
Measuring E-Mail Header Injections on the World Wide Web
Sai Prashanth Chandramouli†, Pierre-Marie Bajan‡, Christopher Kruegel§

Giovanni Vigna§, Ziming Zhao†, Adam Doupé†, and Gail-Joon Ahn†
†Arizona State University, ‡IRT SystemX, §University of California, Santa Barbara

†{saipc, zzhao30, doupe, asu}@ahn.edu, ‡pierre-marie.bajan@irt-systemx.fr, §{chris, vigna}@cs.ucsb.edu

ABSTRACT
E-mail header injection vulnerability is a class of vulnerability that
can occur in web applications that use user input to construct e-mail
messages. E-mail header injection vulnerabilities exist in the built-
in e-mail functionality of the popular languages PHP, Java, Python,
and Ruby. With the proper injection string, this vulnerability can be
exploited to allow an attacker to inject additional headers, modify
existing headers, and alter the content of the e-mail.

While E-mail header injection vulnerabilities are known to the
community, and some commercial vulnerability scanners claim to
discover E-mail header injection vulnerabilities, they have never
been studied by the academic community. This paper presents a
scalable mechanism to automatically detect E-mail header injection
vulnerabilities and uses this mechanism to quantify the prevalence
of E-mail header injection vulnerabilities on the web. From crawling
23,553,796 URLs, we found 994 vulnerable URLs across 414 domains.
135 of these domains are in the Alexa top 1 million, and five of them
are in the top 20,000. 137 of the vulnerable domains are using anti-
spoofing mechanisms such as DKIM, SPF, or DMARC, and E-mail
header injection renders this protection useless. This work shows
that E-mail header injection vulnerabilities are widespread and
deserve future research attention.

CCS CONCEPTS
• Security and privacy→ Software and application security;
Web application security;

KEYWORDS
E-mail header injection, Software Security

1 INTRODUCTION
The World Wide Web has single-handedly brought about a change
in the way we use computers. The ubiquitous nature of the web
makes it possible for anyone to access information and services
anywhere and on multiple devices such as phones, laptops, TVs,
and cars. This access has ushered in an era of web applications
which depend on user input. While the rapid pace of development
has improved the speed of information dissemination, it comes at a
cost. As users move more and more of their personal and financial
information to web applications, attackers are responding by using
web application vulnerabilities to steal lucrative data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167308

Many common and well-known web application vulnerabilities,
such as SQL Injection and Cross-Site Scripting [41], are command
injection vulnerabilities [55], where malicious user input is used to
alter the structure of a command (SQL query and JavaScript code
respectively). Developers of web applications must use the correct
sanitization routine in all paths from user input to a command.

E-mail header injection vulnerabilities are a lesser-known com-
mand injection vulnerability. We verified that this vulnerability
exists in the implementation of the built-in e-mail functionality in
the popular languages PHP, Java, Python, and Ruby. The format
of e-mail messages is defined by the Simple Mail Transfer Proto-
col (SMTP) [48]. Each e-mail message is represented by a series of
headers separated by newlines, followed by the body content (sep-
arated from the headers by two newlines). Some of these headers
are mandatory (From, To, Date), but the headers could also include
other information such as the Subject, BCC, etc.

With the proper exploit injection string, E-mail header injection
vulnerabilities can be exploited by an attacker to inject additional
headers, modify existing headers, or alter the contents of the e-mail—
while still appearing to be from a legitimate source. E-mail header
injection exploits allow an attacker to perform e-mail spoofing, re-
sulting in phishing attacks that are sent from the actual e-mail server,
and thus bypass e-mail spoofing technologies, such as DKIM [12],
SPF [51], and DMARC [37].

While some command injection vulnerabilities have received
extensive attention from the research community, E-mail header in-
jection vulnerabilities have received little focus. In fact, the Acunetix
vulnerability scanner contains an AcuMonitor component which
claims to detect E-mail header injection vulnerabilities while scan-
ning [10]. Unfortunately, as a commercial product, little is known
about how AcuMonitor detects E-mail header injection vulnerabili-
ties.

To shed light on this little-studied vulnerability class, we describe
E-mail header injection vulnerabilities and measure E-mail header
injection vulnerabilities. To perform this measurement, we crawled
the web, extracted forms with e-mail fields, and injected them with
different payloads to infer the existence of an E-mail header injec-
tion vulnerability. We then automatically audited received e-mails
to see if any of the injected data was present. This allowed us to
classify whether a particular URL was vulnerable to the attack. Our
automated system works in a black-box manner, without looking at
the web application’s source code, and only analyzes the payloads
in the e-mails.

In summary, we make the following contributions:
• We develop a black-box approach to detect E-mail header
injection vulnerabilities in a web application.
• We develop an open-source system to crawl the web and
automatically detect E-mail header injection vulnerabilities.
• We use our system to crawl 23,553,796 URLs, and we find
994 URLs vulnerable to E-mail header injection across 414
domains.

https://doi.org/10.1145/3167132.3167308

SAC 2018, April 9–13, 2018, Pau, France S. Chandramouli, P. Bajan, C. Kruegel, G. Vigna, Z. Zhao, A. Doupé, and G. Ahn

1 $from = $_REQUEST['email '];
2 $subject = 'Hello XYZ';
3 $message = 'We need you to reset your password ';
4 $to = 'xyz@example.com';
5 $retValue = mail($to , $subject , $message , "From: $from");

Listing 1: PHP program with e-mail header injection
vulnerability.

CVE No. Affected Software Year
2002-1575 cgiemail 2004
2002-1771 FormMail 1.9 2005
2002-1917 Geeklog 1.35 2005
2005-0493 Biz Mail Form <=2.2 2005
2005-2854 thesitewizard.com 2005
2005-3883 PHP mb_send_mail 2005
2006-0631 Perl mailback.pl 2006
2006-0712 Squishdot 1.5.0 2006
2006-1225 Drupal 4.5.0-4.5.8 and 4.6.0-4.6.8 2006
2006-1305 Microsoft Outlook 2000, 2002-03 2006
2006-2159 Russcom Network 2006
2006-2943 CGI-RESCUE WebFORM 4.1 2006
2006-2944 CGI-RESCUE FORM2MAIL 1.21 2006
2006-3171 CS-Forum <=0.82 2006
2006-3473 Drupal Module <=1.8.2.2 2006
2006-4344 CGI-Rescue Mail 2006
2006-7020 phpwcms 1.2.5-DEV 2007
2006-7087 Dotdeb PHP 2007
2007-1718 PHP 4.0-4.4.6 and 5.0-5.2.1 2007
2007-1898 Jetbox CMS 2.1 2007
2007-1900 FILTER_VALIDATE_EMAIL PHP 2007
2007-2731 Jetbox CMS 2.1 2007
2008-2105 Bugzilla 2008
2009-1469 IceWarp 2009
2008-7281 OTRS - Open Ticket Request System 2011
2014-2957 Exim 2014
2015-8476 PHPMailer 2015
2016-4803 dotCMS 2016

Table 1: History of software found in Common
Vulnerabilities and Exposures database affected by e-mail

header injection vulnerability

• We perform detailed analyses on the domains found to be
vulnerable: finding their Alexa rankings, the technologies
used in such vulnerable domains, presence of e-mail spoofing
protection, presence of such domains on existing spam-lists,
and the ability to send malicious attachments.

2 BACKGROUND
E-mail header injection belongs to the class of command injection
vulnerabilities. However, unlike its more popular siblings, SQL
injection [18, 27, 50], Cross-Site Scripting [32, 35], or HTTP Header
Injection [33], relatively little research is available on E-mail header
injection vulnerabilities.

