
Practical Misconfiguration Identification
in Access-Control Systems

Chad Spensky∗

University of North Carolina
Chapel Hill, NC, USA cspensky@cs.unc.edu

August 29, 2010

Abstract

We develop an approach for identifying accesses that are not permitted by implemented policy but
that share similarities with accesses that have been allowed. Such accesses are indicative of potential
access-control policy misconfigurations; identifying the misconfigurations allows administrators to re-
solve them before they interfere with the use of the system. Our work improves on previous research by
supporting a desired balance between the accuracy of its misconfiguration predictions and the amount of
intended policy that it uncovers, and by removing the need to hand-tune various parameters. Our method
introduces computational challenges that we address through the development of a novel algorithm. We
revisit the methodology used to evaluate misconfiguration prediction algorithms in the past, and show
that it substantially overestimates the benefits of such algorithms in real systems, owing to its tendency to
reward predictions that can be deduced to be redundant. Finally, we go on to show that such deductions
can be incorporated into the prediction algorithm to recover its benefits to a large extent.

1 Introduction

Access-control policy generally exhibits patterns across users and resources they access, owing to the use
of groups and roles (perhaps only implicitly) in the creation of policy. These patterns are evidenced in the
accesses that are allowed in the system. As such, if a user is permitted access to most of the same resources
that other users access, then the few exceptions might represent misconfigurations, i.e., potential accesses
that are consistent with intended policy but that are denied by the policy actually implemented in the system.
With a few exceptions (e.g., [6, 10]), these kinds of misconfigurations have not been widely studied; yet
in many environments, such as in the context of health information systems, eliminating misconfigurations
that erroneously deny access is critical. Even when the cost of erroneously denying a single access is not
as high, repeatedly denying access can severely inhibit the usability of an access-control system, and thus
encourage users to circumvent it.

Bauer et al. [6] demonstrated that access patterns can be leveraged to predict misconfigurations and to
infer what administrators should be consulted to resolve them, prior to these misconfigurations interfering
with attempted accesses. In particular, they demonstrated a method for analyzing access logs and parame-
ter settings for this method to yield a reasonable balance between accuracy, i.e., the fraction of predicted
misconfigurations that were consistent with intended policy, and benefit (or coverage), i.e., the fraction of

∗This research was conducted jointly with Lujo Bauer, Yuan Liang (Carnegie Mellon University) and Michael K. Reiter (UNC
Chapel Hill).

1

intended policy that was uncovered through predicted misconfigurations. Due to the dearth of publicly avail-
able matching access and policy datasets, Bauer et al. demonstrated the success of their technique on only a
single dataset and, more to the point, could quantify benefit and accuracy for various parameter settings only
for that dataset. A manager who is considering employing their techniques in a different setting, however,
has little assurance that the same parameter settings will yield similar results in her system.

The first contribution of this paper is to recast their method in a way that can be generalized to other
settings and that, in particular, frees an administrator from needing to tune parameters to achieve a desired
balance between accuracy and benefit in a new setting. Our method enables an administrator to chose a
desired balance β, and ensures that Benefit

Accuracy
≈ β with no additional tuning. The difficulties of achieving

this with the original Bauer et al. approach derive from its use of association rule mining [1], by which
the access logs are analyzed to extract association rules of the form x ⇒ y, where x and y denote sets
of resources. Informally, such rules mean that a user with access to x typically has access to y, as well,
and so would be used to predict that y should be accessible to users who can access x. This approach is
parameterized by the required support for, or fraction of all users with access to, x and y, and the required
confidence of the rule, i.e., the fraction of users with access to x who also can access y. Rules are used
as predictors of misconfigurations only when their confidence and support exceed these thresholds. While
increasing the required confidence or support should generally increase accuracy and decrease benefit, how
to incrementally adapt these two parameters to ensure Benefit

Accuracy
≈ β and, subject to that constraint, maximize

the benefit and accuracy that result is an unresolved question.
To address this problem, in this paper we adopt an approach that combines confidence and support into

a single parameter called predictive accuracy and uses a Bayesian framework to determine the contributions
of support and confidence to the expected accuracy of a rule [23]. Collapsing support and confidence into
a single parameter allows us to rank rules according to predictive accuracy and then to issue predictions in
this order. As we will see, this provides a way to ensure Benefit

Accuracy
≈ β while providing good benefit and

accuracy, but introduces a computational challenge, as computing predictive accuracy in a naive fashion is
computationally intensive. To mitigate these overheads, we have adapted known association rule-mining
data structures to incorporate the additional requirements for calculating predictive accuracy. In doing so,
we have developed a novel algorithm for incrementally and efficiently updating our data structure after each
new access. We expect that this algorithm may be useful in many different settings where the input to an
association rule mining algorithm is made available only incrementally.

A final and, we believe, significant contribution of this paper is in revising the methodology for evaluat-
ing benefit, in particular, to provide a more realistic view of the benefits of misconfiguration prediction in a
real system. Prior evaluations considered predictions that were made only on the basis of observed accesses.
They permitted every prediction that matched intended policy to contribute to the measured benefit (and,
to a lesser extent, the accuracy), irrespective of the fact that some of these predictions were also consistent
with already implemented policy — and so were not misconfigurations at all. In this paper, we develop an
evaluation framework that utilizes the implemented policy deducible from observed accesses and correct
predictions to eliminate future predictions that are already implemented from contributing to benefit and ac-
curacy. In doing so, we show that the actual benefits of misconfiguration prediction as cast in previous work
are substantially overestimated. Fortunately, we also show that by making this deducible policy available to
the prediction engine, we can recover much of the benefit and accuracy while retaining the target ratio β for
Benefit
Accuracy

.
To summarize, the contributions of our paper are the following. First, by utilizing a measure called

predictive accuracy, we demonstrate an approach to mining association rules to ensure Benefit
Accuracy

≈ β for a
provided parameter β, across a broad range of access patterns and underlying policies, and without requiring
hand tuning of parameters for different datasets. Second, we devise a new, general-purpose algorithm for
incrementally computing the best rules based on predictive accuracy, as new accesses arrive in the system.
Third, we introduce a new evaluation methodology for misconfiguration prediction that provides a more

2

realistic measure of the benefit that it offers. We show through this new evaluation framework that previous
measurements of benefit will not be realized in practice, but that by incorporating policy that is deducible
from past accesses into the prediction engine, benefit can largely be recovered. As such, we show that
misconfiguration prediction can still provide substantial benefit, but primarily when it has more access to
policy information than previous works considered.

2 Related Work

Several related works use data-mining or machine-learning techniques to analyze access-control policies.
Firewalls were an early target for automated policy analysis, and a number of tools were developed for the
empirical analysis of firewall policies (e.g., [5, 18, 27, 2, 29]). These tools use either machine-learning or
static-analysis techniques, and typically enable an administrator to verify that a set of policies is consistent,
or to verify that a policy obeys desired properties. Another approach incorporates such techniques in policy-
specification tools, which use the output of the analysis directly to help an administrator specify policy
that meets desired goals [14]. More closely related are works that use rule mining or Bayesian inference
to analyze router policies with the intention of automatically finding misconfigurations (e.g., [17, 11, 16]).
Similarly to firewall analysis, these approaches take as input configuration files and detect discrepancies
between those configurations, e.g., user accounts without passwords, or router interfaces using private IP
addresses. These works differ from ours in a number of ways, perhaps most notably in that they focus on
finding inconsistencies in static policies. In contrast, we analyze policy as it is revealed in accesses over time,
which gives rise to our analysis of policy in an incremental fashion, the basis for several of our innovations.

Our work is also similar to that of Das et al., who analyze access-control policy for file servers to detect
inconsistencies between the permissions given to users who appear to be peers [10]. Das et al.’s system takes
as input both low-level file-system policy (which user can access which file or directory) and metadata, such
as group memberships information separate from the low-level policy, and identifies misconfigurations that
either deny legitimate accesses or allow erroneous ones. In contrast to this work, we focus primarily on
misconfigurations that prevent legitimate accesses, and our algorithm does not require access to policy or
metadata sets other than what can be observed from a sequence of accesses. Similarly to Bauer et al.’s
approach, the performance of Das et al.’s system depends on hand-tuning certain parameters; a main focus
of our work is to render such tuning unnecessary.

Our approach to detecting misconfigurations has some similarity to role mining (e.g., [24, 15, 19, 20]),
which seeks to distill from a low-level policy a collection of roles that could be used to represent the same
policy more abstractly. Since the goal of role mining is to find a better representation of policy that exists,
role mining algorithms take as input a whole policy, rather than processing a possibly partial policy incre-
mentally, as we do. Also, the specific goal in role mining is to find commonalities between users that may
be indicative of shared role membership, while in our approach we focus on the inconsistencies between
users to detect misconfigurations and cause the policy to be amended.

