
THINC: A Virtual Display Architecture
for Thin-Client Computing

Ricardo A. Baratto, Leonard N. Kim, and Jason Nieh
Department of Computer Science

Columbia University, New York, NY, USA

{ricardo, lnk2101, nieh}@cs.columbia.edu

ABSTRACT
Rapid improvements in network bandwidth, cost, and ubiq-
uity combined with the security hazards and high total cost
of ownership of personal computers have created a growing
market for thin-client computing. We introduce THINC, a
virtual display architecture for high-performance thin-client
computing in both LAN and WAN environments. THINC
virtualizes the display at the device driver interface to trans-
parently intercept application display commands and trans-
late them into a few simple low-level commands that can be
easily supported by widely used client hardware. THINC’s
translation mechanism efficiently leverages display semantic
information through novel optimizations such as offscreen
drawing awareness, native video support, and server-side
screen scaling. This is integrated with an update delivery ar-
chitecture that uses shortest command first scheduling and
non-blocking operation. THINC leverages existing display
system functionality and works seamlessly with unmodified
applications, window systems, and operating systems.

We have implemented THINC in an X/Linux environ-
ment and compared its performance against widely used
commercial approaches, including Citrix MetaFrame, Mi-
crosoft RDP, GoToMyPC, X, NX, VNC, and Sun Ray. Our
experimental results on web and audio/video applications
demonstrate that THINC can provide up to 4.8 times faster
web browsing performance and two orders of magnitude bet-
ter audio/video performance. THINC is the only thin client
capable of transparently playing full-screen video and au-
dio at full frame rate in both LAN and WAN environments.
Our results also show for the first time that thin clients can
even provide good performance using remote clients located
in other countries around the world.

Categories and Subject Descriptors: C.2.4 Computer-
Communication-Networks: Distributed Systems – client/
server

General Terms: Design, Experimentation, Performance

Keywords: thin-client computing, remote display, virtual-
ization, mobility

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’05,October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010 ...$5.00.

1. INTRODUCTION
In the last two decades, the centralized computing model

of mainframe computing has shifted toward the more dis-
tributed model of desktop computing. However, as these
personal desktop computers become prevalent in today’s
large corporate and government organizations, the total cost
of owning and maintaining them is becoming unmanageable.
The use of mobile laptops and handheld devices to store and
process information poses additional administration and se-
curity issues. These devices often contain sensitive data that
must be carefully secured, yet the devices themselves must
travel in insecure environments where they can be easily
damaged, lost, or stolen. This management and security
problem is particularly important for the medical commu-
nity, given the increasing use of computing in medicine, the
urgent need to comply with HIPAA regulations [17], and the
huge privacy consequences for lost patient data.

Thin-client computing offers a solution to the rising man-
agement complexity and security hazards of the current com-
puting model by leveraging continued improvements in net-
work bandwidth, cost, and ubiquity to return to a more
centralized, secure, and easier-to-manage computing strat-
egy. A thin-client computing system consists of a server and
a client that communicate over a network using a remote dis-
play protocol. The protocol allows graphical displays to be
virtualized and served across a network to a client device,
while application logic is executed on the server. Using the
remote display protocol, the client transmits user input to
the server, and the server returns screen updates of the user
interface of the applications to the client.

The thin-client approach provides several significant ad-
vantages over traditional desktop computing. Clients can
be essentially stateless appliances that do not need to be
backed up or restored, require almost no maintenance or
upgrades, and do not store any sensitive data that can be
lost or stolen. Mobile users can access the server from any
client and obtain the same persistent, personalized comput-
ing environment. Server resources can be physically secured
in protected data centers and centrally administered, with
all the attendant benefits of easier maintenance and cheaper
upgrades. Computing resources can be consolidated and
shared across many users, resulting in more effective utiliza-
tion of computing hardware. It is not surprising that the
popularity of thin clients continues to rise [12] and the mar-
ket for thin-client systems is expected to grow substantially
over the next five years [38, 43].

Moreover, the key remote display functionality used in
thin clients to decouple display from application execution

1

over a network enables a myriad of other benefits. Remote
users can travel and access their full desktop computing en-
vironment from anywhere [16, 37]. Applications written for
one platform can be remotely displayed on a completely dif-
ferent one without rewrite. Scientists can gain full access at
their desktops to specialized computer-controlled scientific
instrumentation located at remote locations. Since display
output can be arbitrarily redirected and multiplexed over
the network, screen sharing among multiple clients becomes
possible. Thus, groups of users distributed over large geo-
graphical locations can seamlessly collaborate using a single
shared computing session. Furthermore, by mirroring local
display output and redirecting it over the network, instant
technical support can be provided [11, 14, 16] with the abil-
ity to see exactly what the user sees on the desktop, enabling
problems to be diagnosed and corrected much more quickly.
Finally, virtualized computing infrastructure such as virtual
machines can leverage remote display to avoid display de-
vice dependencies and display anywhere, further decoupling
their execution from underlying hardware.

However, thin clients face a number of technical challenges
before achieving mass acceptance. The most salient of these
is the need to provide a high fidelity visual and interactive
experience for end users across the vast spectrum of graph-
ical and multimedia applications commonly found on the
computing desktop. While previous thin-client approaches
have focused on supporting office productivity tools in LAN
environments and reducing data transfer for low bandwidth
links such as ISDN and modem lines, they do not effectively
support more display-intensive applications such as multi-
media video, and they are not designed to operate effectively
in higher latency WAN environments. WAN performance is
particularly important given the growing number of thin-
client application service providers attempting to provide
desktop computing services over the Internet [5, 16, 33].

We introduce THINC (THin-client InterNet Computing),
a virtual display architecture for thin-client computing that
provides high fidelity display and interactive performance
in both LAN and WAN environments. THINC leverages
the standard video driver interface, a well-defined, low-level,
device-dependent layer that exposes the video hardware to
the display system. Instead of providing a real driver for a
particular display hardware, THINC introduces a simple vir-
tual display driver that intercepts drawing commands at the
device layer, packetizes them, and sends them over the net-
work to a client device to display. Using a standard interface
enables THINC to work seamlessly with existing unmodified
applications, window systems, and operating systems. As a
result, THINC avoids reimplementing existing display func-
tionality in window servers and can leverage any continuing
advances in window server technology.

THINC’s remote display protocol consists of a small set
of efficient low-level commands that mirror the video dis-
play driver interface and are easy to implement and acceler-
ate using widely-available commodity client video hardware.
THINC avoids the complexity and overhead of directly im-
plementing higher-level graphics commands used by appli-
cations. Instead, it transparently maps them to its protocol
command set. This is done by taking advantage of informa-
tion available at the video display driver interface and and
preserving that information throughout display processing
using transformation optimizations such as offscreen draw-
ing awareness and native video support. These transforma-

tions encode display updates in a manner that is more com-
putationally and bandwidth efficient than commonly used
compression-based approaches [41, 16].

THINC carefully partitions functionality between client
and server using low-latency mechanisms to provide fast per-
formance even in high latency WAN environments. THINC
introduces a shortest-job-first display command scheduling
to improve response time for interactive applications, a low-
latency push display update model that minimizes synchro-
nization costs between client and server, and a non-blocking
drawing pipeline that integrates well with and maximizes
the performance of today’s single-threaded window servers.
THINC also provides server-side screen scaling, which min-
imizes display bandwidth and processing requirements for
small display handheld devices.

We have implemented THINC as a virtual display driver
in the X window system and measured its performance on
real applications. We have compared our THINC proto-
type system against the most current and widely-used thin-
client systems, including Citrix MetaFrame XP [10], Mi-
crosoft Remote Desktop [11], Sun Ray [36], VNC [41], Go-
ToMyPC [16], X [35], and NX [28]. All of these systems
are commercially-deployed, continue to be heavily devel-
oped and supported by substantial engineering efforts, and
have recently released versions available. Rather than just
discussing the benefits of THINC compared to other ap-
proaches, we conducted a direct comparison with highly-
tuned commercial and open-source thin-client systems to
quantitatively measure the performance of THINC versus
the current state-of-the-art.

Our experimental results on web and multimedia appli-
cations in various network environments demonstrate that
THINC can provide an order of magnitude better perfor-
mance than many of these other approaches. These results
illustrate the importance of not just the choice of display
commands used, but also how the mapping of application-
level drawing commands to protocol primitives can affect
performance. THINC’s approach results in superior over-
all application performance and network bandwidth usage.
Most notably, it is the only system capable of providing
audio/video playback with full-screen video at full frame
rate. As a result, THINC provides a key technology for en-
abling application service providers and utility computing
with modern, multimedia-oriented applications [4].

This paper presents the design and implementation of
THINC. Section 2 provides background and discusses re-
lated work. Section 3 presents an overview of the system ar-
chitecture and display protocol. Section 4 discusses the key
translation mechanisms used in THINC. Section 5 presents
THINC’s scheduling mechanisms to improve system interac-
tivity. Section 6 describes THINC’s screen scaling support
for heterogeneous display devices. The implementation of
THINC as a virtual display driver in the X window system
is discussed in Section 7. Section 8 presents experimen-
tal results measuring THINC performance and comparing
it against other popular commercial thin-client systems on
a variety of web and multimedia application workloads. Fi-
nally, we present some concluding remarks.

