
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2001;31:717–738 (DOI: 10.1002/spe.384)

Reducing the overhead of
dynamic compilation

Chandra J. Krintz1,∗,†, David Grove2, Vivek Sarkar2 and Brad Calder1

1Department of Computer Science and Engineering, University of California, San Diego,
9500 Gilman Drive, Dept 0114, La Jolla, CA 92093-0114, U.S.A.
2IBM T. J. Watson Research Center, Hawthorne I, 30 Saw Mill River Road, Hawthorne, NY 10532, U.S.A.

SUMMARY

The execution model for mobile, dynamically-linked, object-oriented programs has evolved from fast
interpretation to a mix of interpreted and dynamically compiled execution. The primary motivation for
dynamic compilation is that compiled code executes significantly faster than interpreted code. However,
dynamic compilation, which is performed while the application is running, introduces execution delay. In
this paper we present two dynamic compilation techniques that enable high performance execution while
reducing the effect of this compilation overhead. These techniques can be classified as (1) decreasing the
amount of compilation performed, and (2) overlapping compilation with execution.

We first present and evaluatelazy compilation, an approach used in most dynamic compilation systems
in which individual methods are compiled on-demand upon their first invocation. This is in contrast
to eager compilation, in which all methods in a class are compiled when a new class is loaded. In this
work, we describe our experience with eager compilation, as well as the implementation and transition
to lazy compilation. We empirically detail the effectiveness of this decision. Our experimental results using
the SpecJVM Java benchmarks and the Jalapẽno JVM show that, compared to eager compilation, lazy
compilation results in 57% fewer methods being compiled and reductions in total time of 14 to 26%. Total
time in this context is compilation plus execution time.

Next, we present profile-driven, background compilation, a technique that augments lazy compilation
by using idle cycles in multiprocessor systems to overlap compilation with application execution. With
this approach, compilation occurs on a thread separate from that of application threads so as to reduce
intermittent, and possibly substantial, delay in execution. Profile information is used to prioritize methods
as candidates for background compilation. Methods are compiled according to this priority scheme so that
performance-critical methods are invoked using optimized code as soon as possible. Our results indicate
that background compilation can achieve the performance of off-line compiled applications and masks
almost all compilation overhead. We show significant reductions in total time of 14 to 71% over lazy
compilation. Copyright 2001 John Wiley & Sons, Ltd.

KEY WORDS: lazy compilation; eager compilation; Java; Jalape˜no; virtual machine; compilation overhead

∗Correspondence to: Chandra J. Krintz, Department of Computer Science and Engineering, University of California, San Diego,
9500 Gilman Drive, Dept 0114, La Jolla, CA 92093-0114, U.S.A.
†E-mail: ckrintz@cs.ucsd.edu

Copyright 2001 John Wiley & Sons, Ltd.
Received 18 July 2000

Revised 6 December 2000
Accepted 6 December 2000

718 C. J. KRINTZET AL.

INTRODUCTION

The execution model for mobile, dynamically-linked, object-oriented programs has evolved from
fast interpretation to a mix of interpreted and dynamically compiled execution [1–3]. The primary
motivation for dynamic compilation is significantly faster execution time of compiled code over
interpreted code. Many implementations of object-oriented languages (such as Java [4], Smalltalk [5]
and Self [6]) use dynamic compilation to improve interpreted execution time. Dynamic compilation
also offers the potential for further performance improvements over static compilation since runtime
information can be exploited for optimization and specialization. Several dynamic, optimizing
compiler systems have been built in industry and academia [1,7–13].

Dynamic compilation is performed while the application is running, and therefore introduces
compilation overhead in the form of intermittent execution delay. The primary challenge in using
dynamic compilation is to enable high performance execution with minimal compilation overhead.
Unfortunately, a common practice thus far in the evaluation of dynamic compilers for Java has been to
omit measurements of compilation overhead and to report only execution time [3,13–15]. Hence, it is
difficult for users to evaluate the tradeoff between compilation overhead and execution speedup.

We first evaluatelazy compilation, an approach in which individual methods are compiled on
demand upon their first invocation. This is in contrast toeager compilation, in which all methods
in a class are compiled when a new class file is loaded. Most just-in-time (JIT) compilers for Java‡

perform lazy compilation [3,10,11,13] but have not provided an empirical study to support this choice.
In this work, we discuss the trade-offs between eager and lazy compilation. We use the Jalape˜no JVM
as our implementation infrastructure, a dynamic compilation system that originally used the eager
approach by default. We then detail our experiences with the implementation of lazy compilation in
Jalape˜no and quantify the performance effects (as well as the compiler implications) of both approaches
on the SpecJVM benchmarks. To the best of our knowledge, this is the first study to provide such
an evaluation. Our experimental results show that, compared to eager compilation, lazy compilation
results in 57% fewer methods being compiled and reductions in total time (compilation plus execution
time) of 14 to 26%.

We then present profile-driven background compilation, a technique that augments lazy compilation
by using idle cycles in multiprocessor systems to overlap compilation with application execution.
Profile information is used to prioritize methods as candidates for background compilation. Our
background compilation technique is designed for use in symmetric multiprocessor (SMP) systems
in which one or more idle processors might be available to perform dynamic compilation concurrently
with application threads. We believe that such systems will become more prevalent in the future,
especially with the availability of systems built using single-chip SMPs. Our results using Jalape˜no
show that background compilation can deliver significant reductions in total time (14 to 71%) beyond
the benefits enabled by lazy compilation.

The infrastructure used to perform our measurements of compilation overhead is Jalape˜no, a new
JVM (Java Virtual Machine) built at the IBM T. J. Watson Research Center. Jalape˜no [7] is a multiple-
compiler, compile-only JVM (no interpreter is used). Therefore, it is important to consider compilation

‡The implementation results described in this paper are for Java, but the techniques are relevant to any dynamic compilation
environment.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 719

overhead in the overall performance of the applications executed. Prior to the work reported in this
paper, the default compilation mode in Jalape˜no was eager compilation. After the results reported in
this paper were obtained, the default compilation mode for Jalape˜no was changed to lazy compilation.

GENERAL METHODOLOGY

The infrastructure in which we evaluate our compilation approaches is Jalape˜no, a Java virtual machine
(JVM) being developed at the IBM T. J. Watson Research Center [7,16]. We first describe this
infrastructure and then we detail our general experimental methodology.

The Jalapẽno virtual machine

Jalape˜no is written in Java and designed to address the special requirements of SMP servers,
performance and scalability. Extensive runtime services such as parallel allocation and garbage
collection, thread management, dynamic compilation, synchronization and exception handling are
provided by Jalape˜no.

Jalape˜no uses a compile-only execution strategy, i.e., there is no interpretation of Java programs.
Currently there are two fully-functional compilers in Jalape˜no, a fast baseline compiler and the
optimizing compiler. The baseline compiler provides a near-direct translation of Java class files, thereby
compiling very quickly and producing code with execution speeds similar to that of interpreted code.
Jalape˜no, using the baseline compiler, performs in much the same way as an interpreted system.