A significant difference between our approach and related work is that we focus on a setting in which
we learn policy incrementally, as accesses occur in a system, rather than having policy available to our
tool at the beginning. This introduces more stringent performance requirements and led to our adaptation
of existing algorithms for association-rule mining to perform well in our context. More specifically, we
devise a new algorithm for predicting misconfigurations based on their predictive accuracy that efficiently
assimilates new information on a per-access basis, and thus at a finer granularity than existing incremental
rule-mining algorithms would permit (e.g., [9, 12, 4, 26]). As rule mining is a general inference technique,
we expect that our adaptations to incremental rule mining will be useful in contexts beyond access control.

3

3 Association Rule Mining

Association rule mining is a method for finding relationships in databases that has been widely studied in
the data-mining community. It involves using statistical measures to generate association rules of the form
x ⇒ y, where x and y can be any resources. We utilize these rules to identify misconfiguration in an
access-control environment. The rules that we consider are of the form “Permission to access resources A,
B, and C⇒ Permission to access to resource D.” For every user with permission to access A, B, and C, this
rule would result in a prediction that that user should have access to resource D. An administrator could then
either reject or grant this access. We consider a prediction to be a correct if the administrator grants a user
Alice access to D and incorrect if the administrator denies access.

In the remainder of this section we discuss more formally how association rules are derived, setting the
groundwork for describing our new algorithm in §4.

3.1 Confidence and Support

Many association rule mining techniques have been proposed, though the vast majority use the basic model
that we describe here. Rule mining is conducted in the context of a “database” representing a binary relation
R ⊆ O × A between objects O (e.g., users) and attributes A (e.g., resources that users access), in which
case oRa means that user o accessed resource a. The support of x ⊆ A, denoted S(x), is defined as
|{o ∈ O : ∀a ∈ x, oRa}|/|O|, i.e., the fraction of objects related to all elements of x. The confidence of a
rule x ⇒ y, denoted C(x ⇒ y), is defined as S(x ∪ y)/S(x), or, intuitively, the fraction of objects related
to x that are also related to y.

A
a b c d e f g h

O

1 x x x x x x x x
2 x x x x x
3 x x x x
4 x
5 x x x
6 x x x x
7 x x x
8 x

Figure 1: Sample database

Rule mining algorithms seek to identify “high quality”
rules, and to do so, typically prune rules using two parame-
ters, min sup and min conf . Generally speaking, a rule min-
ing algorithm will identify rules x ⇒ y such that S(x ∪ y) ≥
min sup and C(x ⇒ y) ≥ min conf , and so higher values
of min sup and min conf yield higher quality rules. For ex-
ample, consider the sample database shown in Figure 1, where
O = {1, 2, 3, 4, 5, 6, 7, 8} and A = {a, b, c, d, e, f, g, h}. In
this example, S({b, d}) = 3/8 and C({d} ⇒ {b}) = 3/4,
and so the rule {d} ⇒ {b} would be generated for any
min conf ≤ 3/4 and min sup ≤ 3/8.

3.2 Predictive Accuracy

Both min sup and min conf have an impact on the quality of the rules that are generated. Unfortunately,
it is often unclear how the two parameters together should be tuned to achieve desired performance. To
simplify this issue, in this paper we adopt a method for combining confidence and support into a single
measure called predictive accuracy [23].

Informally, the predictive accuracy of a rule is the expected value for its true accuracy given the confi-
dence c of the rule and the support s that its precondition enjoys. This value is denoted

PA(c, s) = E(A(x⇒ y) | C(x⇒ y) = c, S(x) = s)

where the expectation is taken with respect to choice of association rule x ⇒ y uniformly at random from
among all possible rules. Scheffer derived a method for approximating it [23], as:

4

PA(c, s) ≈

∑

a aB(cs; s, a)P(C(x⇒ y) = a)
∑

a B(cs; s, a)P(C(x⇒ y) = a)
(1)

where B(k; N, p) is the probability of exactly k successes in N independent trials, each with success prob-
ability p. An implication of this formulation is that to approximate the predictive accuracy of a rule, we
need to compute P(C(x⇒ y) = a), i.e., the probability with which a rule, drawn uniformly at random
from all possible rules, will have confidence a. Scheffer [23] suggested estimating this probability through
sampling. A contribution of our work, presented in §4, is an algorithm to incrementally track the confidence
distribution across all possible rules and to efficiently compute P(C(x⇒ y) = a) for any value a.

While support and confidence values are used to calculate the predictive accuracy, we need not choose
predictions by placing conditions on confidence and support explicitly (e.g., the thresholds min sup or
min conf). Rather, we can place conditions on the predictive accuracy of the rules we predict, thereby
reducing the measures on which to place such conditions from two to one. One way to do so would be to
define a threshold and prune all of the rules with predictive accuracy less than this value. Instead, and as
we will discuss in §5, we make predictions in decreasing order of predictive accuracy and in a way that
maintains Benefit

Accuracy
≈ β.

4 Incremental Rule Mining

One of the major problems faced when using rule mining to identify policy misconfigurations is that data
enters the system incrementally (e.g., one access at a time). To ensure that we capture misconfigurations as
soon as possible, it is necessary to recalculate the predictive accuracy of candidate rules after each new item
of information is received, a much higher frequency than would be typical in most data-mining domains. By
blindly implementing rule-mining techniques, much of the work done at each increment would be repeated
computations. As such, we require an incremental rule mining technique (c.f., [9, 8, 13]), though one tailored
to computing predictive accuracy for rules.

In this section, we describe the data structure commonly used in rule mining (§4.1); our new approach
for incrementally maintaining the data structure (§4.2) and the confidence values needed for calculating
predictive accuracy (§4.3); and, finally, how to use the data structure to generate rules (§4.4).

4.1 Galois Lattice

Much previous work in rule mining utilizes a data structure known as a Galois lattice (e.g., [4, 22, 30]),
which we found especially well suited for our needs. The Galois lattice provides a compact data structure
for representing a database and an efficient way to parse the data structure to mine association rules. Recall
that a partial order G = (G, <G) is a lattice if any pair of elements u, v has a unique greatest lower bound
u ∧G v and a unique least upper bound u ∨G v. Let P(·) denote the powerset of its input set.

To define a Galois lattice for a database defined by relation R between objects O and attributes A, we
define functions f : P(O) → P(A) and g : P(A) → P(O) by f(O′) = {a ∈ A : ∀o ∈ O′, oRa} and
g(A′) = {o ∈ O : ∀a ∈ A′, oRa}. In other words, f returns the attributes to which all input objects are
related, and g returns the objects related to all attributes in its input. Let G = {n ∈ P(O)× P(A) : n.o =
g(n.a) and n.a = f(n.o)}, where n.o denotes the first component of n (i.e., a subset of O) and n.a denotes
its second component (i.e., a subset of A). We refer to each n ∈ G as a (closed) node. Note that by this
definition, for any two distinct nodes n, n′ ∈ G, it is the case that n.o 6= n′.o and n.a 6= n′.a. As such, |G| ≤
min{2|O|, 2|A|}.1

1A Galois lattice can, in the worst case, be of size exponential in the smaller of O and A. As such, our use of “efficient”

5

∅12345678

d1678 bc1267 g134 ef1235

bcd167 abc126 efh135

abcd16 abcef12 efgh13

abcdefgh1

Figure 2: Hasse diagram of Galois
lattice for the database in Figure 1

Let <G be an irreflexive binary relation on G defined by set inclu-
sion, specifically:

n1 <G n2 ⇔ n1.o ⊂ n2.o and n2.a ⊂ n1.a

Then, (G, <G) is a (Galois) lattice, where

n1 ∨G n2 = n′, such that n′.o = g(f(n1.o ∪ n2.o))

n′.a = n1.a ∩ n2.a

n1 ∧G n2 = n′, such that n′.o = n1.o ∩ n2.o

n′.a = f(g(n1.a ∪ n2.a))

It will be convenient for presentation to define≺G to be the transitive
reduction of <G . Figure 2 shows ≺G of the Galois lattice for the
database shown in Table 1, also known as a Hasse diagram.

4.2 Incremental Updating

Valtchev et al. [25] showed that a Galois lattice for a database with objects O, attributes A, and relation R
can be built using the following inductive algorithm, starting with G = ∅:

• Base case: For each o ∈ O, add 〈g(f({o})), f({o})〉 to G.
• Induction step: For any n, n′ ∈ G, add 〈g(n.a ∩ n′.a), n.a ∩ n′.a〉 to G.

