X^3 + X^2 + X
\]
BCH Code Encoding: An Example

1. **(15, 5, 3)** BCH Code in $\mathbb{GF}(2^4)$ and $p(X) = X^4 + X + 1$
 - Message is $(0, 1, 1, 0, 1)$ where $u(X) = X^4 + X^2 + X$
 - $N = 15$, $K = 5$, $t = 3$
 - $15 - 5 \leq 4 \times 3$
 - $d_{min} \geq 2 \times 3 + 1$

 \[g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\} \]
 \[= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1) \]
 \[= (X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1) \]

 \[P(X) = X^{15-5}u(X) = (X^{14} + X^{12} + X^{11}) \]

 \[r(X) = P(X) \mod g(X) \]
 \[= X^8 + X^4 + X^3 + X^2 + X \]

 \[c(X) = P(X) + r(X) \]
BCH Code Encoding: An Example

- \((15, 5, 3)\) BCH Code in \(\text{GF}(2^4)\) and \(p(X) = X^4 + X + 1\)
 - Message is \((0, 1, 1, 0, 1)\) where \(u(X) = X^4 + X^2 + X\)
 - \(N = 15, \; K = 5, \; t = 3\)
 - \(15 - 5 \leq 4 \times 3\)
 - \(d_{\text{min}} \geq 2 \times 3 + 1\)

\[
g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\} \\
= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1) \\
= (X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1)
\]

\[
P(X) = X^{15-5}u(X) = (X^{14} + X^{12} + X^{11})
\]

\[
r(X) = P(X) \mod g(X) \\
= X^8 + X^4 + X^3 + X^2 + X
\]

\[
c(X) = P(X) + r(X) \\
= X^{14} + X^{12} + X^{11} + X^8 + X^4 + X^3 + X^2 + X
\]
BCH Code Encoding: An Example

- **(15, 5, 3)** BCH Code in \(GF(2^4)\) and \(p(X) = X^4 + X + 1\)
 - Message is \((0, 1, 1, 0, 1)\) where \(u(X) = X^4 + X^2 + X\)
 - \(N = 15, K = 5, t = 3\)
 - \(15 - 5 \leq 4 \times 3\)
 - \(d_{min} \geq 2 \times 3 + 1\)

\[
g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}
\]

\[
= (X^4 + X + 1) \times (X^4 + X^3 + X^2 + X + 1) \times (X^2 + X + 1)
\]

\[
= (X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1)
\]

\[
P(X) = X^{15-5}u(X) = (X^{14} + X^{12} + X^{11})
\]

\[
r(X) = P(X) \mod g(X)
\]

\[
= X^8 + X^4 + X^3 + X^2 + X
\]

\[
c(X) = P(X) + r(X)
\]

\[
= X^{14} + X^{12} + X^{11} + X^8 + X^4 + X^3 + X^2 + X
\]

- **Codeword:**
 - \(c = (0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1)\)
\[c(\alpha^i) = c_{N-1}\alpha^{N-1}i + \cdots + c_1\alpha^i + c_0 = 0 \text{ for } 1 \leq i \leq 2t \]

It is because

- \(g(X) \mid c(X) \)
- \(g(\alpha) = g(\alpha^2) = \cdots = g(\alpha^{2t}) = 0 \)

Then, parity check matrix: \(cH^T = 0 \)

\[
H = \begin{bmatrix}
1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\
1 & \alpha^2 & (\alpha^2)^2 & \cdots & (\alpha^2)^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{2t} & (\alpha^{2t})^2 & \cdots & (\alpha^{2t})^{N-1}
\end{bmatrix}
\]
Syndrome and Error Location

- Received data: \(r = c + e \)
- The noise: \(e = (e_0, e_1, \cdots, e_{N-1}) \) where \(e_j \in \{0, 1\} \)
- Computation of syndrome:

\[
S = rH^T = (c + e)H^T \\
= eH^T = (S_1, S_2, \cdots, S_{2t}) \\
S_i = \sum_{j=0}^{N-1} e_j \alpha^{ij}, \text{ for } i = 1, 2, \cdots, 2t \\
= \boxed{e(\alpha^i)} \text{ because } \\
e(X) = e_{N-1}X^{N-1} + \cdots + e_1X + e_0
\]