The second compiler is the optimizing compiler and builds upon extensive compiler technology to
perform various levels of optimization [15]. The compilation time using the optimizing compiler is 50
times slower on average for the programs studied than the baseline, but produces code that executes
three to four times faster. To warrant its use, compilation overhead must be recovered by the overall
performance of the programs. All results were generated using a December 1999 build of the Jalape˜no
infrastructure. We report results for both the baseline and optimizing compilers. The optimization levels
we use in the latter include many simple transformations, inlining§, scalar replacement, static single
assignment optimizations, global value numbering and null check elimination.

As shown in Figure1, a Jalape˜no compiler can be invoked in three ways ([1], [2] and [3] in the
figure). First, when an unresolved reference made by the executing code causes a new class to be
loaded, the class loader invokes a compiler to compile the class initializer, if one exists. With eager
compilation [2], the class loader then invokes a compiler to compile all methods in the class during class
loading as denoted by the eager compilation arrow. Alternatively, with lazy compilation [1], the class
loader simply initializes all methods of the newly loaded class to alazy compilation stub. When a stub
is executed, a compiler is invoked to compile the method as denoted by the arrow from the executing
code to the compiler. The implementation of lazy compilation in Jalape˜no is a contribution of this paper,
and is discussed in the section entitled ‘Lazy Compilation’. The third compilation path [3] involves a
background compilation thread as denoted by the optimizing compilation thread (OCT) in Figure1,

§The optimizing compiler performs both unguarded inlining of static and final methods and guarded inlining of non-final virtual
methods.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

720 C. J. KRINTZET AL.

Compilers
[Base,Opt,…]

Class Loader

Class Load Request

Dynamic
Linker

Executing
Code

Resolution

Unresolved
Access

New Class Loaded

Machine Code

Lazy
Compilation -
Stub Invoked

Off-line
Profile
Data

Background
OCT

Eager
Compilation

Background
Compilation[1]

[2]

[3]

Figure 1. Compilation scenarios in the Jalape˜no JVM. The compiler is invoked in three ways indicated by (1) lazy
compilation, (2) eager compilation, and (3) background compilation.

that uses off-line profile data to schedule pre-emptive optimizing compilations of performance-critical
methods. The class loader notifies the OCT of class loading events, but the actions taken by the OCT are
otherwise decoupled from the application’s execution, i.e. they occur in the background. Background
compilation is a contribution of this paper, and is discussed in the section of the same name; in this
section, we also empirically compare background and lazy compilation.

Jalape˜no is invoked using a boot image [16]. A subset of the runtime and compiler classes are
fully optimized prior to Jalape˜no startup and placed into the boot image; these class files are not
dynamically loaded during execution. Including a class in the boot image, requires that the class file
does not change between boot-image creation and Jalape˜no startup. This is a reasonable assumption
for Jalape˜no core classes. This idea can be extended with mechanisms to detect if a class file has
changed since it was statically compiled, to enable arbitrary application classes to be precompiled. This
topic is further described in [17]. Infrequently used, specialized, and supportive library and Jalape˜no
class files are excluded from the boot image to reduce the size of the JVM memory footprint and to
take advantage of dynamic class file loading. When a Jalape˜no compiler encounters an unresolved
reference, i.e., an access to a field or method from an unloaded class file, it emits code that when
executed invokes Jalape˜no runtime services to dynamically load the class file. This process consists of
loading, resolution, compilation and initialization of the class. If, during execution, Jalape˜no requires
additional Jalape˜no system or compiler classes not found in the boot image, then they are dynamically
loaded; there is no differentiation in this context between Jalape˜no classes and application classes once
execution begins. To ensure that our results are repeatable in other infrastructures, we isolate the impact
of our approaches to just the benchmark applications by placing all of the Jalape˜no class files required
for execution into the boot image.

Experimental methodology

We present results gathered by repeatedly executing applications on a dedicated, 166 MHz X4-
processor PowerPC-based machine running AIX v4.3. The applications we examine are the single-
threaded subset of the SpecJVM programs [18]. We report numbers using inputs of size 10 and size

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 721

Table I. Benchmark characteristics. The first column of data provides benchmark sizes in kilobytes. The
second column is the total number of classes in each application. The third and fourth columns show the
number of class files accessed during execution of each input. The middle four columns contain the ET
and CT times when the Jalape˜no optimizing compiler is used. The last four columns are the execution and
compile times when the Jalape˜no baseline compiler is used. Times for both input sizes are given. The small

input is the SpecJVM 10% input and the large is the 100% input.

Optimized Baseline-compiled
time (s) time (s)

(used classes) (used classes)
Used

class count Small Large Small Large
Total Total
size count

Benchmark in kB classes Small Large ET CT ET CT ET CT ET CT

compress 17 12 11 12 7.4 8.2 84.0 8.1 47.0 0.1 525.1 0.1
DB 9 3 3 3 1.9 8.2 102.7 8.0 2.9 0.3 162.6 0.3
Jack 129 57 46 46 9.9 16.0 84.3 16.0 10.9 0.4 93.2 0.4
Javac 548 176 132 139 2.0 38.6 66.3 38.5 3.0 0.6 103.5 0.6
Jess 387 151 133 134 2.5 27.2 45.2 27.6 6.4 0.3 109.8 0.3
Mpeg 117 55 42 37 7.3 15.9 71.3 15.9 47.6 0.4 452.1 0.4

Average 201 78 61 62 5.2 19.0 75.6 19.0 19.6 0.4 241.1 0.4

100. According to Spec, input 100 is full execution of an example application and input 10 is execution
that is 10% of the full execution. The size 10 input is designed to be used as a training input for size
100 input; execution behavior from the size 10 input is representative, yet not as extensive, as that of
the size 100 input. Since size 10 and 100 better represent execution times of existing Java programs,
we exclude the Spec size 1 input which defined to be 1% of full execution. Throughout this study we
refer to size 10 as the small input and size 100 as the large.

TableI shows various characteristics of the benchmarks used in this study. Total size and static class
count are given as well as dynamic counts, or the number of used classes, for the two inputs. In addition,
compilation time (CT) and execution time (ET), in seconds, using the Jalape˜no optimizing and the fast
baseline compilers are shown for each input. The compilation time includes the time to compile only
the class files that were used. Despite repeated execution, some noise occurs in the collected results.
For example, the DB data shows that the compile time for the small input is 0.2 seconds slower than
that for the large, even though both inputs compile the same classes. The variance is due to system side
effects, e.g., files system service interruptions.

LAZY COMPILATION

Dynamic class loading in Java loads class files as they are required by the execution on demand.
Using Just-In-Time (JIT) compilation, each method is compiled upon initial invocation. We refer to

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

722 C. J. KRINTZET AL.

this method-level approach as lazy compilation. Lazy compilation is used in most dynamic compilation
systems [1,3,11,19].

An alternative approach is eager compilation. Instead of compiling a single method at a time, an
entire class file is compiled when it is first accessed. Prior to this study, the Jalape˜no virtual machine
only used eager compilation. In this section, we describe our experiences with, and the implementation
of, lazy compilation in Jalape˜no. As a result of this work, both eager and lazy compilation were made
available in Jalape˜no; lazy compilation has become the default. More importantly, with this study we
empirically quantify the performance differences between eager and lazy compilation.