Once no more nodes can be added to G via the above rules, then (G, <G) is a Galois lattice.2

This inductive algorithm reveals one way to incrementally update an existing G with a new object o∗

and new relation R∗ = R ∪Ro∗ where Ro∗ ⊆ {o
∗} ×A (and g∗ and f∗ defined accordingly). To do so, we

can perform the following step for each n ∈ G: if there is a node n′ ∈ G with n′.a = f({o∗})∩n.a, update
n′.o← g(f({o∗})∩n.a), and otherwise, add new node 〈g(f({o∗})∩n.a), f({o∗})∩n.a〉 to G. Finally, we
add the node 〈g(f({o∗})), f({o∗})〉 to G if it does not already exist, as required by the base case. Several
incremental algorithms [25, 26, 28] are optimized instances of this approach.

Unfortunately, this algorithm and others premised on updating the lattice with a whole new object o∗

do not suffice for incrementally updating the lattice with a single new addition (o∗, a∗) to R. Since o∗ may
already exist, the preceding algorithm could result in nodes in G that are no longer closed (i.e., n.o 6= g(n.a)
or n.a 6= f(n.o)). This could be corrected by deleting o∗ each time, and then re-inserting with the new
attribute a∗. However, this would still require the implementation of a new method for object removal and
is likely to be very inefficient.

So, here we propose an alternative algorithm for incrementally updating G = (G, <G) with a new
addition (o∗, a∗) to yield a new lattice (G∗, <∗

G) reflecting the new relation R∗ = R∪{(o∗, a∗)}. Let f∗ and
g∗ denote the updated versions of f and g that reflect R∗. Our algorithm for converting (G, <G) to (G∗, <∗

G)
takes advantage of the following property.

Lemma 4.1. For any A′ ⊆ A, if A′ 6⊆ f∗({o∗}) then: 〈g∗(A′), A′〉 ∈ G iff 〈g∗(A′), A′〉 ∈ G∗.

Proof. Note that f(O′) = f∗(O′) for any O′ 63 o∗. Moreover, since A′ 6⊆ f∗({o∗}), it is the case that

generally does not imply polynomial time in the size of O or A, but instead simply means “practical” for the datasets we consider.
We will clarify the performance of our algorithm on our datasets in §6.

2To ensure a least node, it may also be necessary to add 〈∅, A〉.

6

g∗(A′) = g(A′). Therefore,

〈g∗(A′), A′〉 ∈ G ⇐⇒ 〈g(A′), A′〉 ∈ G since g∗(A′) = g(A′)

⇐⇒ A′ = f(g(A′)) by definition of G

⇐⇒ A′ = f∗(g(A′)) since g(A′) 63 o∗

⇐⇒ A′ = f∗(g∗(A′)) since g∗(A′) = g(A′)

⇐⇒ 〈g∗(A′), A′〉 ∈ G∗ by definition of G∗

By this lemma, G′ = G \ (P(O) × P(f∗({o∗}))) is the set of nodes that will be carried over from
(G, <G) to (G∗, <∗

G). The inductive algorithm presented above indicates that G∗ can then be built up from
G′ by inserting the nodes 〈g∗(f∗({o∗})), f∗({o∗})〉 (by the base case) and, for each n ∈ G′, 〈g∗(n.a ∩
f∗({o∗})), n.a∩ f∗({o∗})〉 (by the induction step). Two further optimizations in our algorithm derive from
judiciously determining which nodes in G′ need not be visited in the application of this inductive step.

1. Consider any node n ∈ G′ such that a∗ 6∈ n.a. In this case, n.a ∩ f ∗({o∗}) = n.a ∩ f({o∗}), since
f∗({o∗}) = f({o∗})∪{a∗}. Moreover, g∗(n.a∩ f∗({o∗})) = g∗(n.a∩ f({o∗})) = g(n.a∩ f({o∗})),
since the objects related to n.a ∩ f({o∗}) 63 a∗ did not change by the introduction of (o∗, a∗). As such,
if a∗ 6∈ n.a then 〈g∗(n.a ∩ f∗({o∗})), n.a ∩ f∗({o∗})〉 is already contained in G∗.

2. Consider any n ∈ G′ such that f∗({o∗}) ⊆ n.a. Then, n.a ∩ f ∗({o∗}) = f∗({o∗}). As such, once
〈g∗(f∗({o∗})), f∗({o∗})〉 is added in the base case, no nodes n ∈ G′ such that f∗({o∗}) ⊆ n.a need to
be considered.

Our incremental update algorithm thus works by traversing G′, avoiding the nodes identified in (1) and
skipping over the nodes identified in (2). In doing so, it must ensure that 〈g∗(n.a∩f∗({o∗})), n.a∩f∗({o∗})〉
is inserted into G∗ if it was not present already and that all nodes in the resulting lattice are closed (by
repairing or removing those that are not). The traversal starts from the least element in G and walks depth-
first in reverse direction of ≺G . Any node n such that f ∗({o∗}) ⊆ n.a is skipped over, and a branch is
terminated if it reaches a node n such that a∗ 6∈ n.a or n.a ⊆ f∗({o∗}) (meaning that the walk has left G′).

The effect of our optimizations is substantial. For example, for the datasets on which we test in §6, this
algorithm traverses an average of less than 20% of the lattice per update and modifies about 4% of the nodes
per update. We will provide more detail about the performance of this algorithm in §6.6.

4.3 Distribution of Confidence Values

Previous work on incremental rule mining generally ranked rules according to their confidence and sup-
port, rather than predictive accuracy. Hence, we needed to devise a method that would enable efficient
computation of predictive accuracy in the context of our incremental algorithm.

Recall that the calculations for predictive accuracy require a probability distribution of accuracies for
all potential rules, which we approximate by using the current distribution of confidence values for those
rules. Although association rules are defined as x ⇒ y, where x, y ⊆ A, for our algorithm we con-
sider only the subset of potential rules for which |y| = 1. While this implies that each rule we generate
through association rule-mining contains less information, it permits us to speed up the maintenance of the
confidence distribution for such rules dramatically, as we describe in this section. Ignoring rules of the
form |y| > 1, however, means that we must ensure that our distribution of confidences used to calculate
P(C(x⇒ y) = a) in (1) includes confidences only for rules with |y| = 1. We show in this section how
we were able to exploit the incremental fashion of our system and our Galois lattice implementation to
calculate the exact distribution of confidence values for all rules of the form x ⇒ y, |x| ≥ 1, |y| = 1.

7

∅345

efh35 g34

efgh3

(a) G = (G, ≺G)

∅345

e35 f35 g34 h35

ef35 eg3 eh35 fg3 fh35 gh3

efg3 efh35 egh3 fgh3

efgh3

(b) L = (L,≺L)

Figure 3: Example Hasse diagram G and expanded
lattice L where O = {3, 4, 5} and A = {e, f, g, h}.

Figure 3 shows a Hasse diagram for a Galois lat-
tice for objects O, attributes A, and relation R (Fig-
ure 3(a)) and a lattice (L, <L) with nodes L =
{〈g(A′), A′〉 : A′ ⊆ A} and <L defined by n1 <L

n2 iff n2.a ⊂ n1.a (Figure 3(b)). As before, let
≺L denote the transitive reduction of <L. Note
that in Figure 3(b), every (downward) edge (el-
ement of ≺L) corresponds to an association rule
with |y| = 1. For example the edge (〈{3, 5},
{e, f, h}〉, 〈{3}, {e, f, g, h}〉) would correspond to
the rule {e, f, h} ⇒ {g}. As such, the desired
distribution of confidence values is the distribution
for the rules represented by these edges; e.g., the
aforementioned rule has confidence C({e, f, h} ⇒

{g}) = |{3}|
|{3,5}| = 0.5. In other words, computing

the histogram of confidence values is equivalent to computing the confidences associated with the edges≺L

depicted in Figure 3(b) from the Galois lattice in Figure 3(a).
Two key observations enable this computation to be done efficiently.

1. Any n ∈ G represents all nodes 〈g(A′), A′〉 ∈ L where A′ ∈ P(n.a)\
⋃

n′:n≺Gn′ P(n′.a). In words,
every n in G represents all nodes in the lattice L with attribute sets A′ ⊆ n.a but A′ 6⊆ n′.a for any
“parent” n′ of n in G (i.e., n ≺G n′). Moreover, g(A′) = n.o for each such A′, and so the support of A′

is S(A′) = |n.o|.
2. For any nodes n1, n2 ∈ G such that n2 <G n1, there is an edge

〈g(A′ ∪ {a}), A′ ∪ {a}〉 ≺L 〈g(A′), A′〉

representing a rule A′ ⇒ {a} with confidence |n2.o|
|n1.o| , for each A′ ∈ P(n1.a)\

⋃

n′:n1≺Gn′ P(n′.a) and

a ∈ n2.a \

⋃

n′:n2≺Gn′≤Gn1

n′.a

 .