2. BACKGROUND AND RELATED WORK
Because of the importance of developing effective thin-

client systems, many alternative designs have been proposed.
These approaches can be loosely classified based on three re-

2

lated design choices: (1) where the graphical user interface
of applications is executed, (2) how display commands from
applications are intercepted so that display updates can be
sent from server to client, and (3) what display primitives
are used for sending display updates over the network.

Older thin-client systems such as Plan 9 [29] and X [35]
provide remote display functionality by pushing all user in-
terface processing to the client computer. Application-level
display commands are not processed on the server, but sim-
ply forwarded to the client. This division of work is more
apparent in X, where, the client is referred to as the “X
server”, and applications running on the server are called
“X clients”. X applications perform graphics operations by
calling library functions in charge of forwarding application-
level display commands over the network to the X server. X
commands present a high-level model of the overall charac-
teristics of the display system, including descriptions of the
operation and management of windows, graphics state, in-
put mechanisms, and display capabilities of the system. By
running the user interface on the client, user interface inter-
actions that do not involve application logic can be processed
locally without incurring network latencies. The use of high-
level application display commands for sending updates over
the network is also widely thought to be bandwidth efficient.

However, there are several important drawbacks to this
approach. First, since application user interfaces and ap-
plication logic are usually tightly coupled, running the user
interface on the client and application logic on the server of-
ten results in a need for continuous synchronization between
client and server. In high-latency WAN environments, this
kind of synchronization causes substantial interactive per-
formance degradation [22]. Second, the use of high-level
application display commands, such as those used by X, in
practice turns out to be not very bandwidth efficient [22, 36].
Third, the window server software used to process applica-
tion user interfaces is large and complex. Maintaining that
software on the client requires frequent updates and software
maintenance costs contrary to the zero administration goals
of thin clients. Fourth, as application user interfaces become
richer, they impose more complex processing requirements.
Running the user interface on the client necessitates replac-
ing clients at the same high frequency as traditional desktop
PCs in order to run the latest applications effectively. Other-
wise, they grow outdated quickly as X-based terminals did
when web browsers came out in the early 1990s. Finally,
storing and managing all display state at the client makes it
difficult to support seamless user mobility across locations.

Proxy extensions such as low-bandwidth X (LBX) [44]
and NoMachine’s NX [28] have been developed to address
some of these problems and improve X performance. LBX
has been shown to have poor performance [21] compared
to other thin-client systems [42]. NX is a more recent de-
velopment that provides good X protocol compression and
reduces the need for network round trips to improve X per-
formance in WAN environments. Neither of these systems
address the maintenance costs associated with executing a
complete window system on the client.

More recent thin-client systems such as Citrix MetaFrame
[10], Microsoft Remote Desktop [11] which comes standard
with Windows, Sun Ray [36], and VNC [32], run the graph-
ical user interface of applications at the server, avoiding the
need to maintain and run complex window server software at
the client. The client functions simply as an input-output

device. It maintains a local copy of the framebuffer state
used to refresh its display and forwards all user input di-
rectly to the server for processing. When applications gener-
ate display commands, the server processes those commands
and sends screen updates over the network to the client to
update the client’s local framebuffer. The server maintains
the true application and display state, while the client only
contains transient soft state.

This approach provides several important benefits. First,
synchronization overhead across the network between the
user interface and applications can be eliminated since both
components run on the server. Second, no window server
software needs to run on the client, allowing for less com-
plex client implementation. Third, client processing require-
ments can scale with display size instead of graphical user
interface complexity, enabling clients to be designed as fixed-
function devices for a given display resolution. Fourth, since
all persistent state resides on the server, mobile users can
easily obtain the same persistent and consistent computing
environment by connecting to the server from any client.

Achieving these benefits with good system performance
remains a key challenge. Citrix MetaFrame, Tarantella [34],
and Microsoft Remote Desktop translate application display
commands into a rich set of low-level graphics commands
that encode display updates sent over the network. These
commands are similar to many of the commands used in
X. However, performance studies [22, 45] of these systems
indicate that using a richer set of display primitives does
not necessarily provide substantial gains in bandwidth effi-
ciency, particularly in the presence of multimedia content.
Furthermore, the added overhead of supporting a complex
set of display primitives results in slower responsiveness and
degraded performance in WAN environments. MetaFrame
recently added video support by taking advantage of the
Windows media architecture to capture the encoded media
stream from the application, transmit it over the network,
and decode and playback on the client. However, video sup-
port is limited only to certain video formats and applications
that use the necessary Windows media framework. While
this approach reduces network utilization, it increases client
complexity, as media decoding and support for different for-
mats relies heavily on local software components, which need
to be bundled with and maintained on the client. A special-
ized version of Remote Desktop in Windows Media Center
Edition takes a similar approach, but requires a specialized
Windows server and hardware clients; video support is not
available in standard Remote Desktop.

Sun Ray uses simpler 2D drawing primitives for sending
updates over the network. The original command set de-
veloped was simple and easy to implement, and was thor-
oughly evaluated [36], which motivated the use of a similar
command set for THINC. Sun Ray has since evolved and is
now in its third major product version. However, it lacks
efficient and transparent mechanisms to translate applica-
tion display commands into its command set. For example,
some application commands need to be reduced to pixel data
then sampled to determine which drawing primitives to use.
This can be difficult to do effectively, and processing over-
head can adversely affect overall performance. Applications
which generate display commands that Sun Ray cannot ef-
ficiently translate need to be explicitly modified to deliver
adequate performance. In particular, Sun Ray lacks trans-
parent support for video playback. Sun Ray intercepts appli-

3

cation commands using a customized X server, which causes
difficulty in keeping up with continuing advances in more
widely supported window server implementations, such as
XFree86 and X.org.

VNC [41] and GoToMyPC [16] reduce everything to raw
pixel values for representing display updates, then read the
resulting framebuffer pixel data and encode or compress it,
a process sometimes called screen scraping. Other similar
systems include Laplink [24] and PC Anywhere [37], which
have been previously shown to perform poorly [25]. Screen
scraping is a simple process, and decouples the processing
of application display commands from the generation of dis-
play updates sent to the client. Servers do the full trans-
lation from application display commands to actual pixel
data, while clients can be very simple and stateless, allow-
ing for maximum portability of the system across client plat-
forms. However, display commands consisting of raw pixels
alone are typically too bandwidth-intensive. For example,
using raw pixels to encode display updates for a video player
displaying at 30 frames per second (fps) full-screen video
clip on a typical 1024x768 24-bit resolution screen would
require over 0.5 Gbps of network bandwidth. As a result,
the raw pixel data must be compressed. Many compression
techniques have been developed for this purpose, including
FABD [15], PWC [3], and TCC [7, 8, 6]. Generating display
updates in this manner is computationally intensive since
the original application display semantics are lost and can-
not be used in the process. However, these inefficiencies
may be less important in the context of providing a user
with remote access to an otherwise idle PC [16].

The aforementioned systems focus on providing thin-client
computing for general-purpose applications. Specialized ar-
chitectures that provide remote access to specific applica-
tions have also been proposed. The topic of remote mul-
timedia access has been extensively explored; the Infopad
project [39] created a device optimized for wireless access
to multimedia content. Commercial systems such as SGI’s
VizServer [40] provide remote access to 3D content. Simi-
larly, WireGL and Chromium [18] enable cluster rendering
systems that distribute the 3D processing load, but require
high bandwidth environments to operate efficiently.

3. ARCHITECTURE AND PROTOCOL
The architecture of THINC virtualizes the display at the

video device abstraction layer, which sits below the window
server and above the framebuffer. This is a well-defined, low-
level, device-dependent layer that exposes the video hard-
ware to the display system. The layer is typically used by
implementing a device-specific display driver that enables
the use of a particular display hardware. THINC instead
introduces a simple virtual display driver that intercepts
drawing commands at the device layer, packetizes them, and
sends them over the network to a client device to display.

THINC’s virtual display approach brings with it some key
implementation and architectural advantages. Because the
display device layer sits below the window server proper,
THINC avoids reimplementing display system functional-
ity already available, resulting in a simpler system that can
leverage existing investments in window server technology.
In addition, using a standard interface enables THINC to
work seamlessly with existing unmodified applications, win-
dow systems, and operating systems. In particular, THINC
can operate within unmodified window servers, avoiding the

Command Description

RAW Display raw pixel data at a given location
COPY Copy frame buffer area to specified coor-

dinates
SFILL Fill an area with a given pixel color value
PFILL Tile an area with a given pixel pattern
BITMAP Fill a region using a bitmap image

Table 1: THINC Protocol Display Commands

need to maintain and update its own window server code
base. THINC can also support new video hardware features
with at most the same amount of work necessary to support
them in traditional hardware-specific display drivers. Fi-
nally, as the video device driver layer still provides semantic
information regarding display commands, THINC utilizes
those semantics to encode application commands and trans-
mit them from the server to the client in a manner that is
both computationally and bandwidth efficient.

With this virtual display approach, THINC uses a small
set of low-level display commands for encoding display up-
dates, inspired by the core commands originally used in
Sun Ray [36]. The display commands mirror a subset of
the video display driver interface. The five commands used
in THINC’s display protocol are listed in Table 1. These
commands are ubiquitously supported, simple to implement,
and easily portable to a range of environments. They mimic
operations commonly found in client display hardware and
represent a subset of operations accelerated by most graph-
ics subsystems. Graphics acceleration interfaces such as
XAA and KAA for X and Microsoft Windows’ GDI Video
Driver interface use a set of operations which can be syn-
thesized using THINC’s commands. In this manner, clients
need only translate protocol commands into hardware calls,
and servers avoid the need to do full translation to actual
pixel data, reducing display processing latency.