We implemented eager compilation in Jalape˜no for its reduced complexity and potential benefits.
First, eager compilation reduces the overhead caused by switching between execution and compilation.
Switching may decrease application memory performance by polluting the cache during compiler
operation. If all of the methods in a class file are used during execution, eager compilation results in
compilation of the same methods and substantially less switching overhead. Second, eager compilation
can also potentially improve execution performance since it simplifies interprocedural analysis and
optimization by ensuring that all methods of a class are analyzed before any of them are compiled.

However, eager compilation increases the time required by class file loading since the entire class file
is compiled before execution continues. This delay is experienced the first time each class is referenced.
In some cases, it may take seconds to compile a class if high optimization levels are used, affecting
a user’s perception of the application performance. In addition, for some applications, many methods
may be compiled and optimized but never invoked, leading to unnecessary compilation time and code
bloat. It is unclear whether lazy or eager compilation results in the best overall performance. This study
empirically determines the answer. To our knowledge, no such study has yet been performed.

Implementation of lazy compilation

As part of loading a class file in Jalape˜no, entries for each method declared by the class are created in
the class virtual function table and/or a static method table. These entries are the code addresses that
should be jumped to when one of the methods is invoked. In eager compilation, these addresses are
simply the first instruction of the machine code produced by compiling each method. To implement lazy
compilation, we instead initialize all virtual function table and static method table entries for the class
to refer to a single, globally shared stub¶. When invoked, the stub will identify the method the caller
is actually trying to invoke, initiate compilation of the target method as necessary‖, update the table
through which the stub was invoked to refer to the real compiled method, and finally, resume execution
by invoking the target method. Our implementation of lazy compilation is somewhat similar to the
backpatching done by the Jalape˜no baseline compiler to implement dynamic linking [20] and shares
some of the same low-level implementation mechanisms (notably, special compilation of ‘dynamic

¶Note that using a single globally shared stub complicates the implementation of the ‘method test’ used by the optimizing
compiler to perform guarded inlinings of non-final virtual methods. This test relies on the invariant that pointer equality of target
instructions implies that the source-level target methods are equal. Therefore, when the method test is being used for guarded
inlining, the virtual function tables are initialized with unique trampolines that jump to the globally shared stub.
‖Because we lazily update virtual function tables on a per-class basis, it is possible that the target method has already been
compiled but that some virtual function tables have not yet been updated to remove the stub method.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 723

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

Pe
rc

en
t R

ed
uc

tio
n

in
 N

um
be

r
of

 M
et

ho
ds

 C
om

pi
le

d Method Count Reduction
Optimizing compiler / Large Input

(132/279)(127/268)
(267/525)

(806/1266)
(521/859)

(266/501)
(353/616)

Figure 2. Per cent reduction in the number of methods required for eager compilation using lazy compilation.
Above the bars, we include the the number of methods compiled over the total number of methods. We only
include data for the large input since the number of used methods is similar across inputs for the Spec JVM98
benchmarks. In addition these numbers are typical regardless of which compiler, optimizing or baseline, is used.

bridge’ methods to ensure that both volatile and non-volatile registers are saved by the callee). After
the stub method execution completes, all future invocations of the same class and method pair will
jump directly to the actual, compiled method.

Lazy compilation results

To gather our results using this lazy approach, we time the compilation using internal Jalape˜no
performance timers. Whenever a compiler is invoked, the timer is started; the timer is stopped once
compilation completes. To measure the execution time of the program, we use the time reported by
a wrapper program called SpecApplication.class distributed with the Spec JVM98 programs [18].
Programs are executed repeatedly in succession, and timings of the execution are made separately.

To analyze the effectiveness of lazy compilation we first compare the total number of methods
compiled with and without lazy compilation. Figure2 depicts the per cent reduction in the number
of methods compiled using the large input. The numbers are very similar for the small input since
the total number of methods used is similar in both inputs. Above each bar is the number of methods
compiled lazily, shown to the left of the slash, and eagerly, shown to the right of slash. On average,
lazy compilation compiles 57% fewer methods than eager compilation.

To understand the impact of lazy compilation in terms of reduction in compilation overhead, we
measured compilation time in Jalape˜no with and without lazy compilation. Figure3 shows the per cent
reduction in compilation time due to lazy compilation in relationship to eager compilation for both
the optimizing compiler, shown in the left graph, and baseline compiler, shown in the right graph, for
the large input. The data shows that lazy compilation substantially reduces compilation time for either

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

724 C. J. KRINTZET AL.

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

P
er

ce
nt

 R
ed

uc
ti

on
 in

 E
ag

er
 C

om
pi

le
 T

im
e Compile Time Reduction

Optimizing compiler / Large Input

33
39

26

16

45

27 29

Compress DB Jack Javac Jess Mpeg Average
0

20

40

60

80

100

P
er

ce
nt

 R
ed

uc
ti

on
 in

 E
ag

er
 C

om
pi

le
 T

im
e Compile Time Reduction

Baseline compiler / Large Input

10

70

45

33
27

40

50

Figure 3. Reduction in compilation time due to lazy compilation. The per cent reduction is shown above each
bar explicitly. The top graph shows the reduction in compilation time over eager compilation for the optimizing
compiler and the bottom graph shows the reduction for the baseline compiler. Since the results are similar for the

small and large inputs, we only report data for the large input here.

compiler. On average, for the optimizing compiler, 29% of the compilation overhead is eliminated.
Using the baseline compiler, on average 50% is eliminated. Since methods require varying amounts
of time for optimization (depending upon method size and complexity), the relationship between the
reduction in number of methods compiled and compilation time is not proportional.

TableII provides the raw execution and compilation times with and without lazy compilation using
the optimizing compiler for both inputs. The data in this table includes compilation times used in
Figure3 as well as execution times. Data for the baseline compiler is not shown because compilation
overhead is a very small percentage of total execution time, and thus the 50% reduction in compilation
time only results in a 1% reduction in total time. Columns 2 through 6 are for the small input and
7 through 11 are for the large. The sixth and eleventh columns, labeled ‘Ideal’ contain the execution
time alone for batch-compiled applications.Batch Compilationis off-line compilation of applications

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 725

Table II. Raw data: execution (ET) and compile (CT) times in seconds with and without lazy compilation
using the optimizing compiler. The sixth and eleventh columns contains the benchmark execution time
when the application is batch compiled off-line. Batch compilation (Ideal) eliminates dynamic linking
code from the compiled application and enables more effective inlining. Columns 2 through 6 are
execution and compile times for the small input and columns 7 through 11 are for the large input.

For each input, times for both the eager and lazy approaches are given.

Small (s) Large (s)

Eager Lazy Eager LazyIdeal Ideal
Benchmark ET CT ET CT ET ET CT ET CT ET

Compress 7.4 8.2 5.3 5.4 5.3 84.0 8.1 58.3 5.4 58.3
DB 1.9 8.2 1.9 5.0 1.7 102.7 8.0 98.8 4.9 98.8
Jack 9.9 16.0 9.4 11.6 9.1 84.3 16.0 80.1 11.8 77.6
Javac 2.0 38.6 2.0 31.2 1.9 66.3 38.5 68.1 32.3 62.6
Jess 2.5 27.2 1.8 14.7 1.8 45.2 27.6 38.4 15.1 37.9
Mpeg 7.3 15.9 6.7 11.7 5.4 71.3 15.9 61.7 11.6 51.3

Average 5.2 19.0 4.5 13.3 4.2 75.6 19.0 67.6 13.5 64.4

in their entirety. We include this number as a reference to a lower bound on the execution time of
programs given the current implementation of the Jalape˜no optimizing compiler. Batch compilation
is not restricted by the semantics of dynamic class file loading; information about the entire program
can be exploited at compile time. In particular all methods are available for inlining and all offsets are
known at compile time.