In other words, the pair n1, n2 represents rules A′ ⇒ {a} with confidence |n2.o|
|n1.o| for which: A′ ⊆ n1.a

but A′ 6⊆ n′.a for any “parent” n′ of n1; and a ∈ n2.a but a 6∈ n′.a for any “parent” n′ of n2 on a path
from n1. The number of such rules can be computed efficiently by examining n1, n2, and their parents.

For example, consider nodes n1, n2 in Figure 2, where n1.a = {a, b, c} and n2.a = {a, b, c, d, e, f, g, h}.
n1 has parents {〈{1, 2, 6, 7}, {b, c}〉}, and n2 has parents on paths from n1 of {〈{1, 6}, {a, b, c, d}〉, 〈{1, 2},
{a, b, c, e, f}〉}. In the terminology of (2) above, A′ is drawn from P(n1)\

⋃

n′:n1≺Gn′ P(n′.a) = {{a, b, c},

{a, b}, {a, c}, {a}} and a is drawn from n2.a \
(

⋃

n′:n2≺Gn′≤Gn1
n′.a

)

= {g, h}. Thus, we can conclude
that 8 rules are represented by n1, n2, namely

{a, b, c} ⇒ {g} {a, b} ⇒ {g} {a, c} ⇒ {g} {a} ⇒ {g}
{a, b, c} ⇒ {h} {a, b} ⇒ {h} {a, c} ⇒ {h} {a} ⇒ {h}

Each has confidence |n2.o|
|n1.o| = 1

3
.

It is important to recognize that the number of rules represented by n1, n2 can be calculated without
enumerating those rules. Moreover, this calculation need not be done for every pair n1, n2 after each update
to G. Rather, these calculations can be performed incrementally, in conjunction with incrementally updating

8

G. Specifically, when a node n in G is modified or added, nodes n′ such that n′ <G n are traversed to track
the number of rules that the pair n, n′ now represents and their corresponding confidences, and then nodes
n′ such that n <G n′ are similarly traversed. Node removals require similar operations.

As noted in §4.2, in our tests in §6, a lattice update modified roughly 4% of the lattice on average. As
such, the above algorithm gives rise to traversals for about 4% of the nodes n in the lattice (i.e., traversals
of nodes n′ such that n′ <G n or n <G n′) after an average update. We will quantify the costs of these
traversals in §6.6.

4.4 Generating Rules

The preceding sections summarized the approach by which we incrementally update G as new accesses ar-
rive (§4.2) and how we maintain a distribution of confidence values across such updates without enumerating
every association rule (§4.3). We now discuss how we actually generate rules from the lattice.

As discussed in §4.3, the single-target association rules represented by a pair n1, n2 of nodes can be
counted and, if desired, enumerated. As such, it suffices to describe how to examine all pairs n1, n2 as
quickly as possible and, more to the point, efficiently bypass nodes which require no consideration. In-
formally, our algorithm is structured as a downward traversal of the Hasse diagram of G starting from
〈O, f(O)〉, and then when visiting a node n1 in this first traversal, conducting a nested, downward traversal
of nodes n2 <G n1. For each n1 and n2, the algorithm uses the method discussed in §4.3 to enumerate the
rules represented by these nodes that are not subsumed by other rules, where x1 ⇒ y subsumes x2 ⇒ y if
x1 ⊆ x2 and PA(C(x1 ⇒ y), S(x1)) ≥ PA(C(x2 ⇒ y), S(x2)).

To make rule generation efficient, we employ optimizations that permit us to bypass nested traversals,
either in whole or in part. Specifically, to save space and time, we generate only a target number ` of rules
at a time. For example, if ` = 100, then we first generate rules 1–100 with the highest predictive accuracies
and make predictions from them; we generate rules 101–200 with the next highest predictive accuracies
only if additional predictions are needed. As such, when traversing G, the algorithm maintains a list (x1 ⇒
y1), . . . , (x` ⇒ y`) of unique association rules, ordered in nonincreasing order of predictive accuracy. The
algorithm additionally maintains values τ and γs in the course of updating (x1 ⇒ y1), . . . , (x` ⇒ y`),
defined as follows:

τ = min{s ≥ 1 : PA(1, s) ≥ PA(C(x` ⇒ y`), S(x`))}

γs = min{s′ ≥ 1 : PA(s′/s, s) ≥ PA(C(x` ⇒ y`), S(x`))}

By the definition of τ , when visiting a node n1 where |n1.o| < τ in the aforementioned traversal of G, the
algorithm can recognize that for any n2 <G n1, every rule represented by n1, n2 has predictive accuracy
less than that of x` ⇒ y`. (This inference derives from the fact that s′ < s and c′ < c implies that
PA(c′, s′) < PA(c, s).) As such, the nested traversal over nodes n2 <G n1 can be skipped. Similarly, when
visiting a node n2 in a nested traversal for node n1, the algorithm can recognize that if |n2.o| < γ|n1.o|, then
the predictive accuracy of every rule represented by n1, n2 is less than that of x` ⇒ y`. As such, these rules
need not be enumerated.

To help emphasize the significance of these optimizations, consider that, for the most difficult dataset
discussed in §6.1 and for a reasonable β = .9, these optimizations allowed us to visit, in the worst case, 79%
fewer nodes during the initial traversal, and in total enabled 95% fewer comparisons between nodes. We also
show, in §6.6, that our algorithm substantially outperforms a more naive approach proposed by Scheffer, in
some cases by almost three orders of magnitude.

9

5 Misconfiguration Prediction Framework

In this section we first detail our methodology for evaluating the efficacy of misconfiguration prediction
(§5.1), which we argue is more encompassing than previous approaches. We then describe our method for
guiding predictions to strike a desired balance between accuracy and benefit (§5.2).

5.1 Model and Definitions

Our approach for identifying misconfigurations operating uses records of actual accesses in the system. Let
a policy atom be a user-resource pair (u, r). We denote the sequence of unique accesses in the system as
a1, a2, . . . (i.e., a`+1 6∈ {a1, . . . , a`}) where each a` is a policy atom. Each access a` occurs at a distinct,
integral logical time time(a`) ∈ N. Logical times are totally ordered and are assigned so that time(a`) <
time(a`+1). We refer to the exercised policy at time t to be Exercised t = {a` : time(a`) ≤ t}.

In addition to actual accesses, additional policy might be deduced on the basis of information conveyed
in accesses (or, as we will see below, in the results of misconfiguration predictions). For example, an access
(u, r) might be accompanied by a credential that demonstrates that u has access to other resources besides
r. For this reason, we define Deduced t to be the set of policy atoms that can be deduced from Exercised t.
In particular, Exercised t ⊆ Deduced t. We also assume that Deduced t ⊆ Deduced t+1, i.e., over time, more
policy can be revealed, but previously existing policy is not invalidated. (Relaxing this assumption, e.g., to
support revocation of policy, is possible and would not significantly impact our evaluation framework.) We
stress that all contents of Deduced t might not be visible to our prediction engine, due to lack of integration
between the prediction engine and the access-control system; e.g., the credentials accompanying an access
might not be made available to the prediction engine. Hence, we define a set Visible t ⊆ Deduced t that is
the set of policy atoms visible to the prediction engine at time t. We do not generally require that Visible t =
Deduced t (we will discuss this more below), though we do presume that Visible t ⊆ Visiblet+1, i.e., that
the system never “forgets” information that it used in previous predictions, and that Exercised t ⊆ Visiblet.

The job of our system is to issue predictions of what might be a misconfiguration, based on the accesses
seen in the system so far. Like an access, each prediction is made at a logical time distinct from that of any
access. However, predictions need not be issued at times distinct from each other, and generally they will not
be. So, while we will still denote predictions by p1, p2, . . ., they are only partially ordered by their logical
times; specifically, time(p`) ≤ time(p`+1). Let Predictions t = {p` : time(p`) ≤ t}. Each prediction p` is
a policy atom (u, r). A prediction p` is made by applying the algorithm of §4 to Visible t for t = time(p`).
When applying the algorithm in §4 to make a prediction at logical time t, the object set O is the users in
Visiblet and the attribute set is the resources in Visible t. Each rule x⇒ {r} derived by that algorithm then
yields a prediction p` of policy atom (u, r) at time t = time(p`) if and only if (i) ∀r′ ∈ x : (u, r′) ∈ Visiblet;
(ii) (u, r) 6∈ Visiblet; and (iii) (u, r) 6∈ Predictions t−1. In other words, a rule will lead to a prediction for a
user u if and only if user u has accessed all the resources in the precondition x of the rule but not resource
r, and if the prediction has not already been made.

