Frequency Domain Methods for Optimal Periodic Control

Jonathan P. Epperlein † Bassam Bamieh‡

†Department of Electrical and Computer Engineering
‡Department of Mechanical Engineering

University of California, Santa Barbara

2012 American Automatic Control Conference, June 29
Example: CSTR with two second order reactions

\[\dot{x}_1 = -ux_1^\alpha - au^\theta x_1 - x_1 + 1 \]

\[\dot{x}_2 = ux_1^\alpha - x_2 \]

\[q, A \quad q, A, B, C \]

A \rightarrow B
A \rightarrow C

Example: CSTR with two second order reactions

\[\begin{align*}
\dot{x}_1 &= -ux_1^\alpha - au^\rho x_1 - x_1 + 1 \\
\dot{x}_2 &= ux_1^\alpha - x_2
\end{align*} \]

\[q, A, A, B, C \]
Much work on Optimal Periodic Control has been done in the 70’s and 80’s.
Much work on Optimal Periodic Control has been done in the 70’s and 80’s.
- Horn et al., Guardabassi et al., Speyer et al., Gilbert et al.
Much work on Optimal Periodic Control has been done in the 70’s and 80’s.

- Horn et al., Guardabassi et al., Speyer et al., Gilbert et al.
- Developed methods were mostly State-Space methods.
Much work on Optimal Periodic Control has been done in the 70’s and 80’s.
- Horn et al., Guardabassi et al., Speyer et al., Gilbert et al.
- Developed methods were mostly State-Space methods.

Frequency Domain methods are needed
Much work on Optimal Periodic Control has been done in the 70’s and 80’s.

- Horn et al., Guardabassi et al., Speyer et al., Gilbert et al.
- Developed methods were mostly State-Space methods.

Frequency Domain methods are needed
- to tackle infinite dimensional systems, and
Much work on Optimal Periodic Control has been done in the 70’s and 80’s.
- Horn et al., Guardabassi et al., Speyer et al., Gilbert et al.
- Developed methods were mostly State-Space methods.

Frequency Domain methods are needed
- to tackle infinite dimensional systems, and
- Optimal Periodic Control for Thermoacoustics as a particular application.
General Problem Setting

\[
\text{minimize } \quad J(x(0), u(\cdot), T) = \frac{1}{T} \int_0^T L(x(t), u(t)) \, dt
\]

subject to

\[
\begin{align*}
\dot{x} &= f(x, u) \\
x(0) &= x(T) \\
\int_0^T v(x, u) \, dt &= 0 \\
\int_0^T w(x, u) \, dt &\leq 0
\end{align*}
\]
Particular Setting

\[
J(x(0), u(\cdot), T) = \min_{x(0), u(\cdot) \in \mathcal{U}, T} \frac{1}{T} \int_0^T \frac{1}{2} x^T Q x + \frac{1}{2} u^T R u + \phi(C x) \, dt
\]

subject to

\[
\begin{aligned}
\dot{x} &= Ax + Bu \\
x(0) &= x(T)
\end{aligned}
\]

- \(\phi(y) = \gamma_1 y + \gamma_2 y^2 + \ldots + \frac{1}{p} y^p \).
- \(x \in \mathbb{R}^n, u \in \mathbb{R}, C \in \mathbb{R}^{1 \times n}, B \in \mathbb{R}^{n \times m}, Q \in \mathbb{R}^{n \times n}, 0 < R \in \mathbb{R}^{m \times m} \).
First order necessary conditions

With the Hamiltonian

\[H(x, u, \lambda) := \frac{1}{2} (x^T Q x + u^T R u) + \phi(C x) + \lambda^T (A x + B u), \]

we get the Hamiltonian System

\[
\begin{align*}
\dot{x} &= A x + B u \\
\dot{\lambda} &= -A^T \lambda - Q x - C^T \frac{\partial \phi}{\partial y} (C x) = - \frac{\partial H}{\partial x} \\
0 &= R u + B^T \lambda = \frac{\partial H}{\partial u} \\
\lambda(0) &= \lambda(T) \\
x(0) &= x(T) \\
0 &= J(u, x, T) - H(x(T), u(T), \lambda(T)).
\end{align*}
\]

Thus any optimal trajectory corresponds to a \textit{periodic} solution of above system. That is true for optimal periodic control problems in general.
Finding periodic solutions: Harmonic Balance