Columns 2 and 3, and 7 and 8, are the respective execution and compile times for eager compilation.
Columns 4 and 5, and 9 and 10, show the same for the lazy approach. In addition to reducing
compilation overhead, the data shows that lazy compilation also significantly reduces execution time
when compared to eager compilation. This reduction in execution time was caused by the direct and
indirect costs of dynamic linking. In the following section, we provide background on dynamic linking
and explain the unexpected improvement in optimized execution time enabled by lazy compilation.

The impact of dynamic linking

Generating the compiled code sequences for certain Java bytecodes, e.g.invokevirtual or
putfield, requires that certain key constants, such as the offset of a method in the virtual function
table or the offset of a field in an object, be available at compile time. However, due to dynamic class
loading, these constants may be unknown at compile time: this occurs when the method being compiled
refers to a method or field of a class that has not yet been loaded. When this happens, the compiler is
forced to emit code that when executed, performs any necessary class loading thus making the needed
offsets available, and then performs the desired method invocation or field access. Furthermore, if a call
site is dynamically linked because the callee method belongs to an unloaded class, optimizations such

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

726 C. J. KRINTZET AL.

as inlining cannot be performed. In some cases, this indirect cost of missed optimization opportunities
can be quite substantial.

Dynamic linking can also directly impact program performance. A well-known approach for
dynamic linking [21,22] is to introduce a level of indirection by using lookup tables to maintain offset
information. This table-based approach is used by the Jalape˜no optimizing compiler. When it compiles
a dynamically linked site, the optimizing compiler emits a code sequence that, when executed, loads
the missing offset from a table maintained by the Jalape˜no class loader∗∗. The loaded offset is checked
for validity; if it is valid it can be used to index into the virtual function table or object to complete
the desired operation. If the offset is invalid, then a runtime system routine is invoked to perform the
required class loading updating the offset table in the process, and execution resumes at the beginning
of the dynamically linked site by reloading the offset value from the table. The original compiled code
is never modified. This scheme is very simple and, perhaps more importantly, avoids the need for self-
modifying code that entails complex and expensive synchronization sequences on SMPs with relaxed
memory models such as the PowerPC machine used in our experiments. The tradeoff of simplicity is
the cost of validity checking: subsequent executions of dynamically linked sites incur a four-instruction
overhead††.

If dynamically linked sites are expected to be very frequently executed, then this per-execution
overhead may be unacceptable. Therefore, an alternative approach based on backpatching, or self-
modifying code, can be used [20]. In this scheme, the compiler emits a code sequence that when
executed invokes a runtime system routine that performs any necessary class loading, overwrites
the dynamically linked sites with the machine code the compiler would have originally emitted if
the offsets had been available, and resumes execution with the first instruction of the backpatched,
or overwritten, code. With backpatching, there is an extremely high cost (aggravated by the
synchronization and memory barriers required on the PowerPC) the first time each dynamically linked
site is executed, but the second and all subsequent executions of the site incur no overhead.

The Jalape˜no optimizing compiler used in this paper uses the table-based approach. This design
decision was mainly driven by the need to support type-accurate garbage collection (GC). As in other
systems that support type-accurate GC, compilers must produce mapping information at each GC-safe
point detailing which registers and stack-frame offsets contain pointers. By definition, all program
points at which an allocation may occur, either directly or indirectly, must be GC-safe points, since the
allocation may trigger a GC. Because allocation will occur during class loading, all dynamically linked
sites must also be GC-safe points. If the optimizing compiler used backpatching, it would actually need
to generate two GC-maps for each dynamically linked site: one that described the initial code sequence
and one that described the backpatched code. Although the two maps would contain very similar
information, both are needed since the GC-safe point in the initial and backpatched code sequences are
at different offsets in the machine code array. In practice, it turned out to be burdensome to modify the
optimizing compiler’s GC-map generation module to produce multiple maps for a single intermediate
language instruction, so the issue was avoided by using the table-based approach which only requires
one GC-map for a dynamically linked site.

∗∗All entries in the table are initialized to zero, since in Jalape˜no all valid offsets will be non-zero.
††The four additional instructions executed are two dependent loads, a compare and a branch.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 727

Table III. Dynamic execution count of dynamically linked sites. Columns 2–4
are for the small input and 5–7 are for the large. Columns 2 and 5 give the counts
in 100 000s of executed sites that were dynamically linked using the optimizing
compiler. Columns 3 and 6 are the counts when lazy compilation is used and

Columns 4 and 7 show the per cent reduction.

Small Large

×100 000 ×100 000
Per cent Per cent

Benchmark Eager Lazy reduced Eager Lazy reduced

Compress 492 3 99 6202 3 100
DB 12 3 75 455 4 99
Jack 32 28 13 71 51 28
Javac 27 17 37 480 33 93
Jess 64 7 89 790 8 99
Mpeg 133 5 96 1547 6 100

Average 127 11 92 1591 18 99

Since class files are not changed once loaded, we are able to increase the probability that an accessed
class will be resolved at the time the referring method is compiled with the delayed compilation of the
lazy approach. TableIII shows the number of times dynamically linked sites are executed with eager
and lazy compilation. On average, code compiled lazily executes through dynamically linked sites
92% fewer times than eager compilation for the small input and 99% fewer times for the large input.
Although the reduction in direct dynamic linking overhead can be quite substantial, e.g. roughly 25
million executed instructions oncompress with the large input, the missed inlining opportunities
are even more important. For example, more than 99% of the executed dynamically linked sites in the
eager version ofcompress are calls to very small methods that are inlined in the lazy version. Thus,
the bulk of the 25 second reduction incompress execution time as shown in TableII is due to the
direct and indirect benefits of inlining, and not only to the elimination of the direct dynamic linking
overhead. Similar inlining benefits also occur inmpegaudio .