In a real system, each prediction would need to be judged, presumably by a human administrator (e.g., [6,
10]). For our evaluation, we determine the correctness of each prediction relative to an intended policy
Intended , which is a set of policy atoms; intuitively, the intended policy is the ideal (though perhaps not
implemented) policy in the system. We will discuss how we instantiate Intended in our datasets in §6.1,
but for our purposes here, we simply stipulate that Deduced t ⊆ Intended for all times t. We define the
correct predictions inductively, as follows: Correct 0 = ∅ and Correct t+1 = Correct t ∪ (Predictions t+1 ∩
(Intended \Deduced t)}. As such, only predictions that are not already deducible are correct. The incorrect
predictions can be defined more straightforwardly: Incorrect t = Predictions t \ Intended . We assume that
our prediction system is informed of the result when it makes predictions, i.e., whether the prediction was
correct, incorrect or already deducible. As such, Correct t ⊆ Visiblet+1 and Predictions t ∩ Deduced t ⊆

10

Visiblet+1. This means that all predictions at time t are resolved prior to predictions made at time t + 1 or
later, though we stress this is a modeling simplification and not a requirement in practice.

In §6, we will evaluate the performance of our algorithm in three types of systems.

No deduction In a system with “no deduction”, we define Deduced t+1 = Visiblet+1 = Exercised t+1 ∪
Correct t. (Because Visiblet = Deduced t we know that Predictions t∩Deduced t = Correct t, and so
Predictions t ∩Deduced t need not be additionally counted in the expression of Deduced t+1.) This is
the setting in which previous proposals for misconfiguration prediction based on accesses have been
evaluated [6]. A system permitting no deduction based on previous accesses might be, e.g., a system
in which every access permission is demonstrated using a distinct per-resource capability. In such
systems, it cannot be deduced that policy allows any accesses other than those that have already been
exercised.

Eager deduction In a system with “eager deduction”, we stipulate that Visible t+1 = Deduced t+1, but
generally Visiblet+1 ⊇ Exercised t+1 ∪ Correct t. That is, we expect that it is possible to deduce
more than just what has been observed or predicted, and all such deductions are “eagerly” exploited
to improve prediction. An example of a system permitting eager deduction would be any system that
reasons using the credentials presented in previous accesses and gathered from previous predictions
(e.g., as would be possible in a proof-carrying authorization system [3]) and then imports these into
the prediction engine.

Lazy deduction In a “lazy deduction” system, Visible t+1 = Exercised t+1 ∪ Correct t ∪ (Predictions t ∩
Deduced t), but we permit Visible t+1 ⊆ Deduced t+1. As such, we expect that there will be deduc-
tions that are not incorporated into the prediction algorithm (the meaning of “lazy”), but that are still
relevant in measuring the success of a prediction algorithm as defined below. In other words, a lazy
system is one in which policy that has not been observed or predicted can be consulted only after a
prediction has been made. We expect most practical systems to be eager, lazy, or in between.

The measures of success that we produce for our system are intuitively the precision and recall of its
predictions, which we call accuracy and benefit. Our definition of accuracy is natural:

Acct =
|Correct t|

|Correct t ∪ Incorrect t|

Then, the accuracy Acc is simply Acct at the maximum value of t in the execution. Note that the denominator
of Acct is the size of Correct t ∪ Incorrect t and not of Predictions t; the difference is predictions that were
already deducible by the time they were made. These predictions are not helpful (and thus are not counted as
“correct”), but would presumably not be passed to a human, since the system can deduce their truth already
(and so should not be counted as “incorrect”). Similarly, benefit is defined

Bent =
|Correct t|

|Intended |

and then the benefit Ben is simply Ben t at the maximum value of t in the execution.

5.2 Algorithm for Enforcing Benefit vs. Accuracy Ratio

Intuitively, and as found by previous work [6], there is a tension between benefit and accuracy. Seeking
to maximize accuracy typically involves making only those predictions that are very likely to be correct,
which results in a lower benefit. On the other hand, maximizing benefit is achieved by making predictions

11

more indiscriminately, and hence lowering accuracy. In previous approaches to misconfiguration identifica-
tion, instantiating the prediction algorithm with different parameters led to results on different points of the
spectrum from higher accuracy/lower benefit to lower accuracy/higher benefit. However, the relationship
between different parameter sets and different points on this spectrum was both ad-hoc and varied across
datasets, and so the parameters needed to be tuned by trial and error to achieve the desired tradeoff between
benefit and accuracy.

As discussed in §1, a contribution of this paper is a method for ensuring Benefit
Accuracy

≈ β across a wide
range of datasets, with no additional parameter tuning. A prediction engine can track Acct over time but,
because it does not know Intended , it cannot track Ben t precisely. So, instead, our method tracks

V-Bent =
|Correct t|

|Visiblet+1|

since Visiblet+1 is (by the definition of prediction in §5.1) the engine’s closest approximation to Intended

and one that should improve (get closer to Intended) over time. The prediction engine can thus compute

V-Bent

Acct
=
|Correct t ∪ Incorrect t|

|Visiblet+1|
(2)

and monitor for the event in which this ratio drops below the target value β. More specifically, in the
absence of predictions, Visible t+1 will continue to grow over time as new accesses are exercised (and t
incremented), thus causing (2) to drop below β. Once that event occurs, the prediction engine can issue
predictions until (2) climbs back above β, at which point it suspends making further predictions until (2)
falls back below β. In particular, since an incorrect prediction at time t causes Incorrect t+1 ⊃ Incorrect t

and has no effect on Visible t+1, predictions may continue indefinitely only if predictions are always correct
or already deducible. In either case, these predictions are either helpful or have no effect on the system.

Once predictions are solicited by (2) falling below β, all predictions are derived at the same logical time
t using the rule generation algorithm described in §4.4 (i.e., based on the same visible policy Visible t), until
enough of these predictions are resolved to suspend predictions and allow logical time t + 1 to begin. The
only exception is if rule generation exhausts the rules from the existing lattice G, in which case, time t+1 is
begun anyway — in particular, with Visible t+1 incorporating the resolutions to predictions at time t before
doing so — and predictions are continued until (2) again exceeds β or no new predictions are generated.

6 Results

In this section we evaluate the effectiveness of our misconfiguration prediction method described in §5.2,
which we will refer to as “Ratio”. The goals of our evaluations are fourfold.

• We seek to show that in a variety of types of systems — namely, No Deduction (ND), Lazy Deduction
(LD), and Eager Deduction (ED) systems — the Ratio algorithm is competitive, in terms of the benefit
and accuracy that it achieves, with traditional association-rule-mining algorithms that provide for fixed
settings of min conf and min sup, even for the “best” settings of min conf and min sup (which
will vary per system). To show this, we will present the benefit and accuracy achieved by Ratio
alongside that achieved by traditional association-rule mining on graphs similar to receiver operating
characteristic (ROC) curves. We emphasize that we would not expect Ratio to provide uniformly
better benefit and accuracy than traditional approaches, as it was not designed to do so. (Rather, it was
designed to ensure Benefit

Accuracy
≈ β.) However, it is important that it remain competitive with traditional

approaches. ND and LD systems will be discussed in §6.2–6.3, and ED systems in §6.4.

12

• The point of covering all of ND, LD and ED systems in our evaluation is to convey a lesson regarding
the evaluation of misconfiguration prediction systems such as ours. Prior evaluations addressed only
the ND case, but we view ND as representing fewer practical systems than LD and ED do: most
systems that utilize group or role credentials would permit deducing other accesses from past ones
that could be used to filter predictions before they reach a human (yielding an LD configuration) or
that could be imported into the prediction engine wholesale (yielding an ED configuration). In §6.2
we show that when using an ND methodology to evaluate an LD system, one tends to significantly
overestimate the benefit that is achieved by misconfiguration prediction. In §6.3, we examine the
addition of annotations — extra group or role information that accompanies accesses — into the
prediction engine to recover some of the benefit, but we find this offers only incremental improvement.
However, we show in §6.4 that by moving to an ED configuration, where the prediction engine can
leverage all deducible information from past accesses, benefit can be more substantially increased
(though still not to the levels promised by an ND evaluation).

• We seek to confirm that Ratio does, in fact, succeed in ensuring that Benefit
Accuracy

≈ β and that traditional
rule-mining approaches based on fixed values for min conf and min sup do not in our setting. We
evaluate these conjectures in §6.5.