Every periodic signal can be represented by its Fourier series, thus for any periodic solution $y(t) = \sum_{k \in \mathbb{Z}} \alpha_k e^{jk\omega t}$, we have

$$v(t) = \sum_{k \in \mathbb{Z}} \beta_k(\alpha) e^{jk\omega t},$$

and component-wise

$$\alpha_k - H(jk\omega t)\beta_k(\alpha) = 0 \quad \forall k \in \mathbb{Z}.$$
Finding periodic solutions: Harmonic Balance

Every periodic signal can be represented by its Fourier series, thus for any periodic solution

\[y(t) = \sum_{k \in \mathbb{Z}} \alpha_k e^{jk\omega t} \]
\[v(t) = \sum_{k \in \mathbb{Z}} \beta_k(\alpha) e^{jk\omega t} \]
Finding periodic solutions: Harmonic Balance

Every periodic signal can be represented by its Fourier series, thus for any periodic solution

\[y(t) = \sum_{k \in \mathbb{Z}} \alpha_k e^{jk\omega t} \]
\[v(t) = \sum_{k \in \mathbb{Z}} \beta_k(\alpha) e^{jk\omega t} \]

A periodic solution needs to self-excite:

\[\sum_{k \in \mathbb{Z}} \alpha_k e^{jk\omega t} = \sum_{k \in \mathbb{Z}} H(jk\omega t) \beta_k(\alpha) e^{jk\omega t}, \]

and component-wise

\[\alpha_k - H(jk\omega t) \beta_k(\alpha) = 0 \quad \forall k \in \mathbb{Z}. \]
Homotopy Continuation Methods

Let \(F(x) = 0 \) be system of polynomial equations in \(n \) indeterminates \(x_i \).

2 Verschelde, Jan “Algorithm 795: PHCPACK: A general-purpose solver for polynomial systems by homotopy continuation,” ACM Transactions on Mathematical Software, 1999
Homotopy Continuation Methods

- Let $F(x) = 0$ be system of polynomial equations in n indeterminates x_i.
- The homotopy is a system with an additional parameter $t \in [0, 1]$ which embeds $F(x)$:

$$
\Phi(x, t) = tF(x) + (1 - t)F_0(x), \quad t \in [0, 1].
$$

Homotopy Continuation Methods

- Let $F(x) = 0$ be system of polynomial equations in n indeterminates x_i.
- The homotopy is a system with an additional parameter $t \in [0, 1]$ which embeds $F(x)$:
 \[\Phi(x, t) = tF(x) + (1 - t)F_0(x), \quad t \in [0, 1]. \]
- The starting system $F_0(x) = 0$ is chosen so that its roots are easily obtained.

Verschelde, Jan “Algorithm 795: PHCPACK: A general-purpose solver for polynomial systems by homotopy continuation,” *ACM Transactions on Mathematical Software*, 1999
Homotopy Continuation Methods

- Let $F(x) = 0$ be system of polynomial equations in n indeterminates x_i.
- The homotopy is a system with an additional parameter $t \in [0, 1]$ which embeds $F(x)$:
 \[\Phi(x, t) = tF(x) + (1 - t)F_0(x), \quad t \in [0, 1]. \]
- The starting system $F_0(x) = 0$ is chosen so that its roots are easily obtained.
- The solutions of $F(x) = 0$ are found by continuing all isolated roots of F_0 from $t = 0$ to $t = 1$.

Homotopy Continuation Methods

- Let $F(x) = 0$ be system of polynomial equations in n indeterminates x_i.
- The homotopy is a system with an additional parameter $t \in [0, 1]$ which embeds $F(x)$:
 \[\Phi(x, t) = tF(x) + (1 - t)F_0(x), \quad t \in [0, 1]. \]
- The starting system $F_0(x) = 0$ is chosen so that its roots are easily obtained.
- The solutions of $F(x) = 0$ are found by continuing all isolated roots of F_0 from $t = 0$ to $t = 1$.
- PHCpack\(^2\) is the software implementation of Homotopy Methods that we use.