THINC display commands are as follows. RAW is used to
transmit unencoded pixel data to be displayed verbatim on
a region of the screen. This command is invoked as a last
resort if the server is unable to employ any other command,
and it is the only command that may be compressed to mit-
igate its impact on the network. COPY instructs the client
to copy a region of the screen from its local framebuffer to
another location. This command improves the user expe-
rience by accelerating scrolling and opaque window move-
ment without having to resend screen data from the server.
SFILL, PFILL, and BITMAP are commands that paint a
fixed-size region on the screen. They are useful for accel-
erating the display of solid window backgrounds, desktop
patterns, backgrounds of web pages, text drawing, and cer-
tain operations in graphics manipulation programs. SFILL
fills a sizable region on the screen with a single color. PFILL
replicates a tile over a screen region. BITMAP performs a
fill using a bitmap of ones and zeros as a stipple to apply a
foreground and background color.

For high fidelity display, all THINC commands are de-
signed to support full 24-bit color as well as an alpha chan-
nel, a feature not supported by thin-client systems that
execute the graphical user interface of applications on the
server. The alpha channel enables THINC to support graph-
ics compositing operations [31] and work with more ad-
vanced window system features that depend on these op-
erations, such as anti-aliased text. Although graphics com-

4

positing operations have been used in the 3D graphics world
for some time, only recently have they been used in the con-
text of 2D desktop graphics. As a result, there is currently
a dearth of support for hardware acceleration of these oper-
ations, particularly with low-end 2D only cards commonly
used in more modest machines.

THINC provides support for graphics composition by tak-
ing advantage of available client hardware acceleration sup-
port only when it is present. In the absence of such sup-
port, THINC’s virtual device driver approach allows it to
transparently fall back to the software implementation pro-
vided by the window system precisely for video cards lack-
ing hardware support. By doing so, THINC guarantees the
simplicity of the client while utilizing the faster server CPU
to perform the software rendering. In contrast, thin-client
systems which push functionality to the client may need to
perform the software rendering using the limited resources
of the client computer.

4. TRANSLATION LAYER
The key aspect of THINC’s design is not the choice of

display primitives that it uses, but rather how it utilizes the
virtual display approach to effectively and transparently in-
tercept application display commands and translate them
efficiently into THINC commands. There are three impor-
tant principles in how THINC translation is performed.

First, as the window server processes application requests,
THINC intercepts display commands as they occur, and
translates the result into its own commands. By translat-
ing at this point, THINC can use the semantic information
available about the command (and which is lost once pro-
cessing is finished), to identify which commands should be
used. In particular, THINC can know precisely what dis-
play primitives are used, instead of attempting to infer those
primitives after the fact. Translation in many cases becomes
a simple one-to-one mapping from display command to the
respective THINC command. For example, a fill operation
to color a region of the screen a given color is easily mapped
to a SFILL command.

Second, THINC decouples the processing of application
display commands and their network transmission. This al-
lows THINC to aggregate small display updates into larger
ones before they are sent to the client, and is helpful in
many situations. For example, sending a display update
for rendering a single character can result in high overhead
when there are many small display updates being generated.
Similarly, some application display commands can result in
many small display primitives being generated at the dis-
play device layer. Rasterizing a large image is often done
by rendering individual scan lines. The cost of processing
and sending each scan line can degrade system performance
when an application does extensive image manipulation.

Third, THINC preserves command semantics throughout
its processing of application display commands and manip-
ulation of the resulting THINC commands. Since THINC
commands are not immediately dispatched as they are gen-
erated by the server, it is important to ensure that they are
correctly queued and their semantic information preserved
throughout the command’s lifetime. For example, it is not
uncommon for regions of display data to be copied and ma-
nipulated. If copying from one display region to another
is done by simply copying the raw pixel values, the origi-
nal command semantics will be lost in the copied region. If

THINC commands were reduced to raw pixels at any time,
semantic information regarding those commands is lost and
it becomes difficult to revert to the original commands in
order to efficiently transmit them over the network.

THINC’s virtual video device translation layer builds on
these three design principles by utilizing two basic objects:
the protocol command object, and the command queue ob-
ject. Protocol command objects, or just command objects,
are implemented in an object-oriented fashion. They are
based on a generic interface that allows the THINC server
to operate on the commands, without having to know each
command’s specific details. On top of this generic interface,
each protocol command provides its own concrete implemen-
tation.

As previously mentioned, translated commands are not
instantly dispatched to the client. Instead, depending on
where drawing occurs and current conditions in the system,
commands normally need to be stored and groups of com-
mands may need to be manipulated as a single entity. To
handle command processing, THINC introduces the notion
of a command queue. A command queue is a queue where
commands drawing to a particular region are ordered ac-
cording to their arrival time. The command queue keeps
track of commands affecting its draw region, and guaran-
tees that only those commands relevant to the current con-
tents of the region are in the queue. As application drawing
occurs, the contents of the region may be overwritten. In
the same manner, as commands are generated in response
to these new draw operations, they may overwrite existing
commands either partially or fully. As commands are over-
written they may become irrelevant, and thus are evicted
from the queue. Command queues provide a powerful mech-
anism for THINC to manage groups of commands as a single
entity. For example, queues can be merged and the resulting
queue will maintain the queue properties automatically.

To guarantee correct drawing as commands are overwrit-
ten, the queue distinguishes among three types of commands
based on how they overwrite and are overwritten by other
commands: complete, partial, and transparent. Partial com-
mands are opaque commands which can be partially or com-
pletely overwritten by other commands. Complete com-
mands are opaque commands that can only be completely
overwritten. Transparent commands are commands that de-
pend on commands previously executed and do not over-
write commands already in the queue. The command queue
guarantees that the overlap properties of each command
type are preserved at all times.

4.1 Offscreen Drawing
Today’s graphic applications use a drawing model where

the user interface is prepared using offscreen video memory;
that is, the interface is computed offscreen and copied on-
screen only when it is ready to present to the user. This
idea is similar to the double- and triple-buffering methods
used in video and 3D-intensive applications. Though this
practice provides the user with a more pleasant experience
on a regular local desktop client, it can pose a serious perfor-
mance problem for thin-client systems. Thin-client systems
typically ignore all offscreen commands since they do not di-
rectly result in any visible change to the framebuffer. Only
when offscreen data are copied onscreen does the thin-client
server send a corresponding display update to the client.
However, all semantic information regarding the offscreen

5

data has been lost at this point and the server must resort to
using raw pixel drawing commands for the onscreen display
update. This can be very bandwidth-intensive if there are
many offscreen operations that result in large onscreen up-
dates. Even if the updates can be successfully compressed,
this process can be computationally expensive and would
impose additional load on the server.

To deliver effective performance for applications that use
offscreen drawing operations, THINC provides a translation
optimization that tracks drawing commands as they occur
in offscreen memory. The server then sends only those com-
mands that affect the display when offscreen data are copied
onscreen. THINC implements this by keeping a command
queue for each offscreen region where drawing occurs. When
a draw command is received by THINC with an offscreen
destination, a THINC protocol command object is generated
and added to the command queue associated with the desti-
nation offscreen region. The queue guarantees that only rel-
evant commands are stored for each offscreen region, while
allowing new commands to be merged with existing com-
mands of the same kind that draw next to each other.

THINC’s offscreen awareness mechanism also accounts for
applications that create a hierarchy of offscreen regions to
help them manage the drawing of their graphical interfaces.
Smaller offscreen regions are used to draw simple elements,
which are then combined with larger offscreen regions to
form more complex elements. This is accomplished by copy-
ing the contents of one offscreen region to another. To pre-
serve display content semantics across these copy operations,
THINC mimics the process by copying the group of com-
mands that draw on the source region to the destination
region’s queue and modifying them to reflect their new lo-
cation. Note that the commands cannot simply be moved
from one queue to the other since an offscreen region may
be used multiple times as source for a copy.

When offscreen data are copied onscreen, THINC executes
the queue of display commands associated with the respec-
tive offscreen region. Because the display primitives in the
queue are already encoded as THINC commands, THINC’s
execution stage normally entails little more than extracting
the relevant data from the command’s structure and passing
it to the functions in charge of formatting and outputting
THINC protocol commands to be sent to the client. The
simplicity of this stage is crucial to the performance of the
offscreen mechanism since it should behave equivalently to a
local desktop client that transfers pixel data from offscreen
to onscreen memory.

In monitoring offscreen operations, THINC incurs some
tracking and translation overhead compared to systems that
completely ignore offscreen operations. However, the domi-
nant cost of offscreen operations is the actual drawing that
occurs, which is the same regardless of whether the opera-
tions are tracked or ignored. As a result, THINC’s offscreen
awareness imposes negligible overhead and yields substan-
tial improvements in overall system performance, as demon-
strated in Section 8.

4.2 Audio/Video Support
From video conferencing and presentations to movie and

music entertainment, multimedia applications play an ev-
eryday role in desktop computing. However, existing thin-
client platforms have little or no support for multimedia ap-
plications, and in particular for video delivery to the client.

Video delivery imposes rather high requirements on the un-
derlying remote display architecture. If the video is com-
pletely decoded by applications on the server, there is little
the thin-client server can do to provide a scalable solution.
Real-time re-encoding of the video data is computationally
expensive, even with modern CPUs. At the same time, de-
livering 24fps of raw RGB data can rapidly overwhelm the
capacity of a typical network. Further hampering the abil-
ity of thin-client systems to support video playback are the
lack of well-defined application interfaces for video decoding.
Most video players use ad-hoc methods for video decoding,
and providing support in this environment would require
prohibitive per-application modifications.