• We seek to establish that the Ratio algorithm, including both incremental lattice maintenance and
prediction generation, is sufficiently efficient to perform well in many practical settings for this appli-
cation domain. This will be the focus of §6.6.

Before beginning, in §6.1 we describe the datasets that we use for evaluation.

6.1 Datasets

In our evaluation, we use both a dataset generated by a real system and a range of synthetically generated
datasets. In each dataset we are able to construct exercised policy, deduced policy, and intended policy, as
described in §5.1.

Real dataset The dataset generated by a real system was provided by Bauer et al. and is a variant of the
dataset used to evaluate their previous work on misconfiguration detection [6]. The system from which the
data was drawn is a discretionary access-control system deployed in an office environment for controlling
access to physical space. The system allows users to specify access policy both via roles and by directly
delegating to individuals. The dataset encompasses a sequence of 26,383 accesses observed over 1,113
days of running the system, during which the system was used by 38 users and protected 35 resources.
The exercised policy against which we test is the subsequence of this access log constructed by removing
all duplicate accesses (i.e., for any principal and resource, only the first access by that principal to that
resource is kept), and in this case comprise 247 unique accesses. Each access in the dataset is annotated
with the policy information (e.g., role assignments or delegations) that made that access possible. We make
use of these annotations to construct Deduced t, i.e., the set of accesses we know to be possible at time
t, for all times t covered by exercised policy. More specifically, Deduced t is produced via an algorithm
that accumulates annotations into a knowledge base, and then attempts to infer all consequences of the facts
present in this knowledge base (i.e., all accesses enabled by the knowledge base). Each annotation (or policy
fragment) in this dataset was represented as a formula in an authorization logic, and the inference method
was forward chaining; however, many other representations of policy would work equally well.

Finally, the corresponding intended policy was constructed by surveying the users of the system to learn
what policy they had created or were willing to create that had not been observed during the operation of the
system (e.g., because such policy was not required for any of the accesses that took place during the time

13

period over which the access data was collected). For the rest of the paper we will informally refer to this
dataset as the real dataset.

Synthetic datasets A practical algorithm for misconfiguration detection will have to perform well on a
variety of datasets. Since we were able to obtain only a single real dataset for evaluation, we set out to
create a range of synthetic datasets. Our goal was for these datasets to contain a mix of role- or group-based
policy and direct person-to-person delegations, on the grounds that the former would be similar to real
organizational access-control policies and the latter would inhibit prediction but typically occurs in practical
systems. We also wanted the datasets to span a wider range in terms of the number of groups or roles, their
sizes, and the depth of group or role hierarchies. As with the real dataset, we wanted each synthetic dataset
to have exercised, deduced, and intended policy components.

Roughly speaking, the intended policy component of each dataset was created via the following algo-
rithm. First, we create a set of users and a set of resources, and allow some of those users direct access to
some resources. With some prespecified probability, we then allow each user who has access to a resource
to create a role, and probabilistically assign to that role some resources and some users. We iteratively re-
peat this process on all users who received access to a resource in the previous round of policy creation. At
each iterative step, we probabilistically decide whether to continue to the next iteration or discontinue role
creation. Role creation terminates either as a result of such a probabilistic choice, or because a target policy
density has been reached. After creating role-based policy in this manner, we optionally augment it with
direct delegations to achieve the desired mix of role-based and directly delegated policy. The direct delega-
tions are created straightforwardly: we pick a target user and a resource to which she does not have access,
and cause a user who does have access to that resource to delegate this access to the target. The algorithm
is parameterized by probabilities that guide every step of the policy-creation process (whether to create an-
other role, whether to add another user to a role, whether to iterate on role creation), but even repeatedly
running the algorithm with the same set of parameters causes it to generate a wide range of policies. The
algorithm guards against the creation of degenerate policies, or overly permissive ones; the synthetically
generated datasets that we employ here had densities ranging between 30% and 45%, and averaging 35%,
where density is the percent of possible policy atoms contained in intended policy.

Once intended policy has been created in this manner, we use it to randomly generate the sequence of
accesses that comprises the exercised policy. The exercised policy is complete with respect to the intended
policy, i.e., at the end of policy creation, Exercised t = Intended . As with the real data, each access is
annotated with the policy (e.g., group or role information) that enabled it. Once exercised policy is generated,
we use it to compute Deduced t, for every t within scope of the exercised policy. The process for computing
Deduced t is the same as for the real dataset.

All datasets that we create in this manner we henceforth refer to as synthetic datasets. We generated
synthetic datasets with 50 users and 50 resources, with 50 users and 70 resources, and with 70 users and
50 resources. For each of these three sets of parameters describing the number of users and resources, we
generated 10 data sets; the results we show in the rest of this section are averages over the 30 datasets, 10
of each parameter set. For the synthetic datasets we use in our evaluation, 5% of the possible accesses is
enabled by direct delegations, and the remainder is enabled by group- or role-based policy. (We evaluated
increasing the fraction of direct delegations up to 60%, but we omit a detailed discussion due to space
limitations; briefly, the accuracy of all prediction methods decreased somewhat as the policy became less
structured, but the Ratio method appeared more resilient to this decrease than previous approaches.)

6.2 No Deduction Versus Lazy Deduction

We first examine the benefit and accuracy of our system using the No Deduction (ND) model described in
§5.1, which is the model in which previous work was evaluated [6]. Figure 4 shows plots of benefit and
accuracy achieved in an ND evaluation: Figure 4(a) shows results for the real dataset, and Figure 4(b) for

14

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Ratio ND
min_sup = .01 ND
min_sup = .07 ND
min_sup = .2 ND
min_sup = .3 ND
Ratio LD
min_sup = .01 LD
min_sup = .07 LD
min_sup = .2 LD
min_sup = .3 LD

(a) Real data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Ratio ND
min_sup = .01 ND
min_sup = .07 ND
min_sup = .2 ND
min_sup = .3 ND
Ratio LD
min_sup = .01 LD
min_sup = .07 LD
min_sup = .2 LD
min_sup = .3 LD

(b) Synthetic data

Figure 4: No Deduction vs. Lazy Deduction

synthetic datasets. Because there is only one real dataset, the points in Figure 4(a) are the actual results of
each technique on that dataset, whereas each point in Figure 4(b) is an average over all synthetic datasets
described in §6.1. In the Ratio curves, each point corresponds to a different value of β. Each other curve
plots the benefit and accuracy of a traditional rule-mining algorithm with min sup indicated in the legend
and with min conf varied; each point corresponds to a different setting of min conf .3

An immediate observation from these figures is the impressive benefit and accuracy of misconfiguration
identification in the ND model, particularly in the real data. As we have contended previously, however, the
ND model, by setting Deduced t+1 to be simply Exercised t+1 ∪ Correct t, precludes any deductions being
made from the evidence of access-control policy that might have accompanied policy atoms. For example,
if an access is accompanied by a credential illustrating a group membership of the user requesting access,
then this credential can be used to deduce other aspects of intended policy. The ND model, however, does
not permit such credentials to be taken into account.

Perhaps the easiest way to take this additional information into account is to use it to “filter out” predic-
tions that can be proved to be correct before they reach a human administrator — the LD model. In doing
so, the curves marked LD in Figure 4 result. A notable lesson from these new curves is that the ND model
substantially overestimates the true effectiveness of misconfiguration prediction when deduction is possible.

More specifically, on the real dataset the highest benefit provided by any prediction algorithm evaluated
in the ND case is 86.8%; the more realistic view represented by LD reveals the maximal benefit to be a
much lower 59.6%. This maximal attained benefit of 59.6% indicates that many of the predictions credited
as correct in the ND case were, in fact, already deducible by the time they were made, and hence were not
indicative of misconfigurations. In fact, we can say for certain that this benefit of 59.6% is the maximum
that could be achieved by any prediction algorithm operating in an LD case, because this is the highest value
reached by a tuning of the naive algorithm that is so biased towards attaining high benefit that it makes
every prediction for which there is any statistical evidence. This highest attainable benefit can be increased
slightly by allowing the prediction algorithm access to more information, as we will show in §6.3–6.4.

As particularly evident in Figure 4(b), ND can also overstate accuracy, again because the highest-ranked
association rules tend to be already deduced. In this case, the comparison with LD reveals that a large
fraction of the predictions that are contributing to ND’s high accuracy is redundant in light of what can be
deduced, and that the non-redundant predictions, which are the only ones made by LD, are significantly less

3We used β ∈ {.05, .15, .25, .4, .55, .7, .9, 1.2, 1.6, 2.2, 20} and min conf ∈ {.01, .1, .2, .3, .4, .5, .6, .7, .8, .9, .95}.