- Where \(v \leq t \), \(v \) errors exists at \(j_1, j_2, \cdots, j_v \)
(\(0 \leq j_1 < j_2 < \cdots < j_v < N \))

\[
e(X) = X^{j_1} + X^{j_2} + \cdots + X^{j_v}
\]
\[S_i = e(\alpha^i) = (\alpha^{j_1})^i + (\alpha^{j_2})^i + \cdots + (\alpha^{j_v})^i, \quad \text{for } i = 1, 2, \cdots, 2t \]

- Solving \(2t\) equations will give the set \((\alpha^{j_1}, \alpha^{j_2}, \cdots, \alpha^{j_v})\)
- Error locations are \((j_1, j_2, \cdots, j_v)\)

- Location numbers of error is denoted as \(\beta_l = \alpha^{j_l}\)
- Syndrome is also computed with respect to \(\beta_l\)s

\[
S_1 = \beta_1 + \beta_2 + \cdots + \beta_v \\
S_2 = \beta_1^2 + \beta_2^2 + \cdots + \beta_v^2 \\
\vdots \\
S_{2t} = \beta_1^{2t} + \beta_2^{2t} + \cdots + \beta_v^{2t}
\]
Error Locator Polynomial

- Error locator polynomial is denoted with $\sigma(X)$ and

$$\sigma(X) = (1 + \beta_1 X)(1 + \beta_2 X) \cdots (1 + \beta_v X) = \sigma_v X^v + \cdots + \sigma_1 X + \sigma_0$$

- Roots of $\sigma(X)$ is $(\beta_1^{-1}, \beta_2^{-1}, \cdots, \beta_v^{-1})$

Finding the roots of $\sigma(X)$ will reveal the error locations

- Error locations are simply the inverse of the roots of $\sigma(X)$
1 Syndrome computation
2 Computing the error locator polynomial $\sigma(X)$
 - Peterson-Gorenstein-Zierler algorithm
 - Berlekamp-Massey algorithm
 - Euclid’s algorithm
3 Finding error location: Chien search for u roots
4 Correcting the errors
 - Decoding result is simply $(r - e)$
Peterson-Gorenstein-Zierler algorithm

1. Initialize $v = t$
Peterson-Gorenstein-Zierler algorithm

1. Initialize $v = t$
2. Compute the determinant of M

$$\text{det}(M) = \begin{bmatrix} S_1 & S_2 & \cdots & S_v \\ S_2 & S_3 & \cdots & S_{v+1} \\ \vdots & \vdots & \ddots & \vdots \\ S_v & S_{v+1} & \cdots & S_{2v-1} \end{bmatrix}$$
Peterson-Gorenstein-Zierler algorithm

1. Initialize $v = t$
2. Compute the determinant of M

$$\det(M) = \begin{bmatrix} S_1 & S_2 & \cdots & S_v \\ S_2 & S_3 & \cdots & S_{v+1} \\ \vdots & \vdots & \ddots & \vdots \\ S_v & S_{v+1} & \cdots & S_{2v-1} \end{bmatrix}$$

3. Find the correct value of v: it may less than t

$$\begin{cases}
\text{go to step 4} & \det(M) \neq 0 \\
 v \leftarrow v - 1, \text{ and then go to step 2} & \det(M) = 0
\end{cases}$$
Peterson-Gorenstein-Zierler algorithm

1. **Initialize** \(v = t \)
2. **Compute the determinant of** \(M \)

\[
\begin{vmatrix}
S_1 & S_2 & \cdots & S_v \\
S_2 & S_3 & \cdots & S_{v+1} \\
\vdots & \vdots & \ddots & \vdots \\
S_v & S_{v+1} & \cdots & S_{2v-1}
\end{vmatrix}
\]