As with other command injection vulnerabilities, E-mail header
injection is caused by improper or nonexistent sanitization of user
input. If the program constructs e-mails from user input and fails
to check for the presence of e-mail headers, a malicious user can
control the headers of this particular e-mail. E-mail header injec-
tion vulnerabilities can be leveraged to enable malicious attacks,
including, but not limited to, spoofing or phishing.

2.1 History of E-mail header injection
We found the first E-mail header injection description in a late
2004 article on phpsecure.info [58] accredited to user tobozo de-
scribing how an E-mail header injection vulnerability existed in
the implementation of the mail() function in PHP and how it can
be exploited. More recently, a blog post by Damon Kohler [36] and
an accompanying wiki article [52] describe the attack vector and

1 Received: from mail.ourdomain.com ([62.121.130.29])
2 by xyz.com (Postfix) with ESMTP id 5A08E52C0154
3 for <abc@example.com>; Sun , 20 Mar 2016 13:56:58 -0700 (MST)
4 From: abc@example.com
5 To: xyz@example.com
6 Subject: Hello XYZ
7 CC: spc@example.com
8 Date: Sun , 20 Mar 2016 13:56:58 -0700(MST)
9
10 We need you to reset your password

Listing 2: SMTP headers generated by a PHP mail script.

outline few defense measures for E-mail header injection vulnera-
bilities.

An example of the vulnerable code written in PHP is shown in
Listing 1. This code takes in user input from $_REQUEST['email'],
and stores it in the variable $from, which is later passed to the
mail() function to construct and send the e-mail.

When this code is given the malicious input abc@example.com\
nCC:spc@example.com as the value of the $_REQUEST['email'], it
generates the equivalent SMTP Headers shown in Listing 2. It can
be seen that the CC (carbon copy) header that we injected appears
as part of the resulting SMTP message. This will make the e-mail
get sent to the e-mail address specified as part of the CC as well.

We gathered reported Common Vulnerabilities and Exposures
(CVE) [4] to get an idea of the distribution of reported E-mail header
injection vulnerabilities over time. From the 28 reports we found
(Table 1), it can be seen that even though many vulnerabilities were
found in earlier years (2005-07), there have been recently discovered
E-mail header injection vulnerabilities which suggests that it is still
a very real and relevant threat to modern web security.

2.2 Languages Affected
PHP was the first language found vulnerable to E-mail header
injection in its implementation of the mail() function at the time
of release of PHP 4.0. According to w3techs [59], PHP is used by
81.9% of all websites.

After 13 further iterations of PHP since the 4.0 release (the cur-
rent version is 7.1), the mail() function is yet to be fixed after
15 years. However, the PHP documentation [43] specifies that the
mail() function does not protect against E-mail header injection.
A working code sample with the vulnerability is shown in Listing 1.

A bug was filed about an E-mail header injection vulnerability
in Python’s implementation of the email.header library and the
header parsing functions in early 2009, which was followed by a
partial patch in 2011.

Unfortunately, the bug fixwas only for the email.header package,
and not for other frequently used packages such as email.parser,
where both the classic Parser() and the newer FeedParser() contain
E-mail header injection vulnerabilities even in the latest versions:
2.7.11 and 3.5. The bug fix was also not backported to older ver-
sions of Python. There is no mention of the vulnerability in the
Python documentation for either library. Contrary to PHP’s behav-
ior of overwriting existing headers, Python only recognizes the
first occurrence of a header, and ignores duplicate headers.

Java has a bug report about E-mail header injection filed against
its JavaMail API. A detailed write-up by Alexandre Herzog [28]
contains a proof-of-concept program that exploits the API to inject
headers.

From our testing, Ruby’s built-in Net::SMTP library also has the
vulnerability (not documented on the library’s homepage).

Measuring E-Mail Header Injections on the World Wide Web SAC 2018, April 9–13, 2018, Pau, France

1 Received: from mail.ourdomain.com ([62.121.130.29])
2 by xyz.com (Postfix) with ESMTP id 5A08E52C0154
3 for <abc@example.com>; Sun , 20 Mar 2016 13:56:58 -0700 (MST)
4 From: abc@example.com
5 CC: 1@example.com , 2@example.com , 3@example.com
6 Subject: My Subject
7 Content -Type: multipart/mixed; boundary=foobar;
8 --foobar
9 Content -Type: text/html
10
11 This is the attacker 's body
12 --foobar
13 To: xyz@example.com
14 Subject: Hello XYZ
15 Date: Sun , 20 Mar 2016 13:56:58 -0700(MST)
16
17 We need you to reset your password

Listing 3: Exploiting the E-mail header injection
vulnerability in Listing 1 to control the recipients, subject,

and body of the SMTP message.

2.3 Exploitation
Successful exploitation of an E-mail header injection vulnerabil-
ity depends on where injection occurs in the SMTP message. The
attacker cannot alter parts of the SMTP message that precede the
injection location, but the attacker has complete control over every-
thing that follows. However, similar to other command injection
vulnerabilities, the remaining parts of the SMTP message will al-
ways be appended to the attacker’s injection, so the attacker must
contend with this. By exploiting an E-mail header injection vulner-
ability, an attacker can control who receives the message (and can
include multiple CC and BCC recipients), the body, and possibly the
subject (depending on if the subject header occurs before/after the
injection point and the language used).

The exploitation techniques that we describe below were dis-
cussed in our prior work [20]. The main vector for exploiting E-mail
header injection vulnerabilities follows the template of command
injection vulnerability exploitation: first inject the attacker’s de-
sired commands, then comment out the rest of the message. In
E-mail header injection vulnerabilities, the attacker first includes
all SMTP headers she desires. These will typically be the Subject

header to control the subject of the e-mail1, CC or BCC headers to
control the recipients of the e-mail.

To handle the extra content after the injection point, one tech-
nique is to use a Content-type header to specify that the SMTP
message is a multi-part email and that the sections are separated by
an attacker-specified boundary. The boundary delineates different
parts of the message so that the attacker’s body is the only valid
part of the message, and the attacker can choose a random value for
the boundary that is not present in the rest of the SMTP message.

Using this technique, the attacker can control the e-mail. Inject-
ing the following attack payload: “abc@example.com\nCC:1@example.
com, 2@example.com\nSubject: Pwned\nContent-Type: multipart/

mixed;boundary=foobar;\n--foobar\nContent-Type: text/html\n\n

This is the attacker's body\n--foobar” into the email parame-
ter of the PHP program in Listing 1 results in the SMTP message
shown in Listing 3. By expanding on this technique, the attacker
can include links in the e-mail, or even attachments, by adding
additional multipart messages with different content types.

A shorter technique, if the injection point is limited in input size,
is to use an HTML comment to ignore the developer-controlled part

1The SMTP protocol specifies that there should only be one Subject header, so the
attacker may not be able to alter the subject if the header is already defined. This
behavior would be MUA-dependent.

of the SMTPmessage, using a payload like: “abc@example.com\nCC:1
@example.com, 2@example.com\nSubject: Random\n Content-Type:

text/html\n\nThis is the attacker's body<!--”. However, this
technique will only work if the developer-controlled part of the
SMTP message does not contain a closing HTML comment tag -->.

2.4 Impact of E-mail header injection
The impact of an E-mail header injection vulnerability can be far-
reaching. According to w3tech, PHP, Java, Python, and Ruby (com-
bined) account for over 85% of the server-side programming lan-
guages of websites measured, and the default implementation of
the e-mail functionality in these languages is vulnerable to E-mail
header injection. An E-mail header injection vulnerability can be
exploited to do potentially any of the following:
Phishing and Spoofing Attacks Phishing [31] (a variation of
spoofing [24]) refers to an attack where the recipient of an e-mail
is made to believe that the e-mail is legitimate when it was really
created by a malicious party. The e-mail usually redirects the victim
to a malicious website, which then steals their credentials or infects
their computer with malware (via a drive-by-download).