15

accurate. For example, using the Ratio method on the synthetic data with β = .7, accuracy falls from 51.2%
in ND to 31.2% in LD (and benefit declines from 46.2% to 28.8%). We will show in §6.3–6.4 that much of
this accuracy can also be recovered by giving the prediction algorithm access to more information.

Notice that the curves shown in Figure 4(a) are considerably different in shape than those in Figure 4(b).
We hypothesize that a main reason for this is that in the synthetic datasets the sequence of exercised accesses
was a random permutation of the possible accesses, whereas in the real dataset accesses had more locality
both among users and among resources. This causes prefixes of the real exercised policy to be more indica-
tive of patterns than prefixes of synthetic exercised policy, and hence a better predictor of misconfigurations.

Another take-away message from Figure 4 is that Ratio is indeed competitive with the various tunings
of traditional rule-mining based on min sup and min conf , typically trailing the best such curve by only
a few percentage points in each of benefit and accuracy (and, in some cases, beating the best such curve).
One exception is that the distance between the best min sup LD curve and “Ratio LD” curve grows when
the parameters (min conf or β, respectively) are configured to emphasize accuracy over benefit, in both
Figures 4(a) and 4(b). However, these highest-accuracy configurations yield very few predictions, and so
this larger gap in accuracy reflects only a small number of incorrect predictions by Ratio.

Figure 4 also motivates the move to using predictive accuracy in lieu of min sup and min conf , because
it shows that different values of min sup perform better in the different scenarios considered. Selecting the
best min sup and min conf at a particular juncture is a challenge that predictive accuracy helps to resolve.

6.3 Utilizing Annotations

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Ratio LD
min_sup = .01 LD
Ratio LD+An
min_sup = .01 LD+An

(a) Real Data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Ratio LD
min_sup = .01 LD
Ratio LD+An
min_sup = .01 LD+An

(b) Synthetic Data

Figure 5: Lazy Deduction with annotations

The LD curves in Figure 4 present a more sobering picture for the utility of misconfiguration prediction
in systems permitting deduction of policy based on policy already seen. A middle ground between an LD
system and fully incorporating all deductions into the prediction engine (an ED system, evaluated in §6.4) is
importing annotations into the prediction engine (i.e., into Visible t) in the form of group or role identifiers
to which a user has been demonstrated to belong in the course of gaining access to other resources. For
example, in our datasets we can extract group memberships from some of the credentials that accompany
accesses. (We do not further reason about what other resources those group memberships might permit users
to access, which is the additional power of deduction that ED systems use.)

We model annotations in our framework by introducing additional “resources” into the resource set R;
these resources describe groups and roles. When a new credential stating a user’s membership in the group

16

or role is observed, this is realized as a new policy atom — a new element of exercised policy. For the
purposes of rule generation, these additional “resources” can appear only in x for a rule x ⇒ y. This
permits rules like, e.g., “Membership in Students ∧ access to Student Lounge⇒ access to Computer Lab”.

The intuition as to why including annotations could help is that it increases the potentially predictable
misconfigurations. For example, while two users u, u′ may have no actual resources that they have both
accessed, knowing that they are both in a particular group (i.e., have “accessed” the corresponding group
“resource”) is information that can be leveraged to infer a misconfiguration. As such, a system employing
annotations has a higher potential for uncovering misconfigurations than those that do not.

Figure 5 shows the gains that result from incorporating annotations in our framework. Each graph
shows Ratio in an LD analysis, both with and without annotations, as well as traditional rule mining with
min sup = .01 in comparable evaluations. (Other values of min sup were comparable or worse.) The gains
offered by the inclusion of annotations are noticeable but modest, for both Ratio and traditional rule mining.
For example, when making predictions on the real dataset using Ratio with β = .7, accuracy improved
from approximately 46.1% to 48.7%, and benefit from 25.7% to 27.6%. The addition of annotations did,
however, increase benefit significantly in the synthetic datasets (Figure 5(b)) when parameters were tuned
to maximize benefit, owing to the additional predictions that annotations allowed to be uncovered.

6.4 Eager Deduction

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Ratio LD+An
min_sup = .01 LD+An
Ratio ED+An
min_sup = .01 ED+An

(a) Real Data

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Ratio LD+An
min_sup = .01 LD+An
Ratio ED+An
min_sup = .01 ED+An

(b) Synthetic Data

Figure 6: Eager Deduction with annotations

The previous section showed modest gains through introducing annotations that could be directly ex-
tracted from access credentials and added to exercised policy. In this section, we examine the power of
incorporating all deducible policy atoms into Visible t as soon as those atoms can be deduced, i.e., an Eager
Deduction (ED) system. The additional information this offers to the prediction engine results in substan-
tially improved benefit and accuracy over that offered by LD and annotations alone, as shown in Figure 6.
This benefit derives, we believe, simply from the engine using more complete information. Specifically, be-
cause more of the intended policy is known when making a prediction, similarities between users are more
readily apparent and so the prediction is more likely to be an actual misconfiguration. More concretely, on
the real dataset, using Ratio with β = .7, LD with annotations achieved a benefit of 27.6% and accuracy of
48.7%, while under ED with annotations this improved to 37.3% benefit and 59.5% accuracy. This repre-
sents a 35% increase in benefit and a 22% increase in accuracy. Note, as well, that the maximum benefit
achievable on the real dataset by any algorithm in an ED configuration with annotations is 61.2%, and so the

17

same point corresponding to β = .7 indicates that over 60% of the possibly identifiable misconfigurations
were, in fact, correctly identified.

Two additional points are worth noting in Figure 6. First, Ratio again remains competitive with tradi-
tional rule mining (for which min sup = 0.01 is again shown as the best of the min sup values we tried).
As discussed in §6.2, the points at configurations emphasizing higher accuracy in Figure 6 represent very
few predictions, and so while the gaps in accuracy are large in some cases — in favor of traditional rule
mining in Figure 6(a), and in favor of Ratio in Figure 6(b) — they represent few actual predictions.

Second, in comparing Figures 6 and 4, we see that an ED system, despite its improvements over LD,
does not fully regain the benefit and accuracy promised by the original ND analysis. For example, the β = .7
parameter mentioned previously exhibits a decrease in accuracy from 79% to 59% and a decrease in benefit
from 39% to 37%. We nevertheless believe that the results in Figure 6 are compelling evidence of the utility
of misconfiguration prediction in systems where misconfigurations need to be avoided.

6.5 Enforcing the Target Ratio

Recall that the primary motivation for the Ratio algorithm is to ensure that Benefit
Accuracy

≈ β for a given pa-
rameter β. While the justification for the way in which our algorithm accomplishes this is given in §5.2,
the curves in the previous subsections provide little insight into the extent to which this is accomplished.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Real Data

(a) Ratio Method

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

B
en

ifi
t

Real Data

(b) min sup = .01

Figure 7: Scatter plot of Benefit
Accuracy

for different techniques

To shed light on this, we show
in Figure 7 the values of Benefit

Accuracy

at the end of each evaluation of
misconfiguration prediction, for the
different datasets and parameter
values we considered. Figure 7(a)
demonstrates that Ratio is able to
provide very predictable ratio val-
ues for all of our datasets, while tra-
ditional rule-mining (Figure 7(b))
provides no such predictability. As
a result, an administrator using Ra-
tio can confidently set β at the birth
of the system and achieve a long-
term performance that will satisfy
the chosen β. It is worth noting that in our real dataset, where Exercised t ⊂ Intended at the final time t,
that the finishing points still exhibit the behavior sought by the Ratio algorithm.

6.6 Performance

The focus of §4 was the development of an optimized incremental rule-mining algorithm that can be invoked
as prescribed in §5.2 to generate misconfiguration predictions. In this section we report performance results
for this algorithm, which we have implemented in Java.

Figure 8 shows boxplots that detail the time spent in lattice maintenance (§4.2), confidence distribution
updating (§4.3) and in rule generation (§4.4) for various values of β on a 3GHz processor. Each point
represented in a boxplot is the time spent in one invocation of the respective operation (lattice maintenance,
confidence distribution update, or rule generation) in one 70-user, 50-resource synthetic dataset. Because
each dataset includes annotations, the number of effective resources (actual resources plus groups and roles)
escalated to between 120 and 164, depending on the dataset. Each boxplot represents all invocations in 10
different datasets. In each boxplot, the box shows the first, second and third quartile; the whiskers extend

18

to cover all points within 1.5 times the interquartile range; and “+” denotes an outlier. These datasets (70
users, 50 resources, with annotations and eager deduction) represent the worst case for our algorithm of all
the datasets we evaluated; our algorithm performs faster on all of the other datasets we used.