While full video decoding in desktop computers is still
confined to the realm of software applications, video hard-
ware manufacturers have been slowly adding hardware ac-
celeration capabilities to video cards for specific stages of
the decoding process. For example, the ability to do hard-
ware color space conversion and scaling (the last stage of
the decoding process) is present in almost all of today’s com-
modity video cards. To allow applications to take advantage
of these advancements, interfaces have been created in dis-
play systems that allow video device drivers to expose their
hardware capabilities back to the applications. With its ap-
proach, THINC provides a virtual “bridge” between the re-
mote client hardware and the local applications, and allows
applications to transparently use the hardware capabilities
of the client to perform video playback across the network.

THINC supports the transmission of video data using
widely supported YUV pixel formats. A wide range of YUV
pixel formats exist that provide efficient encoding of video
content. For example, the preferred pixel format in the
MPEG decoding process is YV12, which allows normal true
color pixels to be represented with only 12 bits. YUV for-
mats are able to efficiently compress RGB data without loss
of quality by taking advantage of the human eye’s ability
to better distinguish differences in brightness than in color.
When using YUV, the client can simply transfer the data to
its hardware, which automatically does color space conver-
sion and scaling. Hardware scaling decouples the network
transfer requirements of the video from the size at which it
is viewed. In other words, playing back a video at full screen
resolution does not incur any additional overhead over play-
ing it at its original size, because the client hardware trans-
parently transforms the stream to the desired view size.

THINC’s video architecture is built around the notion of
video stream objects. Each stream object represents a video
being displayed. All streams share a common set of char-
acteristics that allow THINC to manipulate them such as
their format, position on the screen, and the geometry of
the video. In addition, each stream encapsulates informa-
tion and state for its respective format. The THINC server
uses its translation architecture to seamlessly translate from
application requests to video commands which are forwarded
to the client. Additional protocol messages are used to ma-
nipulate video streams, and they allow operations such as
initialization and tearing down of a video stream, and ma-
nipulation of the stream’s position and size.

Audio streams are not as resource intensive as video streams
and THINC supports audio by simply applying its virtual
display driver approach to the audio device to create a vir-
tual audio driver that takes audio input, packetizes it, and
sends it over the network to a client device to display. By

6

operating at the device layer, THINC provides transpar-
ent support for audio applications that can use many dif-
ferent audio libraries. THINC timestamps both audio and
video data at the server to ensure they are delivered to the
client with the same synchronization characteristics present
at the server. Due to space constraints and our primary fo-
cus here on remote graphical display, further details regard-
ing THINC audio/video synchronization support are beyond
the scope of this paper.

5. COMMAND DELIVERY
THINC schedules commands to be sent from server to

client with interactive responsiveness and latency tolerance
as a top priority. THINC maintains a per-client command
buffer based on the command queue structure described in
Section 4 to keep track of commands that need to be sent
to the client. While the client buffer maintains command
ordering based on arrival time, THINC does not necessarily
follow this ordering when delivering commands over the net-
work. Instead, alongside the client buffer THINC provides a
multi-queue Shortest-Remaining-Size-First (SRSF) preemp-
tive scheduler, analogous to Shortest-Remaining-Processing-
Time (SRPT). SRPT is known to be optimal for minimizing
mean response time, a primary goal in improving the inter-
activity of a system. The size of a command refers to its
size in bytes, not its size in terms of the number of pixels
it updates. THINC uses remaining size instead of the com-
mand’s original size to shorten the delay between delivery of
segments of a display update and to minimize artifacts due
to partially sent commands. Commands are sorted in mul-
tiple queues in increasing order with respect to the amount
of data needed to deliver them to the client. Each queue
represents a size range, and commands within the queue are
ordered by arrival time. The current implementation uses 10
queues with powers of 2 representing queue size boundaries.
When a command is added to the client’s command buffer,
the scheduler chooses the appropriate queue to store it. The
commands are then flushed in increasing queue order.

Reordering of commands is possible with guaranteed cor-
rect final output as long as any dependencies between a com-
mand and commands issued before it are handled correctly.
To explain how THINC’s scheduler guarantees correct draw-
ing, we distinguish between partial, complete, and trans-
parent commands. Opaque commands completely overwrite
their destination region. Therefore, dependency problems
can arise after reordering only if an earlier-queued command
can draw over the output of a later-queued command. How-
ever, this situation cannot occur for partial commands be-
cause the command queue guarantees that no overlap exists
among these types of commands, as discussed in Section 4.
Furthermore, since complete commands are typical of var-
ious types of fills such as solid fills, their size is constantly
small and they are guaranteed to end up in the first sched-
uler queue. Since each queue is ordered by arrival time, it is
not possible for these commands to overwrite later similar
commands.

On the other hand, transparent commands need to be
handled more carefully because they explicitly depend on
the output of commands drawn before them. To guarantee
efficient scheduling, THINC schedules a transparent com-
mand T using a two step process. First, dependencies are
found by computing the overlap between the output region
of T and the output region of existing buffered commands.

T will depend on all those commands with which it overlaps.
Second, from the set of dependencies, the largest command
L is chosen, and the new command is added to the back of
the queue where L currently resides. As queues are flushed
in increasing order, THINC’s approach guarantees that all
commands upon which T depends will have been completely
drawn before T itself is sent to the client. Although more
sophisticated approaches could be used to allow the reorder-
ing of transparent commands, we found that their additional
complexity outweighed any potential benefits to the perfor-
mance of the system.

In addition to the queues for normal commands, the sched-
uler has a real-time queue for commands with high interac-
tivity needs. Commands in the real-time queue take priority
and preempt commands in the normal queues. Real-time
commands are small to medium-sized and are issued in di-
rect response to user interaction with the applications. For
example, when the user clicks on a button or enters key-
board input, she expects immediate feedback from the sys-
tem in the form of a pressed button image. Because a video
driver does not have a notion of a button or other high-
level primitives, THINC defines a small-sized region around
the location of the last received input event. By marking
updates which overlap these regions as real-time and deliv-
ering them sooner as opposed to later, THINC improves the
user-perceived responsiveness of the system.

THINC sends commands to the client using a server-push
architecture, where display updates are pushed to the client
as soon as they are generated. In contrast to the client-pull
model used by popular systems such as VNC [41] and GoTo-
MyPC [16], server-push maximizes display response time by
obviating the need for a round trip delay on every update.
This is particularly important for display-intensive applica-
tions such as video playback since updates are generated
faster than the rate at which the client can send update re-
quests back to the server. Furthermore, a server-push model
minimizes the impact of network latency on the responsive-
ness of the system because it requires no client-server syn-
chronization, whereas a client-driven system has an update
delay of at least half the round-trip time in the network.

Although a push mechanism can outperform client-pull
systems, a server blindly pushing data to clients can quickly
overwhelm slow or congested networks and slowly respond-
ing clients. In this situation, the server may have to block or
buffer updates. If updates are not buffered carefully and the
state of the display continues to change, outdated content is
sent to the client before relevant updates can be delivered.

Blocking can have potentially worse effects. Display sys-
tems are commonly built around a monolithic core server
which manages display and input events, and where display
drivers are integrated. If the video device driver blocks, the
core display server also blocks. As a result, the system be-
comes unresponsive since neither application requests nor
user input events can be serviced. In display systems where
applications send requests to the window system using IPC
mechanisms, blocking may eventually cause applications to
also block after the IPC buffers are filled.

The THINC server guarantees correct buffering and low
overhead display update management by using its command
queue-based client buffer. The client buffer ensures that out-
dated commands are automatically evicted. THINC period-
ically attempts to flush the buffer using its SRSF scheduler
in a two-stage process. First, each command in the buffer’s

7

queue is committed to the network layer by using the com-
mand’s flush handler. Since the server can detect if it will
block when attempting to write to a socket, it can postpone
the command until the next flush period. Second, to pro-
tect the server from blocking on large updates, a command’s
flush handler is required to guarantee non-blocking opera-
tion during the commit by breaking large commands into
smaller updates. When the handler detects that it cannot
continue without blocking, it reformats the command to re-
flect the portion that was committed and informs the server
to stop flushing the buffer. Commands are not broken up
in advance to minimize overhead and allow the system to
adapt to changing conditions.

6. HETEROGENEOUS DISPLAYS
The promise of ubiquitous computing access has been a

major driving force in the growing popularity of thin-client
systems. To deliver on this promise, THINC decouples the
session’s original framebuffer size, from the size at which a
particular client may view it. In this way, THINC enables
access from a variety of devices by supporting variable client
display sizes and dynamic resizing. For instance, to view a
desktop session through a small-screen mobile device such
as a PDA, THINC initially presents a zoomed-out version
of the user’s desktop, from where the user can zoom in on
particular sections of the display. In sharp contrast to sim-
ilar client-only approaches in existing thin-client systems,
THINC’s display resizing is fully supported by the server.
After a client reports its screen size to the server, subse-
quent updates are automatically resized by the server to fit
in the client’s smaller viewport. When the user zooms in on
the desktop, the client presents a temporary magnified view
of the desktop while it requests updated content from the
server. The server updates are necessary when the display
size increases, because the client has only a small-size ver-
sion of the display, with not enough content to provide an
accurate view of the desktop.