E-mail header injection gives attackers the ability to inject ar-
bitrary headers into an e-mail sent by a website and control the
output of the e-mail. This adds credibility to the generated e-mail,
as it is sent from the website’s mail server and users (and anti-
spam defenses) are more likely to trust an e-mail that is received
from the proper mail server. Therefore, attackers could leverage E-
mail header injection vulnerabilities to perform enhanced phishing
attacks.
Spam Networks Spam networks can use E-mail header injection
vulnerabilities to send a large amount of e-mail from servers that
are trusted. By adding additional cc or bcc headers to the generated
e-mail, attackers can easily choose the recipient of the spam email.

Due to the e-mail being from trusted domains, recipient e-mail
clients and anti-spam systems might not flag them as spam. If
they do flag them as spam, then that can lead to the website being
blacklisted as a spam generator (which would cause a Denial of
Service on the vulnerable web application).
Information Extraction E-mails can contain sensitive data that
is meant to be accessed only by the user. Due to an E-mail header
injection vulnerability, an attacker can add a bcc header, and the
e-mail server will send a copy of the e-mail to the attacker, thereby
exposing important information. User privacy can thus be compro-
mised, and loss of private information can lead to other attacks.
Denial of Service Denial of service attacks (DoS), can also be
caused by exploiting an E-mail header injection vulnerability to
send excessive e-mails resulting in overloading the mail server and
cause crashes or instability.

3 SYSTEM DESIGN
To quantify the existence of E-mail header injection vulnerabilities
on the web at large, we developed a system to automatically detect
E-mail header injection vulnerabilities in a black-box manner.

3.1 Approach
We took a black-box approach to measure the prevalence of E-mail
header injection vulnerabilities on the web. Black-box testing [15]
is a way to examine the functionality of an application without
analyzing its source code. Black-box testing allows our system to

SAC 2018, April 9–13, 2018, Pau, France S. Chandramouli, P. Bajan, C. Kruegel, G. Vigna, Z. Zhao, A. Doupé, and G. Ahn

Figure 1: Overall system architecture.

detect E-mail header injection vulnerabilities in any server-side
language (not simply those we identified in Section 2.2). The overall
architecture of our system is presented in Figure 1.

3.2 System Components
The Data Gathering module and Payload Injection modules are
composed of smaller components. This section describes the func-
tionality of those components.

3.2.1 Data Gathering Module. We used an open-source Apache
Nutch based Crawler [1]. The Crawler provides the system with a
continuous feed of URLs and the HTML contained in those pages.
The Form Parser is responsible for parsing the HTML and retrieving
data about the HTML forms on the page, including the following:
(1) Form attributes, such as method and action (URL) for the HTTP
request, (2) Data about form inputs, such as their attributes, names,
and default values. The default values are essential for fields like
<input type="hidden"> as these fields are usually used to check for
the submission of forms by bots, and (3) Presence of the <base>

element in the HTML, as this affects the final URL to which the
form is to be submitted (if the action attribute is a relative URL).

The E-mail Field Checker is the final stage in the Data Gather-
ing module. It receives the HTML form data and checks for the
presence of e-mail fields in those forms. If any e-mail fields are
found, it stores references to these forms. The intuition here is that
we do not want to try to fuzz all HTML forms on the web to look
for E-mail header injection vulnerabilities, rather just those HTML
forms that are likely to invoke server-side email functionality.

The E-mail Field Checker searches for the words e-mail, mail or
email within the form, instead of an explicit HTML5 e-mail field
(e.g., <input type="email">). This is by design, taking into account
a common design pattern used by web developers, where they may
have a text field with an id or name attribute set to email, instead of
an actual e-mail type attribute, for purposes of backward compati-
bility with older browsers. The output of this stage is stored in the
database and acts as the input to the Payload Injection module.

3.2.2 Payload Injection Module. E-mail Form Retriever is the
first stage in the Payload Injection module. It does the following: (1)
Retrieve forms and remove duplicates, (2) reconstruct each form’s
input fields and values from stored form data, and (3) construct the
target URL to create an HTTP request for fuzzing.

The Fuzzer interacts directly with the external web applications.
It injects payloads in two stages to reduce the total number of HTTP
requests the system generates to detect an E-mail header injection

vulnerability. Making HTTP requests is an expensive process [17],
and can cause bottlenecks in a Crawler-Fuzzer system [53]. The
two different payloads used for fuzzing are:
Non-Malicious Payload. The non-malicious payload is simply an
e-mail address. The goal is to see if the web application will send
an e-mail message based on our input. The specific format of the
e-mail is reguser#@example.com, where \# is replaced by an internal
id that uniquely maps the payload to the form, and example.com is
replaced by our domain.
Malicious Payload.After receiving an e-mail from a specific form,
we use the malicious payload to try to exploit an E-mail header
injection vulnerability. We inject the form fields with the bcc (blind
carbon copy) header. If the vulnerability is present, this will cause
the server to send a copy of the e-mail to the e-mail address we
added in the bcc field.

We consider a special case: the addition of an x-check header
field to the payloads. This is due to Python’s exhibited behavior
when attaching headers. Instead of overwriting a header if it is
already present, Python will ignore duplicate headers. So, if the
bcc field is already present as part of the headers, our injected bcc

header would be ignored. To overcome this, we inject a new header
that is not likely to be generated by the web application.

We created four different malicious payloads. Each of these pay-
loads is crafted for a particular use case. The four payloads are: (1)
nuser#@example.com\nbcc:maluser#@example.com, (2) nuser#@-
example.com\nbcc:maluser#@example.com\nx-check:in, (3) nuser#-
@example.com\r\nbcc:maluser#@example.com, and (4) nuser#@-
example.com\r\nbcc:maluser#@example.com\r\nx-check:in.

Payload 1 is the most minimal payload: it injects a newline char-
acter followed by the bcc field. Payload 2 contains the additional
x-check header to inject Python-based web applications. Payloads 3
and 4 are added for purposes of cross-platform fuzzing: \r\n is the
“Carriage Return - Line Feed (CRLF)” used onWindows systems [25].
The # are replaced by an id, for mapping to the forms.

Along with the payload, the Fuzzer also injects data into the
other fields of the form. This data must pass validation constraints
on the individual input fields (e.g., name field might not allow
numbers). As crawling and fuzzing input fields on the web is an
open problem [47], we chose to go with a best-effort approach. To
maximize the amount of vulnerabilities the system discovers, the
data injected into the input fields should adhere to the constraints.
The Fuzzer uses a “Data Dictionary” which has predefined “keys”
and “values” for standard input fields such as name, date, username
, password, text, and submit. The values for these are generated
for each form, based on generally followed guidelines for such
fields. For example, password fields should consist of at least one
uppercase letter, one lowercase letter, and special characters.

When the fuzzed data is ready, the Fuzzer constructs the appro-
priate HTTP request (GET or POST) and sends the HTTP request
to the URL that was generated by the E-mail Form Retriever.

Injection Verification stage checks for the presence of injected
data in the received e-mails. This stage operates on the e-mails
received and stored by our Postfix server, and, depending on the user
account that received the e-mail, it performs different functions.
Analyzing regular e-mail. ‘Regular e-mail’ refers to the e-mails
received by account reguser#@example.com that were sent due to
injecting the regular, non-malicious payload. The objective of the
analysis on this e-mail is identify if the input fields that we injected

Measuring E-Mail Header Injections on the World Wide Web SAC 2018, April 9–13, 2018, Pau, France

Type of Data Quantity
URLs Crawled 23,553,796

Total Forms found 7,354,425
Forms with E-Mail Fields 1,228,774

Table 2: The data collected for our project.
Type of fuzzing Forms fuzzed E-Mails received
Regular payload 1,012,530 74,192
Malicious payload 64,510 994

Table 3: The data we fuzzed and the e-mails we received.

with data appear on the resulting e-mail, and if so, which fields
appear where.