3. **Find the correct value of** \(v \): it may less than \(t \)

\[
\begin{cases}
\text{go to step 4} & \text{det}(M) \neq 0 \\
\quad v \leftarrow v - 1, \text{ and then go to step 2} & \text{det}(M) = 0
\end{cases}
\]

4. **Invert** \(M \)
Peterson-Gorenstein-Zierler algorithm

1. Initialize \(v = t \)
2. Compute the determinant of \(\mathbf{M} \)

\[
\det(\mathbf{M}) = \begin{bmatrix}
S_1 & S_2 & \cdots & S_v \\
S_2 & S_3 & \cdots & S_{v+1} \\
\vdots & \vdots & \ddots & \vdots \\
S_v & S_{v+1} & \cdots & S_{2v-1}
\end{bmatrix}
\]

3. Find the correct value of \(v \): it may less than \(t \)

\[
\begin{cases}
\text{go to step 4} & \text{if } \det(\mathbf{M}) \neq 0 \\
v \leftarrow v - 1, \text{ and then go to step 2} & \text{if } \det(\mathbf{M}) = 0
\end{cases}
\]

4. Invert \(\mathbf{M} \)
5. Compute \(\sigma(X) \) by simply multiplying \(\mathbf{M}^{-1} \) by a syndrome vector

\[
\begin{bmatrix}
\sigma_v \\
\sigma_{v-1} \\
\vdots \\
\sigma_1
\end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix}
-S_{v+1} \\
-S_{v+2} \\
\vdots \\
-S_{2v}
\end{bmatrix}
\]
\((15, 5, 3) \) BCH Code in \(\text{GF}(2^4) \) and \(p(X) = X^4 + X + 1 \)

- \(g(X) = \text{LCM} \{ \Lambda_1(X), \Lambda_3(X), \Lambda_5(X) \} \)
 \[= X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1 \]
- \(^*c(X) = X^{14} + X^{12} + X^{11} + X^8 + X^4 + X^3 + X^2 + X \)
- \(e(X) = X^{14} + X^3 \)

Then, received codeword is \(r(X) = X^{12} + X^{11} + X^8 + X^4 + X^2 + X \)

Same codeword as in Encoding example
(15, 5, 3) BCH Code in GF(2^4) and $p(X) = X^4 + X + 1$

- $g(X) = \text{LCM} \{\Lambda_1(X), \Lambda_3(X), \Lambda_5(X)\}$
 $$= X^{10} + X^8 + X^5 + X^4 + X^2 + X + 1$$
- $^*c(X) = X^{14} + X^{12} + X^{11} + X^8 + X^4 + X^3 + X^2 + X$
- $e(X) = X^{14} + X^3$
- Then, received codeword is $r(X) = X^{12} + X^{11} + X^8 + X^4 + X^2 + X$

First, computing the syndrome

$$S_1 = r(\alpha) = 1 \quad S_2 = r(\alpha^2) = 1 \quad S_3 = r(\alpha^3) = \alpha^8$$
$$S_4 = r(\alpha^4) = 1 \quad S_5 = r(\alpha^5) = \alpha^5 \quad S_6 = r(\alpha^6) = \alpha$$

Same codeword as in Encoding example
1. $v = t = 3$
1. $v = t = 3$

2. Computing determinant of M

$$\det(M) = \begin{pmatrix} S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ S_3 & S_4 & S_5 \end{pmatrix} = \begin{pmatrix} 1 & 1 & \alpha^8 \\ 1 & \alpha^8 & 1 \\ \alpha^8 & 1 & \alpha^5 \end{pmatrix} = 0$$
① \(v = t = 3 \)

② Computing determinant of \(M \)

\[
\text{det}(M) = \begin{bmatrix} S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ S_3 & S_4 & S_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \alpha^8 \\ 1 & \alpha^8 & 1 \\ \alpha^8 & 1 & \alpha^5 \end{bmatrix} = 0
\]

③ \(\text{det}(M) = 0 \), then go to step 2 with \(v = v - 1 = 2 \)
BCH Code Decoding: An Example

1. \(v = t = 3 \)