\(^2\)Verschelde, Jan “Algorithm 795: PHCPACK: A general-purpose solver for polynomial systems by homotopy continuation,” *ACM Transactions on Mathematical Software*, 1999
1. Convert Hamiltonian System to Lur’e structure\(^3\)

1. Convert Hamiltonian System to Lur’e structure
2. Use Harmonic Balance

IEEE Transactions on Automatic Control, 1972
1 Convert Hamiltonian System to Lur’e structure
2 Use Harmonic Balance
3 Find closed form of $\beta_k(\alpha)$

1. Convert Hamiltonian System to Lur’e structure\(^3\)
2. Use Harmonic Balance
3. Find closed form of \(\beta_k(\alpha)\)
4. Harmonic Balance equations turn into system of polynomial equations

1 Convert Hamiltonian System to Lur’e structure
2 Use Harmonic Balance
3 Find closed form of $\beta_k(\alpha)$
4 Harmonic Balance equations turn into system of polynomial equations
5 Unleash PHCpack on it

Convert Hamiltonian System to Lur’e structure

\[
\begin{align*}
\dot{x} &= Ax + Bu \\
\dot{\lambda} &= -A^T \lambda - Qx - C^T \frac{\partial \phi}{\partial y}(Cx) = -\frac{\partial H}{\partial x} \\
0 &= Ru + B^T \lambda = \frac{\partial H}{\partial u} \\
\lambda(0) &= \lambda(T) \\
x(0) &= x(T)
\end{align*}
\]
1 Convert Hamiltonian System to Lur’e structure

\[\frac{\partial \phi}{\partial y}(\cdot) = H(s)\psi(y) \]

\[R^{-1} \]

\[G(s) \]

\[C \]

\[Q \]

\[-B^T \lambda \]

\[-G^T(-s) \]

\[Qx + C^Tv \]

\[y \]

\[\psi(y) \]

\[v \]

\[\frac{\partial \phi}{\partial y}(\cdot) \]
1 Convert Hamiltonian System to Lur’e structure

\[
H(s) = -C G(s) R^{-1} \left(I + G^T(-s)Q G(s) R^{-1} \right)^{-1} G^T(-s) C^T
\]

\[
\psi(y) = \frac{\partial \phi}{\partial y}(y) = y^{p-1} + \sum_{q=0}^{p-2} (q+1) \gamma_{q+1} y^q
\]
Convert Hamiltonian System to Lur’e structure

\[H(s) = -C G(s) R^{-1} \left(I + G^T(-s) Q G(s) R^{-1} \right)^{-1} G^T(-s) C^T \]

\[\psi(y) = \frac{\partial \phi}{\partial y}(y) = y^{p-1} + \sum_{q=0}^{p-2} (q + 1) \gamma_{q+1} y^q \]
2 Use Harmonic Balance

\[\forall k : \alpha_k - H(j\omega_k) \beta_k(\alpha) = 0 \]
2 Use Harmonic Balance

\[\forall k : \quad \alpha_k - H(j\omega k) \beta_k(\alpha) = 0 \]

3 Find closed form of \(\beta_k(\alpha) \)

For a single power we find functions \(\Psi_{k,q}(\cdot) \) such that

\[
\left(\sum_{k=-N}^{N} \alpha_k e^{jk\omega t} \right)^q = \sum_{k=-qN}^{qN} \Psi_{k,q}(\alpha) e^{jk\omega t},
\]

Combinatorics

\[
\Psi_{k,q}(\alpha) = \sum_{\ell_1+\ell_2+\ldots+\ell_q=k}^{\ell_i \in [-N,N]} \frac{q}{c_{-N}, \ldots, c_N} \alpha_{\ell_1} \alpha_{\ell_2} \cdots \alpha_{\ell_q}
\]

\[\rightarrow \quad \beta_k(\alpha) = \Psi_{k,p}(\alpha) + \sum_{q=0}^{p-2} (q + 1) \gamma_{q+1} \Psi_{k,q}(\alpha). \]
Harmonic Balance equations turn into system of polynomial equations