The effect of lazy compilation on total time is summarized in Figure4. The graph shows the relative
effect by lazy compilation both on execution time as well as compilation time using the optimizing
compiler. The left graph is for the small input and the right graph is for the large input. The top, dark-
colored portion of each bar represents compilation time, the bottom light-colored portion represents
execution time. A pair of bi-colored bars is given for each benchmark. The first bar of the pair results
from using the eager approach; the second bar from lazy compilation. Lazy compilation reduces both
compilation and execution time significantly when compared to eager compilation. On average, lazy
compilation reduces total time by 26% for the small input and 14% for the large. Execution time alone
is reduced by 13% and 11% on average for each input, respectively, since lazy compilation greatly
reduces both indirect and direct costs of dynamic linking.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

728 C. J. KRINTZET AL.

Compress DB Jack Javac Jess Mpeg Average
0

10

20

30

40

50

 T
ot

al
 T

im
e

In
 S

ec
on

d
s

Total Time - Small Input
Eager Compilation Time
Eager Execution Time
Lazy Compilation Time
Lazy Execution Time

11

 7

21

33

16
18 18

16

10

26

41

30

23 24

Compress DB Jack Javac Jess Mpeg Average
0

50

100

150

 T
ot

al
 T

im
e

In
 S

ec
on

d
s

Total Time - Large Input
Eager Compilation Time
Eager Execution Time
Lazy Compilation Time
Lazy Execution Time

64

104
92

100

54

73
81

92

111
100 105

73

87
95

Figure 4. Overall impact of lazy compilation application performance. The left bar results from using eager
compilation, the right bar lazy. The top, dark colored, portion of each bar is compilation time, the bottom,
light-colored execution. The number above each bar is the total time in seconds required for both execution and

compilation time. Lazy compilation reduces both execution time as well as compilation time.

BACKGROUND COMPILATION

In this section, we describe background compilation, a technique that reduces compilation overhead
by overlapping compilation with computation. With lazy compilation, each method is compiled upon
initial invocation. However, the execution characteristics of the method may not warrant its, possibly
expensive, optimization. In addition, this on-demand compilation in an interactive environment may
lead to inefficiency. In environments characterized by user interaction, the CPU often remains idle
waiting for user input. Furthermore, the future availability of systems built using single-chip SMPs

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 729

makes it even more likely that idle CPU cycles will intermittently be available. The goal of background
compilation is to extend lazy compilation to further mask compilation overhead by using idle cycles to
perform optimization.

Implementation of background compilation

Background compilation consists of two parts. The first occurs during application execution: when a
method is first invoked, it is lazily compiled using a fast, non-optimizing compiler or the method is
interpreted. This allows the method to begin executing as soon as possible. However, since this type of
compilation can result in poor execution performance, methods which are vital to overall application
performance should be optimized as soon as possible.

This is achieved with the second part of the background compilation by using an OCT. At startup
we initiate a system thread that is used solely for optimizing methods. The OCT is presented with a list
of methods that are predicted to be the most important methods to optimize. The OCT processes one
method at a time, checking whether or not the class in which it is defined has been loaded. If it has, then
the method is optimized. Once compiled, the code returned from the optimizing compiler is used to
replace the baseline compiled code or the lazy compilation stub if the method has not yet been baseline
compiled. Future invocations of this method will then use the optimized version. If existing stack
frames reference previously compiled code, then this code will be used until the referenced invocation
returns.

To predict which methods should be optimized by the OCT, we use profiles of the execution time
spent in a method. To generate these profiles for our experimental results, we execute the application
off-line and accumulate measurements of the amount of time spent in a method, each time it is executed.
We gather this timing data for executions using two inputs. The small input (as described in the section
Experimental methodology) is commonly referred to as the training set. The profile information from
the large input, or testing set, is used for the same-input results presented in this paper. That is, we use
the profile from the large input to guide priority setting of methods when the large input is executed.
These results establish an upper limit on the potential benefit from our techniques, since we have
perfect information about the priorities of methods. For cross-input results, we use the profile from
the training set to establish priorities of methods when the testing set is used for execution. These
results, show how well the small input predicts the time spent in methods when executing the large
input and how performance will be impacted when are profiles are imperfect. If the small input is not
representative of the large, then there may be a substantial discrepancy between the performance of
same-input and cross-input results

At JVM startup, the profiled list of methods and the time spent in each is read into memory and
processed. Each method is assigned a global priority ranking with respect to all other methods executed
by the application. We then record the global priorities with the methods in each class. As each class
is loaded, any methods of the class that have been prioritized are inserted into the priority queue of
the OCT for eventual optimization. If the priority queue becomes empty, the OCT sleeps until class
loading causes new methods to be added.

This model extends to a dynamic, mobile environment in which class files may be uploaded into the
Jalape˜no server from different sources. At each source, profiles are generated and methods within each
class are prioritized prior to transfer, as described above. Often, execution of an application accesses
library files that are not transferred as part of the application but are dynamically loaded from the

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

730 C. J. KRINTZET AL.

machine on which the program is executed. Information about high priority methods in these classes is
sent to the destination with the application, in the form of annotations. Annotation is a mechanism for
including additional information in a class file. For background compilation, each application method
contains an annotation consisting of its priority as well as the name and priority of any library, or
other non-transfered methods. When a class is loaded by a Jalape˜no server, the annotated priority for
important methods guides insertion into the global priority queue of the OCT. Bytecode annotations of
method priorities are inserted into the bytecode as method attributes using a bytecode re-writing tool.
A detailed study of using annotations to reduce dynamic optimization time can be found in [23].

We currently use a single OCT that synchronously compiles prioritized methods. When uncompiled
methods are invoked, they are compiled using the baseline compiler. We may be able to gain additional
performance benefits through the use of multiple OCTs once the Jalape˜no optimizing compiler is made
re-entrant. In this case, the baseline compiler will still be used to compile newly-invoked methods so
that optimization decisions are made solely by the OCT system. We estimate that having multiple OCTs
will provide additional performance benefits in certain cases. For example, currently the OCT uses one
processor separate from the one used by the application thread. If there are additional processors or
idle cycles, more compilation can be performed using multiple OCTs. The system should be adaptive
however, so that the application is not starved for resources. That is, when the application is in need
of processing cycles, the OCT activity should be reduced so as to maintain acceptable application
performance while continuing to compile high-priority methods, even if it must scale back to a single
thread. This implementation and the associated analysis to achieve a beneficial performance balance is
part of future work.

Background compilation results

In this section,total timerefers to the combination of compilation, execution, and all other overheads.
The total time associated with background compilation includes:

• baseline, or fast, compilation time of executed methods;
• execution time from methods with baseline-compiled code;
• execution time from methods invoked following code replacement by the optimizing background

thread; and
• thread management overhead.

The examples in Figure5 illustrate the components that must be measured as part of total time for
a different scenarios involving a method, Method1. In the first scenario, Method1 is invoked, baseline
compiled, and executed. Following its initial execution the OCT encounters Method1 in its list and
optimizes it. By the time it is able to replace Method1’s baseline compiled code, Method1 has executed
a second time. For the third invocation, however, the OCT has replaced the baseline compiled code and
Method1 executes using optimized code. Total time for this scenario includes baseline compilation
time of Method1 and execution time for two Method1 invocations using baseline compiled code and
one using optimized code.