2. Computing determinant of \(M \)

\[
\det(M) = \begin{bmatrix} S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \\ S_3 & S_4 & S_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & \alpha^8 \\ 1 & \alpha^8 & 1 \\ \alpha^8 & 1 & \alpha^5 \end{bmatrix} = 0
\]

3. \(\det(M) = 0 \), then go to step 2 with \(v = v - 1 = 2 \)

2. Computing determinant of new \(M \)

\[
\det(M) = \begin{bmatrix} S_1 & S_2 \\ S_2 & S_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & \alpha^8 \end{bmatrix} = \alpha^2
\]

Look at the Table
BCH Code Decoding: An Example

1. \(v = t = 3 \)

2. Computing determinant of \(M \)

 \[
 \text{det}(M) = \begin{bmatrix}
 S_1 & S_2 & S_3 \\
 S_2 & S_3 & S_4 \\
 S_3 & S_4 & S_5 \\
 \end{bmatrix} = \begin{bmatrix}
 1 & 1 & \alpha^8 \\
 1 & \alpha^8 & 1 \\
 \alpha^8 & 1 & \alpha^5 \\
 \end{bmatrix} = 0
 \]

3. \(\text{det}(M) = 0 \), then go to step 2 with \(v = v - 1 = 2 \)

2. Computing determinant of new \(M \)

 \[
 \text{det}(M) = \begin{bmatrix}
 S_1 & S_2 \\
 S_2 & S_3 \\
 \end{bmatrix} = \begin{bmatrix}
 1 & 1 \\
 1 & \alpha^8 \\
 \end{bmatrix} = \alpha^2
 \]

3. \(\text{det}(M) = \alpha^2 \), then go to step 4

Look at the Table
Inverting \mathbf{M}

$$\mathbf{M}^{-1} = \begin{bmatrix} \alpha^6 & \alpha^{13} \\ \alpha^{13} & \alpha^{13} \end{bmatrix}$$
BCH Code Decoding: An Example

4 Inverting M

$$M^{-1} = \begin{bmatrix} \alpha^6 & \alpha^{13} \\ \alpha^{13} & \alpha^{13} \end{bmatrix}$$

5 Computing $\sigma(X)$

$$\begin{bmatrix} \sigma_2 \\ \sigma_1 \end{bmatrix} = \begin{bmatrix} \alpha^6 & \alpha^{13} \\ \alpha^{13} & \alpha^{13} \end{bmatrix} \begin{bmatrix} \alpha^8 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 \\ 1 \end{bmatrix}$$

$$\sigma(X) = \alpha^2 X^2 + X + 1$$
BCH Code Decoding: An Example

4 Inverting M

$$M^{-1} = \begin{bmatrix} 6 & 13 \\ 13 & 13 \end{bmatrix}$$

5 Computing $\sigma(X)$

$$\begin{bmatrix} \sigma_2 \\ \sigma_1 \end{bmatrix} = \begin{bmatrix} 6 & 13 \\ 13 & 13 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\sigma(X) = \alpha^2 X^2 + X + 1$$

$\sigma(X)$ will tell you the location of the errors
4 Inverting M

$$M^{-1} = \begin{bmatrix} \alpha^6 & \alpha^{13} \\ \alpha^{13} & \alpha^{13} \end{bmatrix}$$

5 Computing $\sigma(X)$

$$\begin{bmatrix} \sigma_2 \\ \sigma_1 \end{bmatrix} = \begin{bmatrix} \alpha^6 & \alpha^{13} \\ \alpha^{13} & \alpha^{13} \end{bmatrix} \begin{bmatrix} \alpha^8 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 \\ 1 \end{bmatrix}$$

$$\sigma(X) = \alpha^2 X^2 + X + 1$$

- $\sigma(X)$ will tell you the location of the errors
 $$\sigma(\alpha) = 0, \quad \sigma(\alpha^2) = \alpha^{14}, \quad \cdots \quad \sigma(\alpha^{12}) = 0$$
BCH Code Decoding: An Example

4. Inverting M

$$M^{-1} = \begin{bmatrix} \alpha^6 & \alpha^{13} \\ \alpha^{13} & \alpha^{13} \end{bmatrix}$$