.05 .55 .9 2.2 20 .05 .55 .9 2.2 20 .05 .55 .9 2.2 20

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Ti
m

e
(µ

s)

hi

(c) Rule generation(b) Confidence distribution(a) Lattice maintenance

Figure 8: Runtime per operation (Eager
Deduction with Annotations, 70 users, 50
resources) for β ∈ {.05, .55, .9, 2.2, 20}

In order to gain an appreciation for the savings represented
by the numbers presented in Figure 8, it is useful to compare
them to certain non-incremental algorithm implementations
that roughly provide alternatives to those steps represented
in Figures 8(a)–8(c). For example, a very rough comparison
point for the graph in Figure 8(a) is the operation of generat-
ing the frequent itemsets for a given database, which can be
viewed as generating the lattice (L, <L) described in §4.3. On
the datasets represented in Figure 8, the median cost for doing
so was 27ms, using a state-of-the-art C implementation due to
Bodon [7]. This is more than 25× the highest median shown
in Figure 8(a) of 1.26ms.

A rough comparison for the cost of maintaining the con-
fidence distribution incrementally in our algorithm, shown
in Figure 8(b), is a non-incremental alternative suggested by
Scheffer [23] that approximates the confidence distribution by
sampling (in our use, single-consequent) association rules at random. For each size s ∈ {1 . . . , |A| − 1},
where A is the set of attributes, this approach prescribes sampling a number of rules from among all rules
x⇒ y with a precondition x of that size (|x| = s) and with a consequent y of size one (|y| = 1); Mutter et
al. [21] attribute to Scheffer the suggestion of sampling 1000 such rules at random per value of s. For the
datasets represented in the tests of Figure 8(b), the median cost of this approach in our implementation was
2.2 seconds, i.e., 220× greater than the median shown in Figure 8(b).

A comparison for the cost of generating rules using our algorithm (Figure 8(c)) is a rule-generation
algorithm proposed by Scheffer [23], conceptually a breadth-first walk down the lattice (L, <L). Our im-
plementation of Scheffer’s approach on the dataset shown in Figure 8 induced a median cost for generating
all rules ranked by predictive accuracy of 3 minutes, i.e., 122× larger than the median for our algorithm
(with β = 20.0, when our algorithm also generates all rules), shown in Figure 8(c). The maximum observed
runtime of Schaffer’s approach was approximately 3 hours, i.e., 800× larger than the maximal point in
Figure 8(c). Also note that smaller β values induce significantly less rule-generation time in our approach.

7 Conclusion

Policy misconfigurations that prevent legitimate accesses from succeeding are a significant impediment to
the usability (and thus security) of access-control systems. Fortunately, accesses in a system often exhibit
patterns that are indicative of intended policy, and access logs can be leveraged to identify policy miscon-
figurations before they cause harm.

In this paper, we improve the state of the art in identifying such misconfigurations in several ways.
First, we provide a new, intuitive method for administrators to tune misconfiguration-detection systems to
strike a desired balance between benefit (which measures how many misconfigurations are detected) and
accuracy (which measures false positives in such detection), and we show empirically that this method
is effective. Second, to detect misconfigurations we devise a new rule-mining algorithm that we show is
significantly more efficient for scenarios such as ours; we expect this algorithm will also be useful in rule-
mining applications unrelated to access control. Finally, we develop a new methodology for evaluating and
deploying misconfiguration-detection systems, and we apply this methodology to several misconfiguration

19

algorithms on both a real dataset and a collection of synthetic datasets. Our methodology allows previous
results in misconfiguration detection to be interpreted more realistically, revealing some potential flaws in
earlier analyses. Our methodology also shows that in most practical access-control systems more data is
available that can be harnessed towards detecting misconfigurations than was previously used, and we show
empirically that taking advantage of this data increases both the benefit and the accuracy of misconfiguration
detection.

References
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In

ACM SIGMOD International Conference on Management of Data, pages 207–216, May 1993.
[2] E. S. Al-Shaer and H. H. Hamed. Discovery of policy anomalies in distributed firewalls. In 23rd INFOCOM,

March 2004.
[3] A. W. Appel and E. W. Felten. Proof-carrying authentication. In 6th ACM Conference on Computer and Com-

munications Security, 1999.
[4] J. Baixeries, L. Szathmary, P. Valtchev, and R. Godin. Yet a faster algorithm for building the Hasse diagram of a

concept lattice. Formal Concept Analysis, pages 162–177, 2009.
[5] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall management toolkit. In 1999 IEEE

Symposium on Security and Privacy, May 1999.
[6] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy misconfigurations in access-control

systems. In 13th ACM Symposium on Access Control Models and Technologies, pages 185–194, June 2008.
[7] F. Bodon. Surprising results of trie-based FIM algorithms. In IEEE ICDM Workshop on Frequent Itemset Mining

Implementations (FIMI’04), Nov. 2004.
[8] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent itemset algorithm for transactional

databases. In Proc. of the 17th Int. Conf. on Data Engineering, 2001.
[9] D. W.-L. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of discovered association rules in large databases:

An incremental updating technique. In Proceedings of the 12th International Conference on Data Engineering,
pages 106–114, 1996.

[10] T. Das, R. Bhagwan, and P. Naldurg. Baaz: A system for detecting access control misconfigurations. In 19th
USENIX Security Symposium, Aug. 2010.

[11] K. El-Arini and K. Killourhy. Bayesian detection of router configuration anomalies. In 2005 ACM SIGCOMM
Workshop on Mining Network Data, August 2005.

[12] C. Ezeife and Y. Su. Mining incremental association rules with generalized FP-tree. Advances in Artificial
Intelligence, pages 147–160, 2002.

[13] V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON: mining and monitoring evolving data. Knowledge and
Data Engineering, IEEE Transactions on, 13(1):50 –63, 2001.

[14] T. Jaeger, A. Edwards, and X. Zhang. Policy management using access control spaces. ACM Transaction on
Information and System Security, 6(3):327–364, 2003.

[15] M. Kuhlmann, D. Shohat, and G. Schimpf. Role mining—revealing business roles for security administration
using data mining technology. In 8th ACM Symposium on Access Control Models and Technologies, June 2003.

[16] F. Le, S. Lee, T. Wong, H. Kim, and D. Newcomb. Detecting network-wide and router-specific misconfigurations
through data mining. IEEE/ACM Transactions on Networking (TON), 17(1):66–79, 2009.

[17] F. Le, S. Lee, T. Wong, H. S. Kim, and D. Newcomb. Minerals: Using data mining to detect router misconfigu-
rations. In MineNet ’06: 2006 SIGCOMM Workshop on Mining Network Data, pages 293–298, 2006.

[18] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In 2000 IEEE Symposium on Security and
Privacy, May 2000.

[19] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S. Calo, and J. Lobo. Mining roles with semantic meanings.
In 13th ACM Symposium on Access Control Models and Technologies, pages 21–30, 2008.

[20] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo. Evaluating role mining algorithms. In 14th ACM
Symposium on Access Control Models and Technologies, pages 95–104, 2009.

20

[21] S. Mutter, M. Hall, and E. Frank. Using classification to evaluate the output of confidence-based association rule
mining. AI 2004: Advances in Artificial Intelligence, pages 133–148, 2005.

[22] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using closed itemset
lattices. Information Systems, 24(1):25–46, 1999.

[23] T. Scheffer. Finding association rules that trade support optimally against confidence. Intelligent Data Analysis,
9(4):381–395, 2005.

[24] J. Vaidya, V. Atluri, and Q. Guo. The role mining problem: Finding a minimal descriptive set of roles. In 12th
ACM Symposium on Access Control Models and Technologies, 2007.

[25] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji. Generating frequent itemsets incrementally: two novel ap-
proaches based on galois lattice theory. Journal of Experimental & Theoretical Artificial Intelligence, 14(2):115–
142, 2002.

[26] D. Van Der Merwe, S. Obiedkov, and D. Kourie. AddIntent: A new incremental algorithm for constructing
concept lattices. Concept Lattices, pages 205–206, 2004.

[27] A. Wool. Architecting the Lumeta firewall analyzer. In 10th USENIX Security Symposium, 2001.
[28] Y. Yu, X. Qian, F. Zhong, and X. Li. An Improved Incremental Algorithm for Constructing Concept Lattices. In

World Congress on Software Engineering, pages 401–405. IEEE, 2009.
[29] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra. FIREMAN: A toolkit for FIREwall modeling

and ANalysis. In 2006 IEEE Symposium on Security & Privacy, 2006.
[30] M. Zaki and C. Hsiao. CHARM: An efficient algorithm for closed association rule mining. In SIAM International

Conference on Data Mining 2002, 2002.

21