In the second scenario, the OCT encounters, optimizes and replaces Method1 before it is first
invoked. This implies that the class containing Method1 has been loaded prior to OCT optimization of
Method1. The OCT replaces a stub that is in place for Method1 with the optimized code. When this
occurs the use of background compilation can also reduce the memory footprint of the Jalape˜no VM

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 731

Background
Thread

Application
Thread

Time

Execute
Method1

BG-Opt
Compile
Method1

BG-Replace
Method1

(A)

(B)

Initially Invoke
and Baseline

Compile
Method1

Background
Thread

Application
Thread

Time

Execute
Method1

BG-Opt
Compile
Method1

BG-Replace
Method1

(B)

Initially
Invoke

Method1

Figure 5. Example scenarios of background compilation. In the top figure, when Method 1 is first invoked, it is
baseline-compiled while execution is suspended. Baseline compilation time is represented by (A). Execution of
Method1 proceeds using baseline-compiled code (dotted arrow). Next, the optimizing compilation thread (OCT)
optimizes Method1 in the background; this compilation time is shown by (B). Meanwhile, Method1 is invoked
and executed a second time with the baseline-compiled code before the OCT is able to replace the baseline-
compiled code with the optimized version. Once replaced (represented by a solid line), Method1 executes using
the optimized version of the code. In the second scenario, the OCT is able to compile and replace Method1 before

any invocations of Method1 occur; therefore, all executions use the optimized code.

and the executing program since baseline code is not kept in memory. All executions of Method1 use
the optimized code. Total time for this scenario includes only the execution time for three invocations
of Method1 using optimized code.

To measure the effectiveness of background compilation, we provide results for the total time
required for execution and compilation using this approach. Figures6 and7 compare total time with
background compilation to total time for the eager, lazy, and ideal configurations results from TableII
(for the small and large input, respectively). Four bars (with absolute total time in seconds above each
bar) represent the total time required for each approach for a given benchmark. The first bar shows
results from eager and the second bar from the lazy approach. The third bar is the total time using
background compilation and the fourth bar is ‘ideal’ execution time alone. Ideal execution time results
from a batch-compiled application (complete information about the application enables more effective
optimization and removes all dynamic linking, and there is no compilation cost).

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

732 C. J. KRINTZET AL.

Compress DB Jack Javac Jess Mpeg Average
0

10

20

30

40

50

 T
ot

al
 T

im
e

In
 S

ec
on

ds

Total Time - Small InputEager Total Time
Lazy Total Time
Background Total Time
Ideal Execution Time

16

10

26

41

30

23 24

11

 7

21

33

16
18 18

 5
 2

10

 3 2

 8
 5 5

 2

 9

 2 2
 5 4

Figure 6. Summary of total time (in seconds) for all approaches including background compilation for the small
input. Total time includes both compilation and execution time. Four bars are given for each input. The first three
bars show total time using eager compilation, lazy compilation, and background compilation, respectively. The
fourth bar shows ‘ideal’ execution time alone (from execution of off-line compiled benchmarks). Absolute total

time in seconds appears above each bar.

Compress DB Jack Javac Jess Mpeg Average
0

50

100

150

 T
ot

al
 T

im
e

In
 S

ec
on

ds

Total Time - Large InputEager Total Time
Lazy Total Time
Background Total Time
Ideal Execution Time

92

111

100
105

73

87
95

64

104

92
100

54

73
81

58

99

83
74

42

63
70

58

99

78

63

38

51

64

Figure 7. Summary of total time (in seconds) for all approaches including background compilation for the large
input. Total time includes both compilation and execution time. Four bars are given for each input. The first three
bars show total time using eager compilation, lazy compilation, and background compilation, respectively. The
fourth bar shows ‘ideal’ execution time alone (from execution of off-line compiled benchmarks). Absolute total

time in seconds appears above each bar.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 733

The summary figures show that background compilation eliminates the effect of almost all of the
compilation overhead that remains when using the lazy approach. On average, background compilation
provides an additional 71% average reduction in total time over lazy compilation for the small
input (14% for the large). On average there are 151 fewer methods optimized by the OCT over
lazy compilation. In comparison with eager compilation, background compilation reduces the total
time (execution plus compilation) by 79% and 26% for the small and large input, respectively. The
percentage of total time due to compilation is 79% and 20%; hence background compilation reduces
total time by more than just the compilation overhead. This occurs since background compilation
extends lazy compilation and thereby enables additional optimization and avoids the dynamic linking
effects (as discussed in the section Lazy compilation). That is, when the OCT optimizes each method,
most required symbols are resolved.

Most important, however, are the similarities between background and ‘ideal’ execution time. Total
time using the background approach is within 21 and 8% (on average for the small and large inputs,
respectively) of the ideal execution time. Our background compilation approach therefore, correctly
identifies performance-critical methods and achieves highly optimized execution times while masking
almost all compilation overhead.

RELATED WORK

Our work reduces the compilation overhead associated with dynamic compilation. Much research
has gone into dynamic compilation systems for both object-oriented [1,6,15] and non-object-
oriented [8,9,12] languages. Our approach is applicable to other dynamic compilation systems, and
can be used to reduce their compilation overhead.

Lazy compilation, as mentioned previously, is used in most JIT compilers [1,3,11,13,19] to reduce
the overhead of dynamic compilation. However, a quantitative comparison of the associated trade-offs
between lazy and eager compilation, to our knowledge, has not yet been presented. In addition, we
provide a detailed description of the implementation and the interesting effects on optimization due to
lazy compilation in the Jalape˜no VM.

Most closely related to our background compilation work is that by H¨olzle and Ungar [24]. They
describe an adaptive compilation system for the Self language that uses a fast, non-optimizing compiler
and a slow, optimizing compiler like those used in Jalape˜no. The fast compiler is used for all method
invocations to improve program responsiveness. Program ‘hotspots’ are then recompiled and optimized
as discovered. Hotspots are methods invoked more times than an arbitrary threshold. When hotspots are
discovered, execution is interrupted and the method, with possibly an entire call chain, is recompiled
and replaced with optimized versions. In comparison, background compilation uses off-line profile
information to determine which methods to optimize and never causes stalls in execution due to
optimization. In addition, background compilation can potentially eliminate all compilation overhead
for some methods since method stubs for lazy compilation of loaded, but as yet unexecuted, methods
can be replaced with the optimized code prior to initial invocation of the methods. That is, for methods
for which optimization is vital to overall application performance, no threshold of invocation count
or execution time has to be reached for optimization to be initiated. This is an advantage over all
dynamic, adaptive, compilation environments. Another advantage is that our techniques introduce no
runtime overhead due to dynamic measurement. Lastly, we perform optimization on a separate thread

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

734 C. J. KRINTZET AL.

of execution and exploit idle processors; the combination of which, to our knowledge, has not been
examined and published prior.

In other work, Arnold,et al. [25] uses profiles to guide static compilation. The goal of this project
was to determine the performance potential of dynamic, adaptive compilation based on selective
optimization in a feedback-based system. In comparison, we incorporate similar, off-line profiles but
use them to drive on-line compilation using background compilation.

Another project that attempts to improve program responsiveness in the presence of dynamic loading
and compilation is continuous compilation [2]. Continuous compilation overlaps interpretation with
JIT compilation. A method, when first invoked, is interpreted. At the same time, it is compiled on
a separate thread so that it can be executed on future invocations. They extend this to Smart JIT
compilation: on a single thread, interpret or JIT compile a method upon first invocation. The choice
between the two is made using profile or dynamic information. Our background compilation approach
uses a separate thread and processor to selectively background compile only methods predicted
as important for application performance. Only a single processor is used in this prior work and
only a single thread in Smart JIT compilation. Our infrastructure uses a compile-only approach, so
interpretation in our project is replaced by fast compilation. Interpretation and JIT compilation overlap
is also used in the Symantec Visual Cafe JIT compiler, a Win32 JIT production compiler delivered with
some 1.1.x versions of Sun Microsystems Inc. Java Development Kits [26].