5. Computing $\sigma(X)$

$$\begin{bmatrix} \sigma_2 \\ \sigma_1 \end{bmatrix} = \begin{bmatrix} \alpha^6 & \alpha^{13} \\ \alpha^{13} & \alpha^{13} \end{bmatrix} \begin{bmatrix} \alpha^8 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha^2 \\ 1 \end{bmatrix}$$

$$\sigma(X) = \alpha^2 X^2 + X + 1$$

- $\sigma(X)$ will tell you the location of the errors
 $$\sigma(\alpha) = 0, \quad \sigma(\alpha^2) = \alpha^{14}, \quad \cdots \quad \sigma(\alpha^{12}) = 0$$

- After finding the roots, we now compute the inverse of the roots α and α^{12}

$$\alpha^{-1} = \alpha^{14}$$

$$\alpha^{-12} = \alpha^{3}$$
Finally, $e(X) = X^{14} + X^3$

Corrected codeword:

$$r(X) + e(X) = X^{14} + X^{12} + X^{11} + X^8 + X^4 + X^3 + X^2 + X$$

$$\bar{c} = (0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1)$$
Security of PUF

- **Entropy**
 - PUF should have sufficient amount of randomness

<table>
<thead>
<tr>
<th>PUF type</th>
<th>Entropy per 1000 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM PUF</td>
<td>950</td>
</tr>
<tr>
<td>Delay PUF</td>
<td>130</td>
</tr>
<tr>
<td>Butterfly PUF</td>
<td>600</td>
</tr>
</tbody>
</table>
Security of PUF

- Entropy
 - PUF should have sufficient amount of randomness

<table>
<thead>
<tr>
<th>PUF type</th>
<th>Entropy per 1000 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM PUF</td>
<td>950</td>
</tr>
<tr>
<td>Delay PUF</td>
<td>130</td>
</tr>
<tr>
<td>Butterfly PUF</td>
<td>600</td>
</tr>
</tbody>
</table>

- Tamper evidence
 - Read-proof hardware against *invasive* and *non-invasive*
 - Invasive attacks make the chip functionally destroyed
 - Currently, there is no non-invasive attack that gives information about the PUF
Security of PUF

- Entropy
 - PUF should have sufficient amount of randomness

<table>
<thead>
<tr>
<th>PUF type</th>
<th>Entropy per 1000 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM PUF</td>
<td>950</td>
</tr>
<tr>
<td>Delay PUF</td>
<td>130</td>
</tr>
<tr>
<td>Butterfly PUF</td>
<td>600</td>
</tr>
</tbody>
</table>

- Tamper evidence
 - Read-proof hardware against *invasive* and *non-invasive*
 - Invasive attacks make the chip functionally destroyed
 - Currently, there is no non-invasive attack that gives information about the PUF

- Unclonability
 - Unique physical property of PUF is translating into a bitstream
 - This physical property prevents constructing a same PUF
 - Keep the challenge response pairs secret
Effects of Environmental Parameters on PUF

- Die temperature and supply voltage
 - Heavily affect the delay in ring oscillator PUFs
 - Less affect the arbiter PU due to the differential measurement
Threats to PUFs

 - delay-based PUF constructions can be modeled using ML algorithms.
 - CRPs should not be made public in protocols.
 - Required a Trust to Manufacturers
Threats to PUFs

 - delay-based PUF constructions can be modeled using ML algorithms.
 - CRPs should not be made public in protocols.
 - Required a Trust to Manufacturers

- Helfmeier *et al.* cloned an SRAM PUF with a failure analysis equipment in at HOST 2013. *Cloning Physically Unclonable Functions*.

- Nedospasov *et al.* described successful invasive attempts on SRAM PUFs at FDTC 2013. *Invasive PUF Analysis*.

- EM analyses on RO PUFs have been carried out by Merli *et al.* at WESS 2011. *Semi-invasive EM attack on FPGA RO PUFs and countermeasures*.
I would like to acknowledge:

Questions?