To find this, we parse each received e-mail, and check whether
any of the fields we injected with data appear in either the headers
or body of the e-mail. These could be fields such as name, user-
name, age, etc. If they do, we add them to the list of fields that can
potentially result in an E-mail header injection vulnerability for the
given e-mail.

We then pass on this information back to the Fuzzer pipeline,
along with the vulnerable form, where these fields are also fuzzed
along with the e-mail fields to check for the presence of E-mail
header injection.
Analyzing e-mail with payloads The “e-mails with payloads”
refers to e-mails received by either the nuser#@example.com or
maluser#@example.com accounts. These e-mails could only be re-
ceived as a result of injecting the malicious payloads.
Detecting injected bcc headers The structure of our payload
ensures that any e-mails received directly by the maluser account
indicate the presence of the injected bcc field.
Detecting injected x-check headers E-mails not received by the
maluser account but by the nuser account constitute a special cate-
gory of e-mails. These e-mails could have been generated due to
two reasons: (1) The web application performed sanitization and
stripped out the bcc part of the payload, thereby sending e-mails
only to the nuser account. These e-mails then act as proof that the
vulnerability was not found on the given URL. (2) The bcc header
can be ignored for other reasons (e.g., Python’s default behavior
when it encounters duplicate headers). In this case, we check if the
e-mail contains the custom header x-check. If it does, then this is a
successful exploit of the vulnerability.

4 EVALUATION
We ran our system on the web at large, attempting to discover E-
mail header injection vulnerabilities in web applications. We used
the Alexa top 10,000 websites as well as a feed of 10,000 random
blog pings per day from weblogs.com as a seed to Crawler. All
domains were crawled to a maximum depth of four, and the crawler
respected the robots.txt directive. This seed enabled Crawler to
get an overview of not only the popular websites (from the Alexa
top 10k) but also the long-tail of blog posts and websites that they
linked to.

From our extensive crawl of the web, we were able to gather the
data shown in Table 2. We ran the system for 76 days, during which
our system crawled 23,553,796 unique URLs, and found a total of
7,354,425 forms from 1,085,365 unique domains. Out of these forms,
our system found 1,228,774 forms that contained an e-mail field,
from 198,306 unique domains. Table 3 shows the quantity of e-mails
we received for the benign and malicious payloads.
E-mail received from forms. The e-mails that we received can be
categorized into two categories. (1) E-mails due to regular payload:

Type of Injection # e-mails
E-Mail Header Injections with bcc header 583
E-Mail Header Injections with x-check header 493
To header injections alone 229
Injections with both bcc and x-check headers 310
Both To header injections and x-check headers 15
x-check headers found in nuser e-mails 239
Unique x-check headers found in nuser e-mails 182
Total successful injections (1 + 3 + 7) 994

Table 4: Classification of the e-mails that we received into
broad categories of the vulnerability.

This represents the total number of web applications that sent e-
mails to us. This indicates that we were able to successfully submit
the forms on these sites to trigger the web application to send
an e-mail. (2) E-mails due to malicious payload: Once we receive
an e-mail from a web application due to the regular payload, we
fuzz those forms with the malicious payloads. This field represents
the total number of unique URLs that contain an E-mail header
injection vulnerability.

4.1 Analysis of the Received E-mail Data
During our analysis of the received e-mails, we found that the
e-mails that we received belonged to three categories:

(1) E-mails with the bcc header successfully injected. This form
of injection was our initial objective, and we found 583 such e-mails
in our received e-mails. This validates that the web applications
that sent these e-mails are vulnerable to E-mail header injection.

(2) E-mails with the To header successfully injected. We discov-
ered an unintended vulnerability class during our analysis, which
we call To header injection. These injections reflect the ability to
inject any number of e-mail addresses into the to field of the SMTP
message while being unable to inject any other header into the
e-mails. We found 229 such e-mails in our received e-mails. We at-
tribute this behavior to inconsistent sanitization by the application.

While not allowing us complete control over content of the e-
mails sent, To header injection makes it possible to append any
number of e-mail addresses, thereby enabling us to leak informa-
tion or perform DoS (Denial of Service) attacks against the web
application.

(3) E-mails with the x-check header successfully injected. The
third category of e-mails received were e-mails with the x-check

header injected. As discussed in Section 3.2.2, we can differentiate
between unsuccessful attempts and successful attempts by injecting
the additional header and checking whether headers other than the
bcc header can be injected into the generated e-mail. 493 e-mails
were received with the x-check header injected.

We list each category and the number of e-mails received by that
category in Table 4. We explain the combination of these header
injections (4-7) as follows:

E-mail Header Injections with both bcc and x-check headers:
These represent the scenario where an attacker can inject multiple
headers into the e-mails. We can see that 54% of the received bcc

header injected e-mails are also susceptible to being injected with
additional headers.

Both To header injections and x-check headers: This combination
shows us that in addition to being able to inject into the To fields,
we injected additional headers into the e-mail. It is not clear what
causes this behavior; however, these can be exploited to achieve
the same result as a regular E-mail header injection.

weblogs.com

SAC 2018, April 9–13, 2018, Pau, France S. Chandramouli, P. Bajan, C. Kruegel, G. Vigna, Z. Zhao, A. Doupé, and G. Ahn

Pipeline Stage Quantity Differential
Crawled URLs 23,553,796 ∆ d2/d1 * 100
Forms found 7,354,425 31.22%
E-Mail Forms found 1,228,774 16.71%
Fuzzed with regular payload 1,012,530 82.40%
Received e-mails 74,192 7.33%
Fuzzed with malicious payload 64,510 86.95%
Successful attacks 994 1.54%

Table 5: Data gathered by our pipeline at each stage

Total x-check headers and unique x-check headers found in nuser

e-mails: We found a total of 239 e-mails in the nuser account. Out
of these, 182 had unique form ids that were not already found in the
maluser account. We attribute these e-mails to (probably) being sent
by aweb application that was built with Python or another language
having a similar behavior with respect to ignoring duplicate headers
while constructing an e-mail, thus appending the x-check header
and not the bcc header.

Total successful injections: This represents the total number of
successful injections. This includes the E-mail header injection with
bcc header (1), To header injections (3), and Unique x-check headers
found in nuser e-mails (7). A total of 994 vulnerabilities were found
by our system.

4.2 Understanding the Data Pipeline
Table 5 shows the data gathered by our pipeline, with the differential
changes at each stage of the pipeline. At each stage of the pipeline,
the amount of data decreases, for instance, out of the 23,553,796
URLs we crawled, only 7,354,425 forms (31.22%) were found. Out
of these, only 1,228,774 forms (16.71%) contained e-mail fields.

In our fuzzing attempts, the same behavior is observed. We
fuzzed 1,012,530 forms with the regular payload, which resulted in
a total of 74,192 e-mails (7.33%). After analysis of the received e-
mails, we further fuzzed 64,510 forms, which resulted in 994 e-mails
(1.54%) which contain the vulnerability across 604 IP addresses from
414 domains.

We attribute the difference in the number of forms found to
the number of forms fuzzed (a difference of 9,682 forms) to the
presence of bot-blocking mechanisms on a website (discussed in
Section 5.2), though we do not know what percentage was caused
by each bot-blocking mechanism discussed in Section 5.2.

Note that over 1% of the forms that were not fuzzed (100 out of
9,682) were also tested manually using PostMan to generate HTTP
requests with payloads to verify that our system was working as
intended.