Another form of background compilation is described in the HotSpot compiler specification [1] from
Sun Microsystems. A separate thread is used for compilation which is interrupted once a a threshold of
time has been spent compiling a single method. Another thread then interprets the method to reduce the
effect of the compilation overhead for the method. This system differs from Jalape˜no in that no profile
information is used and the documentation does not provide measurement of the impact of background
compilation as a separate process.

Lastly, we previously proposed prefetching class files on separate threads to overlap the overhead
associated with network transfer in [27] with execution. Network latency increases the delay during
class file loading much like compilation overhead does. In this prior work, we show that by premature
access and transfer of a class file by a separate, background thread during application execution, we
are able to mask the transfer delay and reduce the time the application stalls for class loading of non-
local class files. As in background compilation, we generate profiles off-line but use them to determine
the order in which class files are first accessed. Background compilation differs in that we attempt to
overlap compilation with execution; hence these techniques are complementary and can be used in
coordination to reduce both transfer and compilation overhead.

FUTURE DIRECTIONS

As part of future work, we will extend our background compilation approach to further reduce the
effect of compilation overhead. We plan to annotate class files so that when non-local class files are
loaded by Jalape˜no, a profile list can be constructed, eliminating the need for the OCT to read in a list
from the local file system. In addition, we plan to extend our single OCT approach to multiple OCTs.
That is, we will include the option of using multiple available processors for background optimization.
Currently, Jalape˜no’s optimizing compiler is not reentrant; only one thread can use the optimizing
compiler at a time. Once this changes, our background optimization will be used to exploit multiple idle

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 735

processors. Lastly, as code quality of baseline, or fast, compilers improves, the discrepancy between
baseline execution time and optimized execution may decrease. However, compilation overhead will
remain. We may be able to use background compilation to mask compile time by the baseline compiler
if it becomes a more substantial proportion of total time. To do this we can prefetch and background
compile methods that we predict will be used next.

One limitation imposed on background compilation by the current Jalape˜no implementation is lack
of a mechanism for setting thread priorities. Currently a thread is executed on its own processor and the
application thread runs on a separate processor. With the current infrastructure, using a single processor,
we are unable to only compile when the primary thread(s) of execution is idle, since each thread is given
an equal length time-slice and is not interrupted. The application thread and the OCT must contend
equivalently for resources restricting potential for improvement on a single processor. We believe that
for interactive programs, execution on a single processor can benefit from background compilation
since optimization can be performed when the application suspends waiting for user input. Thread
priorities are also required to provide a realistic evaluation of background compilation with multi-
threaded applications. It is for this reason that we only evaluate the effect of background compilation
on single-threaded benchmarks in this study, hence the Spec benchmarkmtrt is not included. Once
thread priorities are implemented as part of future work, we will empirically evaluate the tradeoffs
required for background compilation of multi-threaded applications as well.

Also as part of future work, we plan to compare lazy and background compilation with
adaptive optimization. In such systems, measurements of application execution behavior, e.g., method
invocation counts or statistical sampling, are taken to determine when to optimize a method. The
adaptive optimization functionality was recently added to the Jalape˜no virtual machine [28], building
on the lazy compilation and background compilation ideas presented in this paper. As shown in this
paper, lazy compilation is effective in reducing the number of dynamically linked call sites. Adaptive
optimization can go one step further than lazy compilation and use dynamic context information to
generate better-quality specialized code for the call sites that are not dynamically linked.

Adaptive optimization also includes background compilation i.e., compilation of selected methods
in the background, concurrent with application execution. On-line profile information is used to guide
selection of methods for optimized compilation in adaptive optimization. We believe that background
compilation driven by off-line profiling (as described in this paper) can be used as an additional
improvement to adaptive optimization. Off-line profile information can trigger background compilation
of critical methods earlier than on-line profiling. For example, the use of off-line profile information
can completely eliminate compilation delays for any performance-critical method that is compiled and
optimized in the background before its first invocation. Current adaptive compilation environments
require that methods are initially baseline-compiled or interpreted a number of times before they
are dynamically optimized [2,24,25,29]. We plan to study the relationship between background
compilation and adaptive optimization as part of future work.

Finally, there is an important issue that needs to be addressed by all dynamic compilation schemes
viz., reclaiming space used by code that is no longer required. The Jalape˜no virtual machine is an ideal
infrastructure for exploring this possibility in future work, since the compiled code for each method is
allocated as a separate object in the Jalape˜no heap. The key extensions that would be required are to
add information to the GC maps on which stack/register locations contain code addresses, and provide
support for identifying the code object that contains a given code address. Code addresses are like

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

736 C. J. KRINTZET AL.

interior pointers which will need to be supported anyway as more aggressive optimizations are added
to the Jalape˜no optimizing compiler.

CONCLUSION

In this work, we focus on reducing the effect of compilation overhead imposed by dynamic
compilation. We first quantitatively compare the trade-offs between eager, or class-level, and lazy,
or method-level, compilation. Lazy compilation reduces the number of methods compiled, thereby
reducing compilation overhead. We also introduce and evaluate background compilation using an SMP,
an approach that optimizes important methods on a background thread to mask compilation overhead
due to optimization.

The infrastructure we use to examine the impact of our compilation strategies is the Jalape˜no Virtual
Machine, a compile-only execution environment being developed at IBM T. J. Watson Research Center.
Currently in Jalape˜no two compilers are used, the fast baseline compiler that produces code with
execution speeds of interpreted versions, and the optimizing compiler, a slow but highly optimizing
compiler that produces code with execution speeds two to eight times faster than the code produced
by the baseline compiler. Our goal was to design and implement optimizations that enable compilation
times of the baseline compiler and execution speeds of optimized code.

We first empirically quantify the effect of lazy compilation on both compilation time and execution
time. We show that lazy compilation requires 57% fewer methods be compiled on average than eager
compilation for each input of the benchmarks studied. In terms of compilation time, this equates to
approximately 30% reduction on average for either input, since the number of methods used between
inputs is relatively the same. In addition to reducing compilation overhead, lazy compilation also
improves execution time by greatly reducing the number of dynamically linked sites, thus avoiding
both the direct costs of dynamic linking and the indirect costs of missed optimization opportunities.
Lazy compilation reduces optimized execution time 13 and 10% on average for the small and large
input, respectively. In terms of total time, lazy compilation enables a 26 and 14% reduction over eager
compilation using the optimizing compiler. Jalape˜no, as a result of this work, uses lazy compilation by
default.