E.g. for $\psi(y) = y^3$ and a signal y with 3 harmonics

\[0 = \alpha_0 - H(0)\beta_0(\alpha) = \]
\[\alpha_0 - H(0) \cdot \left(\alpha_0^3 + 6\alpha_1\alpha_{-1}\alpha_0 + 3\alpha_1^2\alpha_{-2} + 3\alpha_2\alpha_{-1}^2 +
 6\alpha_2\alpha_0\alpha_{-2} + 6\alpha_2\alpha_1\alpha_{-3} + 6\alpha_3\alpha_{-1}\alpha_{-2} + 6\alpha_3\alpha_0\alpha_{-3} \right) \]

\[0 = \alpha_1 - H(j\omega)\beta_1(\alpha) = \]
\[\alpha_1 - H(j\omega) \cdot \left(3\alpha_1\alpha_0^2 + 3\alpha_1^2\alpha_{-1} + 6\alpha_2\alpha_0\alpha_{-1} +
 6\alpha_2\alpha_1\alpha_{-2} + 3\alpha_2^2\alpha_{-3} + 3\alpha_3\alpha_2^2 + 6\alpha_3\alpha_0\alpha_{-2} + 6\alpha_3\alpha_1\alpha_{-3} \right) \]

\[\vdots \]

Unleash PHCpack on it
Double Integrator

We have a double integrator \(\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \) with a cost

\[
J = \frac{1}{T} \int_0^T \frac{x_1^2 - x_2^2}{2} + \frac{x_2^4}{4} + \frac{u^2}{10} \, dt
\]

so we get

\[
H(s) = \frac{10s^2}{s^4 + 10s^2 + 10} \quad \text{and} \quad H(j\omega) = \frac{-10\omega^2}{\omega^4 - 10\omega^2 + 1}.
\]

Note: The \(x_2 \) dependent term in the cost has “sweet spots” at \(|x_2| = 1\)

The solutions of the Harmonic Balance equations (as functions of the fundamental frequency ω) correspond to the Fourier coefficients of the optimal trajectories.
The solutions of the Harmonic Balance equations (as functions of the fundamental frequency ω) correspond to the Fourier coefficients of the optimal trajectories.

The cost corresponding to the obtained trajectories is below the optimal steady-state cost (which is $J = 0$).
The optimal trajectories for one (red) and three (black) harmonics move slowly in the “sweet spots” of the cost function.
We consider the infinite-dimensional model of a string with one fixed end and one loose end, whose velocity is controlled:

\[
\frac{\partial^2 h}{\partial t^2} = \frac{\partial^2 h}{\partial z^2} - D \frac{\partial h}{\partial t} \\
h(L, t) \equiv 0 \\
\frac{\partial h}{\partial t}(0, t) = u(t).
\]

\(h\) denotes the vertical displacement, \(D\) is a damping coefficient.

As 1st state and output we define the velocity at \(L/2\) and as the 2nd state we pick the vertical displacement at the same location. We get

\[
u \mapsto \dot{h}(L/2) : G_1(s) = \frac{1}{2 \cosh(L \sqrt{s^2 + Ds/2})} \\
u \mapsto h(L/2) : G_2(s) = \frac{1}{2s \cosh(L \sqrt{s^2 + Ds/2})}.
\]
We assume that we want the string to have some average velocity, keeping the displacement at bay and minimizing control effort:

\[J(x(0), u, T) = \frac{1}{T} \int_0^T \frac{x_2^2 - x_1^2}{2} + \frac{x_1^4}{4} + \frac{u^2}{2} \, dt \]
We assume that we want the string to have some average velocity, keeping the displacement at bay and minimizing control effort:

\[J(x(0), u, T) = \frac{1}{T} \int_0^T \frac{x_2^2 - x_1^2}{2} + \frac{x_1^4}{4} + \frac{u^2}{2} \, dt \]

This time, \(H(s) \) takes the form

\[H(s) = \frac{-s^2}{\left(4 \cosh\left(\frac{L\sqrt{s^2+Ds}}{2}\right) \cosh\left(\frac{L\sqrt{s^2-Ds}}{2}\right) - 1\right) s^2 - 1} \]

and has infinitely many intervals where \(H(j\omega) > 0 \).
Examples Damped Wave Equation

\((G_1)_{dB}\)

\((H)_{dB}\)

\(\sim H \text{ does not roll off!}\)
The shapes look very similar, the optimal cost function however decreases as the frequency increases.
Optimal trajectory of the String
Further Reading

Optimal Periodic Control

Harmonic Balance

Homotopy Continuation

The dots correspond to evenly spaced time intervals. The optimal trajectory (black) spends a lot of time in the dips, whereas the two other stationary solutions spend less time there.