4.3 Analysis of Vulnerable domains
We performed the following analyses on the domains that were
found to contain E-mail header injection vulnerabilities: (1) check-
ing Alexa rankings of the vulnerable domains, (2) investigating the
back-end languages used by the vulnerable domains, and (3) ana-
lyzing the presence of anti-spoofing defenses, such as DKIM [12],
SPF [51], and DMARC [37].

4.3.1 Alexa rankings of vulnerable domains. We searched
through the Alexa rankings data[7] for the domains that were
found to be vulnerable, and found 135 of these domains in the top
1 million ranked websites, with 1 website in the top 5,000, and 4 in
the top 20,000. A detailed distribution of the rankings is shown in
Figure 2.

Figure 2: Distribution of vulnerable domains based on
Alexa Rankings

Technologies used % of Vulnerable Domains
PHP 79
ASP.net 14
J2EE 5
Perl 1
Ruby on Rails 1
Wordpress 17

Table 6: Distribution of vulnerable domains based on
technologies used

4.3.2 Back-end technologies of vulnerable domains. We inves-
tigated the top 100 vulnerable domains on our list (based on the
Alexa rankings) to find the back-end technologies used by these
vulnerable domains to see if there was any recurring pattern. Us-
ing BuiltWith [8] and Wappalyzer [9], we found that a majority
of the vulnerable domains (79%) used PHP as one of the back-end
technologies, while 17% of domains used WordPress and another
14% used ASP.Net. Other technologies used include Java (5%), Ruby
on Rails (1%), and Perl (1%). We also found a combination of other
technologies like Magento, CakePHP, CodeIgniter, Joomla, mail.ru
and Drupal being used in conjunction with one of the above lan-
guages. 4% of the websites also used Contact Form 7 [2], which is
supposed to protect against such attacks.

4.3.3 Presence of e-mail spoofing protection on vulnerable do-
mains. We investigated the presence of anti-spoofing mechanisms
such as DKIM (DomainKeys Identified Mail), SPF (Sender Policy
Framework), and DMARC (Domain-based Message Authentication,
Reporting & Conformance) in the vulnerable domains. Protection
mechanisms such as these make it harder for an attacker to spoof
the e-mail messages from these domains manually by forging the
From addresses of e-mails.

Out of the top 100 vulnerable domains on our list (based on the
Alexa rankings), we found that SPF protection was present on 71
of these websites, DKIM on 59 of these websites, and DMARC on 7
of these websites.

This makes E-mail header injection attacks all the more effective
as now we have a way to spoof messages from domains that have
anti-spoofing mechanisms in place preventing manual spoofing.

4.4 Exploitation Evidence
We compared the 604 IPs that our system found to be vul-
nerable to E-mail header injection against 13 well-known
IP blacklists, to see if these IPs were being exploited by

Measuring E-Mail Header Injections on the World Wide Web SAC 2018, April 9–13, 2018, Pau, France

attackers to send spam. The blacklists that we used were:
zen.spamhaus.org, spam.abuse.ch, cbl.abuseat.org,
virbl.dnsbl.bit.nl, dnsbl.inps.de, ix.dnsbl.manitu.net,
dnsbl.sorbs.net, bl.spamcannibal.org, bl.spamcop.net,
dnsbl-1.uceprotect.net, dnsbl-2.uceprotect.net,
dnsbl-3.uceprotect.net, db.wpbl.info.

We found that 157 of these IPs were blacklisted on at least one
of the above blacklists for sending out spam, and 46 of them were
found on multiple blacklists. We do not have enough data to make
an observation about whether these attackers are exploiting E-mail
header injection to send out the spam, as an alternative hypothesis
is that these IPs are on the blacklists because the server has different
vulnerabilities that attackers exploit to cause the server to send
spam (assuming that the server is normally benign).

4.5 Emails with Malicious Attachments
As additional analysis to find domains on the internet that send
out malicious attachments, we checked the e-mails received by the
‘reguser’ account (which are injected with regular e-mail addresses
and not malicious data) for the presence of attachments that may
contain malicious software, which will indicate that the server itself
is not benign.

To do this, we passed the 2,950 attachments we received to Virus-
Total [6] – an online malware scanner that checks for the presence
of malware by running 40+ virus scanners on the uploaded files. We
found that out of the 2,950 attachments, 443 were malicious, out of
which 265 were from unique domains. This data is just a by-product
of our research and could very well lead to future research.

4.6 Responsible Disclosure of Discovered
Vulnerabilities

After we discovered an E-mail header injection vulnerability on a
particular website, we attempted to notify the developers of the
vulnerable web application, along with a brief description of the
vulnerability. We chose to e-mail the following mailboxes, follow-
ing the rules specified in RFC 2142 [21]: security@domain.com,
admin@domain.com, and webmaster@domain.com

Out of the 414 vulnerable domains found, only 113 websites had
the mailboxes able to receive e-mails. For the remaining domains,
we used the whois [5] data to find the contact details of the owner
and then e-mailed them. We received 21 developer responses, con-
firming 15 discovered vulnerabilities. Four of the developers fixed
the vulnerability on their website.

From our research, it is clear that E-mail header injection is quite
widespread as a vulnerability, appearing on 1.54% of forms that we
were able to perform automated attacks on. This value acts as a
lower bound for prevalence of E-mail header injection vulnerability,
and can quite easily be larger if the attacks were broader, crafted
for the individual web application, and less automated.

5 DISCUSSION
In this section, we discuss the lessons learned, the limitations of our
system, and how to mitigate E-mail header injection vulnerabilities.

5.1 Lessons Learned
From our results, it is evident that E-mail header injection vulnera-
bilities exist in the wild. Despite its relatively low occurrence rate
compared to the more popular SQL Injection and XSS (Cross-Site

Scripting), when we consider total number of domains on theWorld
Wide Web— 1,018,863,952 according to Internet Live Stats [30] as
of early 2016—and calculate 0.038% percent (the occurrence rate
of E-mail header injection vulnerability calculated from vulnera-
ble domains as found by our system to total number of domains
crawled) of that number, this yields 295,693 domains. Of course, ex-
trapolation in this way is not an accurate measure of the prevalence
of E-mail header injection vulnerabilities. However, even with as
few as a thousand domains affected by this vulnerability, it can still
have a disastrous impact on these domains, and also on the overall
World Wide Web due to the traffic caused by the sheer number of
generated e-mails.

We found two different forms of E-mail header injection: the first
one is the traditional one, injecting any header into the e-mail that
allows the attacker complete control over the contents of the e-mail.
The second attack has not yet been documented and provides the
ability to inject multiple e-mail addresses into the To field. We call
this a To header injection. In this vulnerability, an attacker can
add addresses to the To field of the email with newlines separating
the e-mail addresses. We could not determine if this vulnerability is
due to unique flaws in each web application or if this vulnerability
is due to an implementation issue with a particular language or
framework. However, from our preliminary analysis, it is evident
that the vulnerable web applications do not share much in common.

To header injection allows an attacker to extract information
that should be private, and in some of these cases, able to inject
enough data to spoof other headers of the e-mail message. From
Table 4, information leakage using To header injection was pos-
sible on 229 forms, while spoofing using To header injection was
possible on 15 forms.

5.2 Limitations
Because our system is fully automated, it is also susceptible to
being stopped by mechanisms in web applications that prevent
automated crawls or form submissions. A common reason for our
fuzzing attempts to fail is the bot-blocking mechanisms built into
the web applications. CAPTCHAs (Completely Automated Public
Turing test to tell Computers and Humans Apart) [11] pose a very
difficult problem for our system to exploit E-mail header injection,
even if it is present. Other measures such as hidden form fields and
CSRF (Cross-site Request Forgery [38]) tokens are also often used
to detect bots [11, 46].