Server resize support is designed to minimize processing
and network overhead while maintaining display quality and
client simplicity. For this reason, resizing is supported differ-
ently for each protocol command. RAW updates can be easily
resized because they consist of pure pixel data which can be
reliably resampled, and more importantly, the bandwidth
savings are significant. Similarly for PFILL updates the tile
image is resized. On the other hand, BITMAP updates cannot
be resized without incurring significant loss of display infor-
mation and generating display artifacts. Traditionally, anti-
aliasing techniques are used to minimize the loss of infor-
mation from the downsize operation. However, anti-aliasing
requires the use of intermediate pixel values which bitmap
data cannot represent. In this case, BITMAP updates are con-
verted to RAW and resampled by the server. While this may
increase bandwidth usage, requiring the client to do resizing
would be prohibitively expensive. Finally, resizing SFILL

updates represents no savings with respect to bandwidth or
computation, and therefore they are sent unmodified.

As shown in Section 8, our approach provides substan-
tial performance benefits by leveraging server resources and
reducing bandwidth consumption, vastly outperforming the
client-only support present in other systems. Furthermore,
since THINC can use the powerful server CPU to do most
of the resize work, it can use high quality resampling algo-
rithms to provide superior display content to the user.

7. IMPLEMENTATION
We have implemented a prototype THINC server in Linux

as a video device driver that works with all existing open
source X server implementations, including XFree86 4.3, 4.4,
and X.org 6.8. We have implemented a number of THINC
clients, including a simple X application, a Java client (both
as a standalone application and a web browser applet), a
Windows client, and a Windows PDA client, demonstrating
THINC’s client portability and simplicity. THINC seam-
lessly hooks into X’s existing driver infrastructure, and no
changes are required to applications or the window system.
XFree86 and derived implementations are designed around
a single-user workstation model where a server has exclu-
sive access to the computer’s display hardware, and multiple
server instances are not allowed to be active simultaneously.
Because the THINC server does not access local hardware,
THINC modifies the window server’s behavior from within
the video driver to allow multiple servers to be active at the
same time.

RAW commands are the only commands where we ap-
ply additional compression to mitigate its impact on the
network. The current prototype uses PNG[30] for this pur-
pose. To support resizing, we use a simplified version of
Fant’s resampling algorithm [13], which produces high qual-
ity, anti-aliased results with very low overhead. To provide
video support, THINC leverages the standard XVideo ex-
tension by implementing the necessary XVideo device driver
hooks. THINC primarily exports the YV12 format to appli-
cations, which we chose not only for its intrinsic compression
characteristics, but more importantly, for the wide range of
applications supporting it, and its use as one of the preferred
formats in MPEG codecs. For audio support, we use a vir-
tualized ALSA audio driver implemented as a kernel module
to intercept audio data. The THINC audio driver utilizes
ALSA’s driver interfaces and multiplexes its resources across
multiple THINC users. Applications interact with the driver
using ALSA’s audio library. The driver works in tandem
with a per client daemon which is automatically signaled as
audio data becomes available.

For improved network security, THINC encrypts all traf-
fic using RC4, a streaming cipher particularly suited for the
kind of traffic prevalent in thin-client environments. Al-
though block ciphers can have a significant effect in the per-
formance of the system, we have found the cost of RC4 to
be rather minimal, and the benefits far outweigh any mi-
nor overhead in overall system performance. Our prototype
also implements authentication using the standard UNIX
authentication facilities provided by PAM (Pluggable Au-
thentication Modules). Our authentication model requires
the user to have a valid account on the server system and to
be the owner of the session she is connecting to. To support
multiple users collaborating in a screen-sharing session, the
authentication model is extended to allow host users to spec-
ify a session password that is then used by peers connecting
to the shared session.

8. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of THINC, we conducted

a direct comparison with a number of state-of-the-art and
widely used thin-client platforms. These were Citrix Meta-
FrameXP, Microsoft Remote Desktop, GoToMyPC, X, NX,
Sun’s Sun Ray, and VNC. We follow common practice and

8

450MHz PII

128MB RAM

Packet

Monitor

Network

Emulator Webserver

Thin

Server

SunRay I

100 MHz uSPARC

8MB RAM

IBM Netfinity 4500R 2x933MHz PIII 512MB RAM

Figure 1: Experimental Testbed

refer to Citrix MetaFrameXP and Microsoft Remote Desk-
top by their respective remote display protocols, ICA (Inde-
pendent Computing Architecture) and RDP (Remote Desk-
top Protocol). Our measurements present the first quanti-
tative performance comparison of these systems. We mea-
sured their performance on common web and multimedia
audio/video applications in LAN, WAN, and 802.11g wire-
less network environments. We also used a PC running all
applications locally as a baseline for representing today’s
prevalent desktop computer model. Section 8.1 describes
our experimental setup. Section 8.2 describes the applica-
tion benchmarks used for our studies. Section 8.3 presents
our measurement results.

8.1 Experimental Setup
We compared the performance of various thin-client sys-

tems using an isolated network testbed, and we measured
wide-area THINC performance using PlanetLab [9] nodes
and other remote sites located around the world. As shown
in Figure 1, our testbed consisted of six computers connected
on a switched FastEthernet network: two thin clients, a
packet monitor, a network emulator for emulating various
network environments, a thin-client server, and a web server
used for testing web applications. Except for the thin clients,
all computers were IBM Netfinity 4500R servers, with dual
933 MHz Pentium III processors and 512 MB of RAM. The
client computers were a 450 MHz Pentium II computer with
128 MB of RAM, and a Sun Ray I with a 100 MHz µSPARC
processor and 8 MB of RAM. During each test, only one
client/server pair was active at a time. The web server
used was Apache 1.3.27, the network emulator was NISTNet
2.0.12, and the packet monitor was Ethereal 0.10.9.

To provide a fair comparison, we standardized on common
hardware and operating systems whenever possible. All of
the thin-client systems used the PC as the client, except Sun
Ray, for we which we used a Sun Ray I hardware thin client.
All of the systems used the Netfinity server as the thin-client
server. For the three systems designed for Windows (ICA,
RDP, and GoToMyPC), we ran Windows 2003 Server on
the server and Windows XP Professional on the client. For
the systems designed for X-based environments, we ran the
Debian Linux Unstable distribution with the Linux 2.6.10
kernel on both server and client, except for Sun Ray, where
we encountered a problem with audio playback that required
us to revert to a 2.4.27 kernel. We used the latest thin-
client system versions available on each platform, namely
Citrix MetaFrame XP Server for Windows Feature Release
3, Microsoft Remote Desktop built into Windows XP and
Windows 2003 using RDP 5.2, GoToMyPC 4.1, VNC 4.0,
NX 1.4, Sun Ray 3.0, and XFree86 4.3.0 on Debian. Since X
does not natively support audio, we used it with aRts 1.3.2,
a sound server commonly used to provide remote audio.

To minimize application environment differences, we used
common thin-client configuration options whenever possible.
Client display was set to 24-bit color except for GoToMyPC
which is limited to 8-bit color. To mimic realistic usage of
the systems over public and insecure networks, we enabled
RC4 encryption with 128-bit keys on all platforms which
supported it. For those which did not, namely X and VNC,
we used ssh to provide a secure tunnel through which all
traffic was forwarded. The ssh tunnel was configured to use
RC4. Following common practice, we configured X’s ssh
tunnel to also compress all traffic [20]. Any remaining thin-
client configuration settings were set to their defaults for a
particular network environment. ICA, RDP, and NX were
set to LAN settings when used in the LAN and WAN set-
tings when used in the WAN. Some thin-client systems used
a persistent disk cache in addition to a per-session cache.
To minimize variability, we left the persistent cache turned
on but cleared it before every test was run.

We considered three different client display resolution and
network configurations: LAN Desktop, WAN Desktop, and
802.11g PDA. LAN Desktop represents a client with a 1024 x
768 display resolution and a 100 Mbps LAN network. WAN
Desktop represents a client with a 1024 x 768 display resolu-
tion and a 100 Mbps WAN network with a 66 ms RTT, which
emulates Internet2 connectivity to a US cross-country re-
mote server [22]. We conducted our WAN experiments using
the kind of high-bandwidth network environment that is be-
coming increasingly available in public settings [1]. 802.11g
PDA represents a client with a 320 x 240 display resolution
for a PDA-like viewing experience and a 24 Mbps network,
which emulates an idealized 802.11g wireless network [2].
We chose 802.11g over 802.11b to reflect 802.11g’s emergence
as the next standard for wireless networks. The added band-
width capacity provides a more conservative comparison for
bandwidth intensive applications, such as video playback.
Since the purpose of the test was to measure performance
on small-screen displays, 802.11g PDA did not emulate the
additional latency and packet loss characteristics typical of
wireless networks, and results are only reported for those
systems with support for small client screens.

GoToMyPC is only offered as an Internet service that
connects the client and server using an intermediate hosted
server through which all traffic is routed. As a result, we
were unable to fully control the network configuration used.
Our measurements show a 70 ms RTT between the inter-
mediate GoToMyPC server used and our testbed, resulting
in similar network latencies as our emulated WAN environ-
ment. We measured GoToMyPC performance without net-
work emulation and referred to it as WAN Desktop. We
repeated the same measurements with small-screen display
and network emulation limiting bandwidth to 24 Mbps and
referred to it as 802.11g PDA. The display resolution for
the GoToMyPC 802.11g PDA was set to 640x480 because it
does not support smaller displays.