We also present a compilation approach that extends lazy compilation. Background compilation
masks the overhead incurred by compilation by overlapping it with useful work. With this optimization,
we use the Jalape˜no optimizing compiler on a background thread to compile only those methods we
predict as important for optimization. On the primary thread(s) of execution, the Jalape˜no baseline
compiler is used so that methods can begin executing much earlier than if they are optimized. The
background thread then replaces the baseline compiled method with an optimized version so that future
invocations of the method call the optimized version. Our results show that background compilation
achieves execution times of optimized code with compilation overhead of baseline compilation. On
average, background compilation effectively reduces total time by 79% and 26% for the small and
large input, respectively. When compared to lazy compilation, the background optimization reduces
total time of 71% for the small input and 14% for the large. We also show that background compilation
achieves the runtime performance of applications that are batch compiled, i.e. off-line optimization of
the entire application at once.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

REDUCING THE OVERHEAD OF DYNAMIC COMPILATION 737

The Java programming language provides an architecture-independent intermediate representation
that is and will continue to be exploited by the distributed execution of Internet-computingapplications.
In order for the execution of these applications to be practical, execution speeds must be fast and
overheads associated with execution, i.e., optimization, must not create performance bottlenecks.
Dynamic compilation enables state-of-the-art optimizations to improve the execution speeds of Java
programs, but also introduces compilation overhead due to optimization. Compilation approaches like
the ones presented here are important since they enable optimization while reducing the effect of
compilation overhead.

ACKNOWLEDGEMENTS

Chandra Krintz was supported by a co-op at the IBM T. J. Watson Research Center, and by NSF CAREER
grant No. CCR-9733278. We thank Derek Lieber for his contribution to the design and implementation of the
Lazy Compilation mechanism in the Jalape˜no virtual machine. Thanks also to the entire Jalape˜no team for their
contributions to the infrastructure used to obtain the experimental results reported in this paper. Finally, we are
grateful to the reviewers for their comments and suggestions on revising the paper.

REFERENCES

1. The Java Hotspot performance engine architecture. http://java.sun.com/products/hotspot/whitepaper.html.
2. Plezbert M, Cytron R. Does just in time= better late than never?Proceedings of the SIGPLAN’97 Conference on

Programming Language Design and Implementation, January 1997.
3. The Symantec just-in-time compiler. http://www.symantec.com/.
4. Gosling J, Joy B, Steele G.The Java Language Specification. Addison-Wesley, 1996.
5. Goldberg A, Robson D.Smalltalk-80: The Language and Its Implementation. Addison-Wesley, 1983. ISBN 0-201-11371-

6. http://users.ipa.net/˜ dwighth/smalltalk/bluebook/bluebookimp toc.html.
6. Ungar D, Smith R. Self: The power of simplicity.Proceedings OOPSLA ’87, December 1987; 227–242.
7. Alpern B, Attanasio CR, Barton JJ, Burke MG, Cheng P, Choi J-D, Cocchi A, Fink SJ, Grove D, Hind M, Hummel SF,

Lieber D, Litvinov V, Mergen MF, Ngo T, Russell JR, Sarkar V, Serrano MJ, Shepherd MJ, Smith SE, Sreedhar VC,
Srinivasan H, Whaley J. The Jalape˜no virtual machine.IBM Systems Journal2000;39(1):211–238.

8. Bala V, Duesterwald E, Banerjia S. Transparent dynamic optimization: The design and implementation of Dynamo.
Technical Report HPL-1999-78, HP Laboratories, 1999. http://www.hpl.hp.com/techreports/1999/HPL-1999-78.html.

9. Grant B, Mock M, Philipose M, Chambers C, Eggers S. Dyc: An expressive annotation-directed dynamic compiler for C.
Technical Report UW-CSE-97-03-03, 1997.Theoretical Computer Science.
http://www.cs.washington.edu/research/projects/unisw/DynComp/www/.

10. Kaffe—An open source Java virtual machine. http://www.kaffe.org/.
11. Krall A, Grafl R. Cacao—a 64 bit JavaVM just-in-time compiler.Concurrency: Practice and Experience1997;9(11):1017–

1030. http://www.complang.tuwien.ac.at/java/cacao/index.html.
12. Lee P, Leone M. Optimizing ML with run-time code generation.Proceedings of the ACM SIGPLAN ’96 Conference on

Programming Language Design and Implementation, May 1996; 137–148.
13. Suganuma T, Ogasawara T, Takeuchi M, Yasue T, Kawahito M, Ishizaki K, Komatsu H, Nakatani T. Overview of the IBM

Java just-in-time compiler.IBM Systems Journal2000;39(1).
14. Cierniak M, Li W. Optimizing Java bytecodes.Concurrency: Practice and Experience1997;9(6):427–444.
15. Burke M, Choi J, Fink S, Grove D, Hind M, Sarkar V, Serrano M, Shreedhar V, Srinivasan H, Whaley J. The Jalape˜no

dynamically optimizing compiler for Java.Proceedings of the ACM Java Grande Conference, June 1999.
16. Alpern B, Attanasio C, Barton J, Cocchi A, Hummel S, Lieber D, Ngo T, Mergen M, Shepherd J, Smith S. Implementing

Jalape˜no in Java.Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), November 1999.

17. Serrano M, Bordawekar R, Midkiff S, Gupta M. Quasi-static compilation in Java.Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), October 2000.

18. Spec jvm98 benchmarks. http://www.spec.org/osg/jvm98/.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

738 C. J. KRINTZET AL.

19. Latte: A fast and efficient Java VM just-in-time compiler. http://latte.snu.ac.kr/.
20. Alpern B, Charney M, Choi J, Cocchi A, Lieber D. Dynamic linking on a shared-memory multiprocessor.Proceedings of

the International Conference on Parallel Architectures and Compilation Techniques (PACT), October 1999.
21. Bash JL, Benjafield EG, Gandy ML. The Multics operating system—an overview of Multics as it is being developed.

Technical Report, Project MAC, MIT, Cambridge, MA. 1967.
22. Daley RC, Dennis JB. Virtual memory, processes, and sharing in MULTICS.Journal of Communications of the ACM,

1968;11(5):306–312.
23. Krintz C, Calder B. Using annotations to reduce dynamic optimization time.Technical Report UCSD-CS00-663, University

of California, San Diego, November 2000. http://www.ucsd.edu/users/calder/abstracts/UCSD-CSE00-663.html.
24. Hölzle U, Ungar D. A third-generation SELF implementation: Reconciling responsiveness with performance.Proceedings

of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
October 1994.

25. Arnold M, Hind M, Ryder B. An empirical study of selective optimization.Proceedings of the International Workshop on
Languages and Compilers for Parallel Computing (LCPC), August 2000.

26. Sun Microsystems JIT Compiler. http://java.sun.com.
27. Krintz C, Calder B, H¨olzle U. Reducing transfer delay using Java class file splitting and prefetching.Proceedings of

the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
November 1999.

28. Arnold M, Fink SJ, Grove D, Hind M, Sweeney P. Adaptive optimization in the Jalaepe˜no JVM.Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), October 2000.

29. Cierniak M, Lueh G, Stichnoth J. Practicing JUDO: Java under dynamic optimizations.Proceedings of the ACM SIGPLAN
’00 Conference on Programming Language Design and Implementation, June 2000.

Copyright 2001 John Wiley & Sons, Ltd. Softw. Pract. Exper.2001;31:717–738

	INTRODUCTION
	GENERAL METHODOLOGY
	The Jalape~no virtual machine
	Experimental methodology

	LAZY COMPILATION
	Implementation of lazy compilation

	Lazy compilation results
	The impact of dynamic linking
	BACKGROUND COMPILATION
	Implementation of background compilation
	Background compilation results

	RELATED WORK
	FUTURE DIRECTIONS
	CONCLUSION