We made sure that we do not fuzz hidden fields in the form, and
as our system does not depend on authenticated sessions, CSRF
tokens do not pose an issue. However, despite considerable active
research in breaking CAPTCHAs [11, 60], breaking CAPTCHAs
remains out of the scope of this project.

Due to the growing emphasis on responsive web applications,
more and more web applications are being built with only client-
side JavaScript. Even conventional web applications use JavaScript
to dynamically insert content and update the pages. This trend
means that these dynamically injected HTML components are not
part of the initial HTML that is sent to the client by the server.

Thus, our system will not see dynamically injected forms and
hence is unable to detect if E-mail header injection vulnerabilities
are present in these forms. The workaround would be to use a
JavaScript engine to query for the document.getElementsByTagName

('html')[0].innerHTML (from inside web browser automation tools
such as Selenium), then use that as the source HTML.

SAC 2018, April 9–13, 2018, Pau, France S. Chandramouli, P. Bajan, C. Kruegel, G. Vigna, Z. Zhao, A. Doupé, and G. Ahn

Method Running time Slowdown
Using our pipeline 629.043 -

Our pipeline with Selenium 919.372 31.58%
Parsing e-mail fields instead of ‘grep’ing 707.154 11.05%

Table 7: Running times in seconds for crawling, parsing,
and detecting presence of e-mail fields in 1000 random web

pages.

A comparison of the running times between the different ap-
proaches is shown in Table 7. We chose not to use Selenium as it
results in a slowdown of 31.58%.

Because we search for the words e-mail, mail, or email within
the HTML form, if the website does not use English names for its
forms, our system will not be able to find the presence of an e-mail
field. An example is by using the French word for e-mail—courrier
électronique— our system is unable to find the presence of the
e-mail field.

During the crawl, our system was blacklisted by a few web ap-
plications (mostly WordPress ones), and Internet Service Providers
(ISPs). To overcome this, we did two things: (1) used an IP range
of 60 different IP addresses, and (2) Used a blacklist of our own
to prevent our Fuzzer from fuzzing applications that are known
to blacklist automated crawlers. This restricted us from gathering
data about these applications.

We found that certain WordPress plugins prevent the E-mail
header injection attack by sanitizing user input on contact forms.
Although not all WordPress web applications are secure, between
the presence of the plugins on some websites, and getting tagged as
“spambots” by others, we found few vulnerabilities on WordPress
web applications.

E-Mail libraries such as the PHP Extension and Application
Repository’s (PEAR) mail library provide sanitization for user input.
While this is not strictly a limitation of our project, it still means
that we are not able to inject sites that used these libraries.

The parser that we use for HTML parsing—Beautiful Soup—does
not parse heavily malformed HTML and throws an exception on
encountering such HTML. Thus, we have designed the system to
exit gracefully on such occasions. A side-effect of this is that our
system is unable to test web applications with very bad HTML
markup.

Black-box testing is highly beneficial as explained in Section 3.1,
however it also has a drawback in that we cannot verify whether the
reported vulnerability exists in the source code or is a feature of the
website (e.g., the website allows users to send bulk e-mail, adding
many cc or bcc headers). We must manually notify the developers
to get this feedback.

5.3 Ethics
To make sure that our system did not cause any harm to the web
applications that we crawled, we made sure that we did not inject
any special characters other than the newline character. We also
had an informational website at the IP that we crawled from that
described what E-mail header injection was, and contained our
contact details in case the developers of the web applications we
crawled wanted to contact us. We maintained a separate blacklist
of domain names that the owners did not want us to crawl, and
ensured that our system did not crawl their domains. And, the
Crawler respected the robots.txt directive of the web application.

Language Mail Libraries
PHP PEAR Mail[26], PHPMailer[44], Swiftmailer[56]
Python SMTPLib with email.header.Header
Java Apache Commons E-Mail[13]
Ruby Ruby Mail >= 2.6[49]

Table 8: Mail libraries that prevent e-mail header injection.

5.4 Mitigation Strategy
After demonstrating that E-mail header injection vulnerabilities ex-
ist on the web at large, we now describe the most commonmeasures
that can be taken to prevent the occurrence of this vulnerability, or
at least reduce the impact.

Using a safe, well tested e-mail library is the preferred way of
preventing E-mail header injection vulnerabilities (removing the
burden of input sanitization from the developer). A list of known se-
cure libraries for each language and framework discussed is shown
in Table 8.

Content management systems such as WordPress and Drupal
include libraries and plugins to prevent E-mail header injection.
Thus, websites built with such CMSes are usually resistant to these
attacks. However, it is advised to use the correct e-mail plugin, as
not all plugins might be secure.

If neither of the two options are feasible (in-house production,
or lack of support infrastructure), developers can choose to per-
form proper input sanitization. Sanitization should be done with
RFC5322 [48] in mind to ensure that all edge cases are covered.

6 RELATEDWORK
There are different approaches to finding vulnerabilities in web
applications, and most approaches use either black-box testing
or white-box testing. Our work is based on the black-box testing
approach to finding vulnerabilities on websites, and research has
made use of this methodology to find vulnerabilities in web appli-
cations [15, 29, 34, 42, 61]. There has been significant discussion
on both the benefits of such an approach [14] and its shortcom-
ings [22, 23].

Our work does not intend to act as a vulnerability scanner, but
as a means to identify an E-mail header injection vulnerability in
a given web application. In this sense, because we are injecting
payloads into the web application, our work is related to other
injection based attacks, such as SQL Injection [18, 27, 50], Cross-
Site Scripting [32, 35], HTTP Header Injection [33], and the related
Simple Mail Transfer Protocol (SMTP) Injection [57].

The attack described by Terada [57] is one that attacks the un-
derlying SMTP mail servers by injecting SMTP commands (which
are closely related to E-Mail headers and usually have a one-to-
one mapping, e.g., To e-mail header has a corresponding To SMTP
header) to exploit the SMTP server’s pipelining mechanism. Terada
also describes proof-of-concept attacks against certain mailing li-
braries such as Ruby Mail and JavaMail. This attack, although trying
to achieve a similar result, is distinctly different from ours. Terada’s
paper also makes this observation and discusses why it is different
from E-mail header injection.

In comparison, our work tries to exploit application-level flaws
in user input sanitization, which allow this attack. Our work does
not intend to exploit the pipelining mechanism, but to exploit the
implementation of the mail function in most popular programming
languages, which leaves them with no way to distinguish between

Measuring E-Mail Header Injections on the World Wide Web SAC 2018, April 9–13, 2018, Pau, France

user supplied headers and headers that are legitimately added by
the application.

Although E-mail header injection vulnerabilities have been
present for over a decade, there has not been much written about
it in the literature, and we find only a few articles on the Internet
describing the attack.

The first documented article dates to over a decade ago; a late
2004 article on phpsecure.info [58] accredited to user tobozo describ-
ing how this vulnerability existed in the reference implementation
of the mail function in PHP, and how it can be exploited. Following
this, we found other blog posts [19, 36, 39, 40, 45], each describing
how to exploit the vulnerability by using newlines to camouflage
headers inside user input. A wiki entry [52] also describes the ways
to prevent such an attack. However, none of these articles have
performed these attacks against real-life websites.

Another blog post written by user Voxel@Night [3], recounts
an actual attack against a WordPress plugin, Contact Form2, with
a proof of concept. It also showcases the vulnerable code in the
plugin that causes the vulnerability. However, this article targets
just one plugin and does not aim to find the prevalence of said
plugin usage. Neither does it inform the creators of the plugin to
fix the discovered vulnerability. This plugin is used actively on
300,000 websites (according to [16]), but is yet to be fixed. E-mail
header injection vulnerability was described briefly by Stuttard and
Pinto in their book, “The Web Application Hacker’s Handbook” [54].
The book, however, does not go into detail on either the attack or
the ways to mitigate such an attack. Our work, on the other hand
discusses the means to mitigate the attack. We also describe, in
detail, the payloads that can be used and the need for varying the
payloads (Section 3.2).