We also measured thin-client performance in WAN envi-
ronments by running the server in our local testbed, but
running the client on PlanetLab [9] nodes and other re-
mote sites located around the world. Table 2 lists the sites
used. Since the PlanetLab machines run User-Mode Linux,
we were unable to run X-based thin-client servers on these
machines, and the use of Linux precluded any testing of
Windows-based thin-client systems. We were also prohib-
ited from making significant modifications to the Linux in-

9

Name PlanetLab Location Distance
NY yes New York, NY, USA 5 miles
PA yes Philadelphia, PA, USA 78 miles
MA yes Cambridge, MA, USA 188 miles
MN yes St. Paul, MN, USA 1015 miles
NM no Albuquerque, NM, USA 1816 miles
CA no Stanford, CA, USA 2571 miles

CAN yes Waterloo, Canada 388 miles
IE no Maynooth, Ireland 3185 miles
PR no San Juan, Puerto Rico 1603 miles
FI no Helsinki, Finland 4123 miles
KR yes Seoul, Korea 6885 miles

Table 2: Remote Sites for WAN Experiments

stallations at the non-PlanetLab sites. To measure THINC
performance, we developed an instrumented headless ver-
sion of the THINC client that could process all display and
audio data but did not output the result to any display or
sound hardware. We deployed this client on the remote sites
and ran the same experiments as the WAN configuration.

Since most of the thin-client systems tested used TCP as
the underlying transport protocol, we were careful to con-
sider the impact of TCP window sizing on performance in
WAN environments. Since TCP windows should be adjusted
to at least the bandwidth delay product size to maximize
bandwidth utilization, we used a 1 MB TCP window size in
our testbed WAN environment and with remote sites when-
ever possible to take full advantage of the network band-
width capacity available. However, PlanetLab nodes were
limited to a window size of 256 KB due to their preconfig-
ured system limits.

8.2 Application Benchmarks
We evaluated thin-client systems on web browsing and

audio/video playback, two dominant applications used on
the desktop. Web browsing performance was measured by
running a benchmark based on the Web Page Load test i-
Bench benchmark suite [19]. The benchmark consists of a
sequence of 54 web pages containing a mix of text and graph-
ics. Once a page has been downloaded, a link is available on
the page that can be clicked to download the next page in
the sequence. This mouse clicking operation was done using
a mechanical device we built to press the mouse button in
a precisely timed fashion. The mechanical device enabled
us to better simulate a user browsing experience and ensure
that the test could be easily repeated on different thin-client
systems without introducing human timing errors. For re-
mote site experiments with THINC, the headless client read
a script of timed mouse coordinates and clicks to run the
web benchmark. We used the Mozilla 1.6 browser set to
full-screen resolution for all experiments to minimize appli-
cation differences across platforms.

Audio/video playback performance was measured by play-
ing a 34.75 s MPEG-1 audio/video clip, with the video being
of original size 352x240 pixels and displayed at full-screen
resolution. We measured combined audio/video playback
performance except for GoToMyPC and VNC for which we
only report video playback results since they do not support
audio. The audio/video (A/V) player used was MPlayer
1.0pre6 for the Unix-based platforms, and Windows Media
Player 9 for the Windows-based platforms.

Since many of the thin-client systems are closed and pro-
prietary, we measured their performance in a noninvasive
manner by capturing network traffic with a packet moni-

tor and using a variant of slow-motion benchmarking [26,
23]. Our primary measure of web browsing performance is
page download latency. Using slow-motion benchmarking,
we captured network traffic and measured page latency as
the time from when the first packet of mouse input is sent
to the server until the last packet of web page data is sent
to the client. We ensured that a long enough delay was
present between successive page downloads so that separate
pages could be disambiguated in the network packet capture.
However, this measure does not fully account for client pro-
cessing time. To account for client processing time, we also
instrumented the client window system to measure the time
between the initial mouse input and the processing of the
last graphical update for each page. We could only do this
for X, VNC, NX, and THINC as we did not have access to
client window system code for the other systems. Thus, our
results provide a conservative comparison with Windows-
based thin clients and Sun Ray for which we cannot fully
account for client processing time.

A/V performance is measured using slow-motion bench-
marking based on A/V quality [26], which accounts for both
playback delays and frame drops that degrade playback qual-
ity. For example, 100% A/V quality means that all video
frames and audio samples were played at real-time speed.
On the other hand, 50% A/V quality could mean that half
the A/V data was dropped, or that the clip took twice as
long to play even though all of the A/V data was played. We
used a combined measure of A/V quality since many of the
closed platforms tested transmit both audio and video over
the same connection, making it difficult to disambiguate
packet captures to determine which data corresponds to each
media stream. Since all data is treated equally and video
data is generally much larger than audio data, our quality
measure effectively weighs the impact of video quality more
heavily than audio quality. However, weighing video more
than audio quality is useful in this context given that the
primary focus in this paper is on remote display.

8.3 Measurements
Figures 2 to 4 show web browsing performance results.

Figure 2 shows the average latency per web page for each
platform. For platforms in which we instrumented the win-
dow system to measure client processing time, the solid color
bars show latency measured using network traffic, while the
cross-hatched bars show a more complete measure by includ-
ing client processing time. For example, Figure 2 shows that
client processing time is a dominant factor for local PC web
browsing performance since the web browser needs to pro-
cess the HTML on the client. As shown in Figure 2, most of
the systems did well in both LAN and WAN environments,
having latencies below the one second threshold for users to
have an uninterrupted browsing experience [27].

Figure 2 shows that THINC provides the fastest web page
download latencies of all systems. THINC is up to 1.7 times
faster in the LAN and up to 4.8 times faster in the WAN
versus other systems. THINC outperforms the local PC by
more than 60% because it leverages the faster server to pro-
cess web pages more quickly than the web browser running
on the slower client. Figures 2 shows that THINC does
not suffer much performance degradation going from LAN
to WAN, where it still outperforms all other platforms. In
contrast, a higher-level approach such as X experiences the
largest slowdown, performing about two and a half times

10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

THINCSun
Ray

VNCNXXGoTo
MyPC

RDPICAPC

La
te

nc
y

(s
)

Platform

0.0

0.5

1.0

1.5

2.0

2.5

3.0

THINCSun
Ray

VNCNXXGoTo
MyPC

RDPICAPC

La
te

nc
y

(s
)

Platform

LAN Desktop
WAN Desktop
802.11g PDA

Figure 2: Web Benchmark: Average Page Latency

0

50

100

150

200

250

THINCSun
Ray

VNCNXXGoTo
MyPC

RDPICAPC

D
at

a
S

iz
e

(K
B

)

Platform

LAN Desktop
WAN Desktop
802.11g PDA

Figure 3: Web Benchmark: Average Page Data Trans-

ferred

worse due to the tight coupling required between applica-
tions on the server and the user interface on the client. While
still slower than THINC, NX is much faster than X, indicat-
ing that some of these problems can be mitigated through
careful X proxy design. Figure 2 shows that even though
we excluded client processing time for ICA, RDP, GoTo-
MyPC, and Sun Ray, THINC including client processing
time is faster than all of them. GoToMyPC takes almost
three seconds on average to download web pages. Figure
3 shows that GoToMyPC’s slow performance is not due to
its data requirements as it sends the least amount of data.
The measurements suggest that GoToMyPC employs com-
plex compression algorithms to reduce its data requirements
at the expense of high server utilization and longer latencies.
GoToMyPC’s use of an intermediate server most likely also
affects its performance, but enables it to provide ubiquitous
service even in the presence of NATs and firewalls.

Figure 4 shows results using remote PlanetLab nodes and
other sites as THINC clients, demonstrating that THINC
maintains its fast performance under real network condi-
tions even when client and server are located thousands of
miles apart. THINC provides sub-second web page down-
load times for all sites except for when the client is running
in Korea, which is almost seven thousand miles away from
the server in New York. Figure 4 shows that THINC’s web
page download latencies increased by less than 2.5 times in
going from running the client in the local LAN testbed to
running the client in Finland while the corresponding net-

0.00

0.01

0.10

1.00

KRFIIEPRCANCANMMNMAPANY

La
te

nc
y

(s
)

Remote Site

Per-Page Latency
Network RTT

0.
43

0.
00

24

0.
41

0.
00

64

0.
43

0.
00

73

0.
59

0.
00

48

0.
60

0.
05

79

0.
64

0.
08

83

0.
50

0.
02

31

0.
66

0.
08

56

0.
72

0.
07

17

0.
98

0.
11

52

1.
67

0.
22

27

Figure 4: Web Benchmark: THINC Average Page La-

tency Using Remote Sites

work RTTs increased by more than two orders of magnitude.
These measurements show for the first time a thin client that
can provide excellent web browsing performance even when
clients are located on another continent.

Figure 3 shows the average data transferred for each web
page and demonstrates that THINC achieves fast perfor-
mance with only modest data transfer requirements. The
local PC is the most bandwidth efficient platform for web
browsing, but THINC is better than all other thin clients
for LAN Desktop except NX. Surprisingly, GoToMyPC had
the smallest data transfer requirements of the thin clients
for WAN Desktop despite its low-level pixel-based display
approach. While this is an unfair comparison since GoTo-
MyPC only supports 8-bit color, it demonstrates that com-
pression algorithms can be effective at reducing raw pixel
data at great computational expense. A number of systems
show significant reductions in data size when going from the
LAN to the WAN environment. NX has specific user set-
tings for this type of environment which causes it to use
more aggressive data compression techniques. Sun Ray and
VNC use adaptive compression schemes which change its en-
coding settings according to the characteristics of the link.
This adaptive mechanism also accounts for the significant
decrease in Sun Ray’s data requirements, as more complex
and cpu-intensive compression schemes are used.

