YarcData
A DIVISION OF CRAY INC.

launches
uRiKA

Big Data
Graph Appliance for Relationship Analytics

Feb 29, 2012
Many Big Data problems are based on Graphs

- Social Networking
- Intelligence/Security
- Telecom/Mobile
- Life Sciences/Biology
- Healthcare/Medicine
- Finance
- Internet/WWW
- Supply Chain
But most Big Data solutions are based on distributed, index-based data structures that scale out on clusters.

- **RDBMS**
- **Column Oriented**
- **No SQL**
- **Relational Extensions**
- **No ACID**
- **In Memory**
- **Key Value**
- **Document Stores**
Current Big Data approaches (including graph databases) result in low performance on Graphs...

Graphs are hard to Partition
- High cost to follow relationships that span Cluster Nodes
- Network is 100 times SLOWER than Memory*

Graphs are Non-Deterministic
- High cost to follow multiple competing alternatives which cannot be pre-fetched/cached
- Memory is 100 times SLOWER than Processor*

Graphs are highly Dynamic
- High cost to load multiple, constantly changing datasets into in-memory graph models
- Storage I/O is 1000 times SLOWER than Memory I/O*

The uRiKA Moment: Discovery of Unknown/Hidden Relationships in Big Data

1. Aggregate data and relationships from multiple sources

2. Augment Relationships through automated inference and deduction

3. Build a Dynamic Relationship Warehouse

Visualize relationships for real time, interactive Discovery

Search for relationships based on partially specified Patterns/Templates
uRiKA Customer Use Case: Government Organization

“Connecting the dots” to identify Persons of Interest

The Challenge
- Massive data stores of multiple data types from multiple sources
- Inaccurate, Incomplete and Falsified data
- Continuous stream of incoming data

uRiKA Solution
- uRiKA holds entire relationship graph in memory – updated constantly
- Search for Patterns of suspicious behavior and activities
- Graphical interactive exploration of relationships between people, places, things, organizations, communications, etc.

Business Value
- Proactive identification of terrorists, criminals and plots
uRiKA: …with enterprise-ready Application Platform

- **Industry-standard, Open-source Software Stack**
 - Linux, Java, Apache, WS02, Gadgets, Mashups...

- **Reusable Existing Skillsets**
 - OSGI, App Server, SOA, ESB, Web toolkit...

- **No Lock-in**
 - All applications and artifacts built on uRiKA can be run on other platforms

- **Vertical Solutions coming soon**
 - Life Sciences, Financial Services, Healthcare...

SuSE Linux
- Shared-memory, Multi-threaded, Scalable I/O Graph Appliance

Graph Analytics Layer
- Apache Tomcat, Apache Jena-Fuseki

App/Visualization Layer
- WS02, Google Gadgets, Refinder

Linux Apps
- J2EE, RDF, SPARQL Apps

Java, Gadget, Mashup Apps

uRiKA Vertical Solutions

[Company Confidential – Do Not Distribute]
uRiKA: Big Data Graph Appliance for Relationship Analytics

Discover Unknown and Hidden Relationships in Big Data
- Relationship Warehouse supporting Inferencing/Deduction, Pattern-based queries and Intuitive Visualization

Perform Real-time Analytics on Big Data Graphs
- High-performance, Graph Appliance with large shared-memory, massive multi-threading and scalable I/O

Realize Rapid Time to Value on Big Data Solutions
- Ease of Enterprise adoption with industry-standards, open-source software stack enabling reuse of existing skillsets and no lock-in
Differences between KDT/CombBLAS and RDF/SPARQL Worldviews

- **(SPR’s) KDT/CombBLAS worldview**
 - Few types of vertices, few types of edges
 - Minimal infrastructure to get data into KDT
 - Typical calculation explores global structure

- **RDF/SPARQL**
 - Many types of vertices, many types of edges
 - Tremendous community effort to get data into RDF form and into “SPARQL endpoints” (== semantic database instance)
 - Core calculation is subgraph isomorphism
 - No real capability to do global-structure calculations