To the best of our knowledge, no other research has been con-
ducted to determine the prevalence of this vulnerability on the
World Wide Web. We have managed to, on a large scale, crawl and
inject web applications with comparatively benign payloads (the
bcc header) to identify the existence of this vulnerability without
causing any ostensible harm to the website. Our injected payloads
do not contain any special characters other than the newline character
and thus cannot cause any unintended consequences. Also, as we
are only injecting one additional bcc header, the underlying mail
servers should not be affected by excess load. Our work serves to
not only prove the existence of the vulnerability on the World Wide
Web but to quantify its prevalence.

7 CONCLUSIONS
We have showcased a novel approach involving black-box testing to
identify the presence of E-mail header injection in a web application.
Using this approach, we have demonstrated that our system was
able to crawl 23,553,796 web pages finding 7,354,425 forms, out of
which 1,228,774 forms were fuzzable. We fuzzed 1,012,530 forms
and found 74,192 forms that allowed us to send/receive e-mails.
Out of these, we were able to inject malicious payloads into 64,510
forms, identifying 994 vulnerable forms (1.54% success rate) across
414 domains. 135 of these domains are found in the Alexa top 1
million websites, and 137 of the vulnerable domains have anti-
spoofing mechanisms in place. We also found evidence that 157 IPs
that were vulnerable to E-mail header injection are on spamming

2Note that this plugin is used actively on 300,000 websites[16], but is yet to be fixed.

blacklists. This indicates that the vulnerability is widespread, and
needs attention from both web application and library developers.

We hope that our work sheds light on the prevalence of this
vulnerability and that it ensures that the implementation of the
mail function in popular languages is fixed to differentiate between
User-supplied headers, and headers that are legitimately added by
the application.

REFERENCES
[1] Apache Nutch. http://nutch.apache.org/
[2] ContactForm7. https://wordpress.org/plugins/contact-form-7
[3] Vexatious Tendencies. https://vexatioustendencies.com/

wordpress-plugin-vulnerability-dump-part-2/ (2014)
[4] CVE - Common Vulnerabilities and Exposures (CVE) (2016), http://cve.mitre.org/
[5] ICANN WHOIS Data. https://whois.icann.org/en (2016)
[6] VirusTotal - Free Online Virus, Malware and URL Scanner (2016), https://www.

virustotal.com/
[7] Alexa Rankings. data.alexa.com/data?cli=10&url=%URL% (2017)
[8] BuiltWith Website Data. https://builtwith.com (2017)
[9] Wappalyzer. https://wappalyzer.com/ (2017)
[10] Acunetix: AcuMonitor: For detecting Email Header Injection, Blind XSS

and SSRF - Acunetix. http://www.acunetix.com/vulnerability-scanner/
acumonitor-blind-xss-detection/

[11] von Ahn, L., Blum, M., Langford, J.: Telling humans and computers apart auto-
matically. Commun. ACM 47(2) (2004), http://doi.acm.org/10.1145/966389.966390

[12] Allman, E., Callas, J., Delany, M., Libbey, M., Fenton, J., Thomas, M.: Domainkeys
identified mail (dkim) signatures. Tech. rep. (2007)

[13] Apache Commons Email: (2016), https://commons.apache.org/proper/
commons-email

[14] Bau, J., Bursztein, E., Gupta, D., Mitchell, J.: State of the art: Automated black-box
web application vulnerability testing. In: Security and Privacy (SP), 2010 IEEE
Symposium on. pp. 332–345 (May 2010)

[15] Beizer, B.: Black-box Testing: Techniques for Functional Testing of Software and
Systems. John Wiley & Sons, Inc., New York, NY, USA (1995)

[16] BestWebSoft: Contact Form by BestWebSoft WordPress Plugins. https://
wordpress.org/plugins/contact-form-plugin/ (2016)

[17] Bhide, C.W., Singh, J., Oestreicher, D.: Performance optimizations for computer
networks utilizing http (Dec 22 1998), uS Patent 5,852,717

[18] Boyd, S.W., Keromytis, A.D.: Sqlrand: Preventing sql injection attacks. In: Applied
Cryptography and Network Security. pp. 292–302. Springer (2004)

[19] Calin, B.: Email Header Injection Web Vulnerabil-
ity - Acunetix. https://www.acunetix.com/blog/articles/
email-header-injection-web-vulnerability-detection/ (2013)

[20] Chandramouli, S.P., Zhao, Z., Doupé, A., Ahn, G.J.: E-mail Header Injection
Vulnerabilities. it - Information Technology 59(2), 67–72 (2017)

[21] Crocker, D.: Internet Message Format - RFC 2142 (1997), https://www.ietf.org/
rfc/rfc2142

[22] Doupé, A., Cavedon, L., Kruegel, C., Vigna, G.: Enemy of the state: A state-aware
black-box web vulnerability scanner. In: Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12). pp. 523–538. USENIX, Bellevue,
WA (2012), https://www.usenix.org/system/files/conference/usenixsecurity12/
sec12-final225.pdf

[23] Doupé, A., Cova, M., Vigna, G.: Why johnny can’t pentest: An analysis of black-
box web vulnerability scanners. In: Detection of Intrusions and Malware, and
Vulnerability Assessment, pp. 111–131. Springer (2010)

[24] Felten, E.W., Balfanz, D., Dean, D., Wallach, D.S.: Web spoofing: An internet con
game. Software World 28(2) (1997)

[25] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T., Masinter, L., Leach,
P.: RFC 2616 (1999), https://www.ietf.org/rfc/rfc2616.txt

[26] Hagenbuch, C., Heyes, R., Machniak, A.: PEARMail (2016), https://pear.php.net/
package/Mail

[27] Halfond, W.G., Viegas, J., Orso, A.: A classification of sql-injection attacks and
countermeasures. In: Proceedings of the IEEE Symposium on Secure Software
Engineering (2006)

[28] Herzog, A.: Full Disclosure: JavaMail SMTP Header Injection via method setSub-
ject [CSNC-2014-001] (2014), http://seclists.org/fulldisclosure/2014/May/81

[29] Huang, Y.W., Huang, S.K., Lin, T.P., Tsai, C.H.: Web application security as-
sessment by fault injection and behavior monitoring. In: Proceedings of the
12th International Conference on World Wide Web. WWW ’03, ACM (2003),
http://doi.acm.org/10.1145/775152.775174

[30] Internet Live Stats: www.internetlivestats.com (2016)
[31] Jakobsson, M., Myers, S.: Phishing and countermeasures: understanding the

increasing problem of electronic identity theft. John Wiley & Sons (2006)
[32] Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-

enforced embedded policies. In: Proceedings of the 16th International Conference
on World Wide Web. pp. 601–610. WWW ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1242572.1242654

http://nutch.apache.org/
https://wordpress.org/plugins/contact-form-7
https://vexatioustendencies.com/wordpress-plugin-vulnerability-dump-part-2/
https://vexatioustendencies.com/wordpress-plugin-vulnerability-dump-part-2/
http://cve.mitre.org/
https://whois.icann.org/en
https://www.virustotal.com/
https://www.virustotal.com/
data.alexa.com/data?cli=10&url=%URL%
https://builtwith.com
https://wappalyzer.com/
http://www.acunetix.com/vulnerability-scanner/acumonitor-blind-xss-detection/
http://www.acunetix.com/vulnerability-scanner/acumonitor-blind-xss-detection/
http://doi.acm.org/10.1145/966389.966390
https://commons.apache.org/proper/commons-email
https://commons.apache.org/proper/commons-email
https://wordpress.org/plugins/contact-form-plugin/
https://wordpress.org/plugins/contact-form-plugin/
https://www.acunetix.com/blog/articles/email-header-injection-web-vulnerability-detection/
https://www.acunetix.com/blog/articles/email-header-injection-web-vulnerability-detection/
https://www.ietf.org/rfc/rfc2142
https://www.ietf.org/rfc/rfc2142
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final225.pdf
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-final225.pdf
https://www.ietf.org/rfc/rfc2616.txt
https://pear.php.net/package/Mail
https://pear.php.net/package/Mail
http://seclists.org/fulldisclosure/2014/May/81
http://doi.acm.org/10.1145/775152.775174
www.internetlivestats.com
http://doi.acm.org/10.1145/1242572.1242654