Comparing Sun Ray and THINC provides a measure of
the effectiveness of THINC’s translation architecture, as both
systems use a similar low-level protocol. Although we could
not instrument the Sun Ray hardware client to measure
client processing time, we can use the network measurements
as a basis of comparison between the systems. Both sys-
tems perform well, but THINC outperforms Sun Ray by 22%
and 16% in the LAN and WAN environments, respectively.
Sun Ray incurs higher overhead because it lacks THINC’s
translation mechanisms, especially offscreen drawing which
is used heavily by Mozilla. As a result, it lacks semantic in-
formation originally present in the application display com-
mands and must attempt to translate back into its protocol
from raw pixel data. Similarly, comparing VNC and THINC
provides a measure of the efficiency of THINC’s encoding
approach versus VNC’s pixel data compression approach.
THINC is faster than VNC for the LAN Desktop while send-
ing almost half the data. This suggests that THINC’s small
set of command primitives and translation layer provides sig-
nificant performance efficiency compared to relying on a sin-

11

gle compression strategy for all types of display data. These
results show the importance of an effective translation layer,
not just a good command set.

Comparing these systems as well as NX on a page-by-page
basis provides further insight based on how different web
page content contributes to performance differences. Ex-
cept for THINC, Sun Ray, VNC, and NX were the fastest
systems. Compared with these systems, THINC was faster
on all web pages except those that primarily consisted of a
single large image. For those pages, THINC resorted pri-
marily to its RAW encoding strategy combined with simple,
off-the-shelf compression, given the lack of additional seman-
tic information. In the LAN, Sun Ray’s lack of compression
and VNC’s simple compression strategy both sent more data
but provided faster processing of those pages compared to
THINC. In the WAN, the more advanced compression used
in NX and Sun Ray reduced the data size significantly, allow-
ing them to transfer the pages much faster. This breakdown
indicates that THINC’s performance on pages with mixed
web content (text, logos, tables, etc.) was even better than
what is shown in Figure 2 when compared with these other
systems. These results suggest two important observations.
First, not only is THINC’s low-level translation approach
faster than a pixel-level approach as embodied by VNC, but
it is also faster than a high-level encoding approach as em-
bodied by NX, even on non-image content. Second, although
optimized compression techniques were not a central focus in
the current THINC prototype, the results suggest that bet-
ter compression algorithms such as used in NX and adapting
compression based on network performance as used by VNC
and Sun Ray can provide useful performance benefits when
displaying large image content.

Figures 2 and 3 also show results for 802.11g PDA for
ICA, RDP, GoToMyPC, VNC, and THINC, the only sys-
tems that support a client display geometry different than
the server’s. THINC has the best performance overall, pro-
viding the fastest web page download times and the smallest
data transfer requirements among the 24-bit color systems.
GoToMyPC transfers less data, but only supports 8-bit color
and is roughly eight times slower than THINC. Compared
to the other 24-bit color systems, THINC is up to 2.75 times
faster while transferring as little as one third of the data.

Support for small screen devices can be divided in two
models: systems which clip the client’s display and systems
which resize the contents of the display. RDP and VNC fall
within the first category, requiring users to scroll around the
display. Citrix, GoToMyPC, and THINC fall within the
second category though THINC differs in that the server
does all of the resizing work. As shown by our results, this
approach achieves the best performance across all the archi-
tectures. Since all of the updates are resized before being
sent, THINC’s bandwidth utilization is reduced by more
than a factor of two while only marginally affecting the la-
tency of the system. In contrast, ICA’s and GoToMyPC’s
client-only resize approach noticeably increase latency with
no improvement in bandwidth consumption. Furthermore,
our latency measure underestimates their latency since it
does not fully account for client processing time. In the CPU
and bandwidth-limited environment of mobile devices, this
approach adversely affects the overall user experience.

It is worth mentioning the large difference in quality of
THINC’s resized display compared with ICA’s. THINC’s re-
size algorithm appropriately interpolates pixel data and uses

0%

20%

40%

60%

80%

100%

THINCSun
Ray

VNCNXXGoTo
MyPC

RDPICAPC

A
/V

 Q
ua

lit
y

Platform

LAN Desktop
WAN Desktop
802.11g PDA

Figure 5: A/V Benchmark: A/V Quality (GoToMyPC

and VNC are video only)

anti-aliasing to provide high quality results such that the
web page is still readable even when displaying the 320x240
client window on a computer with a resolution of 1280x1024.
On the other hand, ICA’s resized display version is barely
readable and appears to be mostly for locating portions of
the screen in which to zoom. Clearly, ICA’s choice of resizing
algorithm is restricted by the client’s computational power,
a limitation not present in THINC’s server-side approach.

Figures 5 to 7 show A/V playback performance results.
Results for VNC and GoToMyPC are for video playback
without audio since those platforms do not provide audio
support. We also ran the same benchmark on all platforms
with video only and no audio. The results were similar to the
A/V playback results. For platforms that supported audio,
we also ran the same benchmark with audio only and no
video. Most of the platforms with audio support provided
perfect audio playback quality in the absence of video.

Figure 5 shows that THINC is the only thin client that
provides 100% A/V quality in all network environments and
is the only system that provides 100% A/V quality even in
the 802.11g PDA configuration. THINC’s A/V quality is
up to 8 times better than the other systems for LAN Desk-
top and up to 140 times better for WAN Desktop. Other
than THINC, only the local PC provides 100% A/V qual-
ity in any of the configurations tested. From a qualitative
standpoint, THINC A/V playback was consistently smooth
and synchronized and indistinguishable from A/V playback
on the local PC. On the other hand, A/V playback was
noticeably choppy and jittery for all other thin clients. In
particular, playback on RDP and ICA was marked by lower
audio fidelity due to compression and frequent drops.

Figure 5 shows quantitatively that all other thin clients
deliver very poor A/V quality. NX has the worst quality for
LAN at only 12%, and GoToMyPC has the worst quality
for WAN at less than 2%. These systems suffer from their
inability to distinguish video from normal display updates,
and their attempts to apply ineffective and expensive com-
pression algorithms on the video data. These algorithms are
unable to keep up with the stream of updates generated, re-
sulting in dropped frames or extremely long playback times.
VNC has poor video performance for these same reasons,
and drops quality by half for the WAN Desktop because
of its client-pull model. The VNC client needs to request
display updates for the server to send them. This is prob-
lematic in higher latency WAN environments in which video

12

0

1

10

100

1000

THINCSun
Ray

VNCNXXGoTo
MyPC

RDPICAPC

A
/V

 D
at

a
S

iz
e

(M
B

)

Platform

LAN Desktop
WAN Desktop
802.11g PDA

Figure 6: A/V Benchmark: Total Data Transferred

(GoToMyPC and VNC are video only)

0%

20%

40%

60%

80%

100%

KRFIIEPRCANCANMMNMAPANY

Q
ua

lit
y

Remote Site

A/V Quality
Network Bandwidth Relative to LAN

Figure 7: A/V Benchmark: THINC A/V Quality Using

Remote Sites

frames are generated faster than the rate at which the client
can send requests to the server. In contrast, THINC’s server
push model and its native audio/video support provide sub-
stantial performance benefits over the other systems.

The effects of ICA’s support for native video playback
are not reflected in Figures 5 to 7. Its playback mechanism
only supports a limited number of formats, and the widely-
used MPEG1 format used for the A/V benchmark is not
one of them. We conducted additional experiments with
the video clip transcoded to DivX, a supported format, and
surprisingly found the results to be only slightly better. ICA
relies on the Windows Media Player installed on the client to
do the video playback, and in turn the player had hardware
requirements beyond what the client could support. The
client was unable to keep up with the desired playback rate,
resulting in poor video quality.

Figure 6 shows the total data transferred during A/V
playback for each system. The local PC is the most band-
width efficient platform for A/V playback, sending less than
6 MB of data, which corresponds to about 1.2 Mbps of band-
width. THINC’s 100% A/V quality requires 117 MB of data
for the LAN Desktop and WAN Desktop, which corresponds
to bandwidth usage of roughly 24 Mbps. Several other thin
clients send less data than THINC, but they do so because
they are dropping video data, resulting in degraded A/V
quality. For example, GoToMyPC sends the least amount
of data but also has the worst A/V quality.

Figure 7 shows results using remote PlanetLab nodes and
other sites as THINC clients, demonstrating that THINC
maintains its superior A/V playback performance under real
network conditions even when client and server are located
thousands of miles apart. THINC provides perfect A/V
quality for all remote sites except for Korea. Figure 7 also
shows the relative bandwidth available from each remote site
to the local THINC server compared to the bandwidth avail-
able in our local LAN testbed. These measurements were
obtained using Iperf. The bandwidth measurements show
that THINC does not perform well for Korea due to insuffi-
cient bandwidth. The lack of bandwidth in this case was not
due to network link itself, but due to the TCP window size
configuration of the Korea PlanetLab site, which we were
not allowed to change. For other distant non-PlanetLab
remote sites such as Puerto Rico, Ireland, and Finland in
which a sufficiently-sized TCP window was allowed, Figure
7 shows that THINC provides 100% A/V quality.