SAC 2018, April 9–13, 2018, Pau, France S. Chandramouli, P. Bajan, C. Kruegel, G. Vigna, Z. Zhao, A. Doupé, and G. Ahn

[33] Johns, M., Winter, J.: Requestrodeo: Client side protection against session riding.
In: Proceedings of the OWASP (2006)

[34] Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: Secubat: a web vulnerability scanner.
In: Proceedings of the 15th international conference on World Wide Web. pp.
247–256. ACM (2006)

[35] Klein, A.: [DOM Based Cross Site Scripting or XSS of the Third Kind] Web Secu-
rity Articles - WebApp Sec (2005), http://www.webappsec.org/projects/articles/
071105.shtml

[36] Kohler, D.: damonkohler: Email Injection. http://www.damonkohler.com/2008/
12/email-injection.html (2008)

[37] Kucherawy, M., Zwicky, E.: Domain-based message authentication, reporting,
and conformance (dmarc) (2015)

[38] Lin, X., Zavarsky, P., Ruhl, R., Lindskog, D.: Threat modeling for csrf attacks. In:
CSE (3). pp. 486–491 (2009)

[39] Mohamed, A.: PHP Email Injection Example - InfoSec Resources. http://resources.
infosecinstitute.com/email-injection/ (2013)

[40] Nicol, J.: Securing PHP Contact Forms. http://jonathannicol.com/blog/2006/12/
09/securing-php-contact-forms/ (2006)

[41] OWASP: https://www.owasp.org/index.php/OWASP_Top_10
[42] Payet, P., Doupé, A., Kruegel, C., Vigna, G.: EARs in the Wild: Large-Scale Anal-

ysis of Execution After Redirect Vulnerabilities. In: Proceedings of the ACM
Symposium on Applied Computing (SAC). Coimbra, Portugal (March 2013)

[43] PHP-Manual: PHP mail - Send mail. http://php.net/manual/en/function.mail.php
(2016)

[44] PHPMailer: https://github.com/PHPMailer/PHPMailer
[45] Pope, A.: Prevent Contact Form Spam Email Header Injec-

tion | Storm Consultancy Web Design Bath (2008), https:
//www.stormconsultancy.co.uk/blog/development/dev-tutorials/
secure-your-contact-form-against-spam-email-header-injection/

[46] Pope, C., Kaur, K.: Is it human or computer? defending e-commerce with captchas.
IT Professional 7(2) (Mar 2005)

[47] Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. Technical Report
2000-36, Stanford InfoLab (2000), http://ilpubs.stanford.edu:8090/456/

[48] Resnick, P.W.: Internet Message Format - RFC 5322 (2008), https://tools.ietf.org/
html/rfc5322

[49] Ruby Mail Gem: https://rubygems.org/gems/mail
[50] Sadeghian, A., Zamani, M., Manaf, A.A.: A taxonomy of sql injection detection

and prevention techniques. In: Informatics and Creative Multimedia (ICICM),
2013 International Conference on. pp. 53–56. IEEE (2013)

[51] Schlitt, W., Wong, M.W.: Sender policy framework (spf) for authorizing use of
domains in e-mail, version 1 (2006)

[52] Email Injection - Secure PHP Wiki. http://securephpwiki.com/index.php/
EmailInjection (2010)

[53] Shkapenyuk, V., Suel, T.: Design and implementation of a high-performance
distributed web crawler pp. 357–368 (2002)

[54] Stuttard, D., Pinto, M.: The Web Application Hacker’s Handbook: Finding and
Exploiting Security Flaws. John Wiley & Sons (2011)

[55] Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: ACM SIGPLAN Notices. vol. 41, pp. 372–382. ACM (2006)

[56] SwiftMailer: http://swiftmailer.org/
[57] Terada, T.: SMTP Injection via recipient email addresses. MBSD White Paper

(December 2015)
[58] Tobozo: Mail headers injections with PHP. http://www.phpsecure.info/v2/article/

MailHeadersInject.en.php (2004)
[59] W3techs: Usage Statistics and Market Share of PHP for Websites, February 2016.

http://w3techs.com/technologies/details/pl-php/all/all (2016)
[60] Yan, J., Ahmad, A.S.E.: Breaking visual captchas with naive pattern recognition

algorithms. In: Computer Security Applications Conference, ACSAC 2007 (Dec
2007)

[61] Zanero, S., Carettoni, L., Zanchetta, M.: Automatic detection of web application
security flaws. Black Hat Briefings (2005)

http://www.webappsec.org/projects/articles/071105.shtml
http://www.webappsec.org/projects/articles/071105.shtml
http://www.damonkohler.com/2008/12/email-injection.html
http://www.damonkohler.com/2008/12/email-injection.html
http://resources.infosecinstitute.com/email-injection/
http://resources.infosecinstitute.com/email-injection/
http://jonathannicol.com/blog/2006/12/09/securing-php-contact-forms/
http://jonathannicol.com/blog/2006/12/09/securing-php-contact-forms/
https://www.owasp.org/index.php/OWASP_Top_10
http://php.net/manual/en/function.mail.php
https://github.com/PHPMailer/PHPMailer
https://www.stormconsultancy.co.uk/blog/development/dev-tutorials/secure-your-contact-form-against-spam-email-header-injection/
https://www.stormconsultancy.co.uk/blog/development/dev-tutorials/secure-your-contact-form-against-spam-email-header-injection/
https://www.stormconsultancy.co.uk/blog/development/dev-tutorials/secure-your-contact-form-against-spam-email-header-injection/
http://ilpubs.stanford.edu:8090/456/
https://tools.ietf.org/html/rfc5322
https://tools.ietf.org/html/rfc5322
https://rubygems.org/gems/mail
http://securephpwiki.com/index.php/Email Injection
http://securephpwiki.com/index.php/Email Injection
http://swiftmailer.org/
http://www.phpsecure.info/v2/article/MailHeadersInject.en.php
http://www.phpsecure.info/v2/article/MailHeadersInject.en.php
http://w3techs.com/technologies/details/pl-php/all/all

	Abstract
	1 Introduction
	2 Background
	2.1 History of E-mail header injection
	2.2 Languages Affected
	2.3 Exploitation
	2.4 Impact of E-mail header injection

	3 System Design
	3.1 Approach
	3.2 System Components

	4 Evaluation
	4.1 Analysis of the Received E-mail Data
	4.2 The Pipeline
	4.3 Analysis of Vulnerable domains
	4.4 Exploitation Evidence
	4.5 Emails with Malicious Attachments
	4.6 Responsible Disclosure of Discovered Vulnerabilities

	5 Discussion
	5.1 Lessons Learned
	5.2 Limitations
	5.3 Ethics
	5.4 Mitigation Strategy

	6 Related Work
	7 Conclusions
	References