Figures 5 and 6 also show 802.11g PDA small-screen re-
sults for ICA, RDP, GoToMyPC, and THINC. The results
again demonstrate the benefits of THINC’s server resize
mechanism. THINC still performs at 100% A/V quality,
demonstrating the minimum overhead incurred on the server
by resampling the video data while significantly reducing
bandwidth consumption to 3.5 Mbps, well below any of the
other systems. We have conducted additional tests demon-
strating THINC’s ability to also provide perfect video play-
back over an 802.11b wireless network, which cannot be done
by any of the other thin-client systems. ICA’s client-side re-
size mechanism slows the client and further reduces its low
A/V quality from above 20% for LAN Desktop and WAN
Desktop to only 6% for 802.11g PDA. RDP and VNC’s clip-
ping mechanisms are not particularly useful for video play-
back since the user only sees the section of the video that
intersects with the client’s viewport. A user could poten-
tially watch the video at a smaller size and make the video
window fit within the client’s display. However, adding such
awkward constraints to the user interface is detrimental to
the overall usability of the system.

9. CONCLUSIONS
THINC is a new virtual display system for high-perfor-

mance thin-client computing built around a virtual device
driver model. THINC introduces novel translation optimiza-
tions that take advantage of semantic information to efficient
convert high-level application requests to a simple low-level
protocol command set. THINC leverages client hardware
capabilities to provide native support for audio/video play-
back, and supports small screen devices with server-side
scaling of display updates. THINC’s virtual display ap-
proach enables it to leverage continuing advances in window
server technology and work seamlessly with unmodified ap-
plications, window systems, and operating systems.

We have measured THINC’s performance on common web
and video applications in a number of network environments
and compared it to existing widely used thin-client sys-
tems. Our experimental results show that THINC can de-
liver good interactive performance even when using clients
located around the world. THINC provides superior web
performance over other systems, with up to 4.5 times faster
response time in WAN environments. THINC’s audio/video
support vastly outperforms existing systems. It is the only
thin client able to provide transparent, format-independent,

13

full screen audio/video playback in WAN environments. Our
results demonstrate how THINC’s unique mapping of appli-
cation level drawing commands to protocol primitives and
its command delivery mechanisms significantly improve the
overall performance of a thin-client system. Going beyond
thin-client computing, THINC provides a fundamental build-
ing block for a broad range of remote display applications.

10. ACKNOWLEDGEMENTS
J. Duane Northcutt provided insightful suggestions dur-

ing the early stages of this work. S. Jae Yang implemented
the hardware mouse device used for our web experiments.
William Caban, Teemu Koponen, Monica Lam, Barak Pearl-
mutter, and Constantine Sapuntzakis, kindly provided re-
mote machine resources for our experiments. Shaya Pot-
ter and Stefan Savage provided helpful comments on earlier
drafts of this paper. This work was supported in part by
NSF ITR grants CCR-0219943 and CNS-0426623, an IBM
SUR Award, and Sun Microsystems.

11. REFERENCES
[1] 100x100 Project. http://100x100network.org/.
[2] 802.11 Wireless LAN Performance. http:

//www.atheros.com/pt/atheros_range_whitepaper.pdf.
[3] P. Ausbeck. A Streaming Piecewise-constant Model. In

Proceedings of the Data Compression Conference (DCC),
Mar. 1999.

[4] R. Baratto, S. Potter, G. Su, and J. Nieh. MobiDesk:
Mobile Virtual Desktop Computing. In Proceedings of the
10th Annual ACM International Conference on Mobile
Computing and Networking (MobiCom), Sept. - Oct. 2004.

[5] Charon Systems. http://www.charon.com.
[6] B. O. Christiansen and K. E. Schauser. Fast Motion

Detection for Thin Client Compression. In Proceedings of
the Data Compression Conference (DCC), Apr. 2002.

[7] B. O. Christiansen, K. E. Schauser, and M. Munke. A
Novel Codec for Thin Client Computing. In Proceedings of
the Data Compression Conference (DCC), Mar. 2000.

[8] B. O. Christiansen, K. E. Schauser, and M. Munke.
Streaming Thin Client Compression. In Proceedings of the
Data Compression Conference (DCC), Mar. 2001.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An Overlay
Testbed for Broad-Coverage Services. SIGCOMM Comput.
Commun. Rev., 33(3):3–12, 2003.

[10] Citrix Metaframe. http://www.citrix.com.
[11] B. C. Cumberland, G. Carius, and A. Muir. Microsoft

Windows NT Server 4.0, Terminal Server Edition:
Technical Reference. Microsoft Press, Redmond, WA, 1999.

[12] Dan Tynan, InfoWorld. Think thin. http://www.
infoworld.com/article/05/07/14/29FEthin_1.html.

[13] K. M. Fant. A Nonaliasing, Real-Time Spatial Transform
Technique. IEEE Computer Graphics and Applications,
6(1):71–80, Jan. 1986.

[14] Fog Creek Copilot. http://www.copilot.com.
[15] J. M. Gilbert and R. W. Brodersen. A Lossless 2-D Image

Compression Technique for Synthetic Discrete-Tone
Images. In Proceedings of the Data Compression
Conference (DCC), Mar. - Apr. 1998.

[16] GoToMyPC. http://www.gotomypc.com/.
[17] Health Insurance Portability and Accountability Act.

http://www.hhs.gov/ocr/hipaa/.
[18] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,

P. Kirchner, and J. T. Klosowski. Chromium: A Stream
Processing Framework for Interactive Rendering on
Clusters. In Proceedings of the 29th International
Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), 2002.

[19] i-Bench version 1.5. http:
//etestinglabs.com/benchmarks/i-bench/i-bench.asp.

[20] Jim Gettys. Personal communication, July 2004.
[21] Keith Packard. An LBX Postmortem.

http://keithp.com/~keithp/talks/lbxpost/paper.html.
[22] A. Lai and J. Nieh. Limits of Wide-Area Thin-Client

Computing. In Proceedings of the International Conference
on Measurement & Modeling of Computer Systems
(SIGMETRICS), June 2002.

[23] A. Lai, J. Nieh, B. Bohra, V. Nandikonda, A. P. Surana,
and S. Varshneya. Improving Web Browsing on Wireless
PDAs Using Thin-Client Computing. In Proceedings of the
13th International World Wide Web Conference (WWW),
May 2004.

[24] LapLink, Bothell, WA. LapLink 2000 User’s Guide, 1999.
[25] J. Nieh, S. J. Yang, and N. Novik. A Comparison of

Thin-Client Computing Architectures. Technical Report
CUCS-022-00, Department of Computer Science, Columbia
University, Nov. 2000.

[26] J. Nieh, S. J. Yang, and N. Novik. Measuring Thin-Client
Performance Using Slow-Motion Benchmarking. ACM
Trans. Computer Systems, 21(1):87–115, Feb. 2003.

[27] J. Nielsen. Designing Web Usability. New Riders
Publishing, Indianapolis, IN, 2000.

[28] NoMachine NX. http://www.nomachine.com.
[29] R. Pike, D. Presotto, S. Dorward, B. Flandrena,

K. Thompson, H. Trickey, and P. Winterbottom. Plan 9
from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[30] Portable Network Graphics (PNG).
http://www.libpng.org/pub/png/.

[31] T. Porter and T. Duff. Compositing Digital Images.
Computer Graphics, 18(3):253–259, July 1984.

[32] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual Network Computing. IEEE Internet
Computing, 2(1), Jan./Feb. 1998.

[33] Runaware.com. http://www.runaware.com.
[34] Tarantella Web-Enabling Software: The Adaptive Internet

Protocol. SCO Technical White Paper, Dec. 1998.
[35] R. W. Scheifler and J. Gettys. The X Window System.

ACM Trans. Gr., 5(2):79–106, Apr. 1986.
[36] B. K. Schmidt, M. S. Lam, and J. D. Northcutt. The

Interactive Performance of SLIM: A Stateless, Thin-Client
Architecture. In Proceedings of the 17th ACM Symposium
on Operating System Principles (SOSP), Dec. 1999.

[37] PC Anywhere. http://www.pcanywhere.com.
[38] Thin-Client market to fatten up, IDC says.

http://news.com.com/2100-1003-5077884.html.
[39] T. E. Truman, T. Pering, R. Doering, , and R. W.

Brodersen. The InfoPad Multimedia Terminal: A Portable
Device for Wireless Information Access. IEEE
Transactions on Computers, 47(10):1073–1087, Oct. 1998.

[40] SGI OpenGL Vizserver.
http://www.sgi.com/software/vizserver/.

[41] Virtual Network Computing. http://www.realvnc.com/.
[42] A. Y. Wong and M. Seltzer. Operating System Support for

Multi-User, Remote, Graphical Interaction. In Proceedings
of the USENIX Annual Technical Conference, San Diego,
CA, June 2000.

[43] Worldwide Enterprise Thin Client Forecast and Analysis,
2002-2007: The Rise of Thin Machines. http://www.
idcresearch.com/getdoc.jhtml?containerId=30016.

[44] X Web FAQ. http://www.broadwayinfo.com/bwfaq.htm.
[45] S. J. Yang, J. Nieh, M. Selsky, and N. Tiwari. The

Performance of Remote Display Mechanisms for
Thin-Client Computing. In Proceedings of the USENIX
Annual Technical Conference, June 2002.

14

