
Decoupling the Dimensions of a System of Affine Recurrence

Equations

Yoav Yaacoby

Department of Electrical & Computer Engineering

University of California

Santa Barbara, CA 93106

Peter R. Cappello∗

Department of Computer Science

University of California

Santa Barbara, CA 93106

November 18, 2008

Abstract

Most work on the problem of synthesizing a systolic array from a system of recur-

rence equations is restricted to systems of uniform recurrence equations. In this paper,

this restriction is relaxed to include systems of affine recurrence equations. A system

of uniform recurrence equations typically can be embedded in spacetime so that the

distance between a variable and a dependent variable does not depend on the prob-

lem size. Systems of affine recurrence equations which are not uniform, do not enjoy

this property. A method in another paper has been presented for converting a system

of affine recurrence equations to an equivalent system of recurrence equations that is

uniform, except for points near the boundaries of its index sets.

∗This work supported by the National Science Foundation under grant MIP89-20598, and the Lawrence

Livermore National Laboratories.

1

In this paper a procedure is presented for decoupling the dimensions of the system of

affine recurrence equations, thereby simplifying the conversion to an equivalent system

that is uniform (except for points near the boundaries).

Key Words: affine recurrence equation, concurrent computation, data dependence,

decoupling, parallel computation, processor array, systolic array, uniform recurrence

equation.

1 Introduction

An important property of any VLSI system is physical regularity. Systolic arrays [14, 13]

and wavefront arrays [15] have an iterative form of physical regularity. Array architecture

is suited to VLSI technology; replicating a processing element reduces design cost, and

neighbor communication between processing elements reduces operation cost. Leiserson,

Rose, and Saxe [17, 16] show how to convert a finite network without zero-delay cycles to

an equivalent network that functions systolically (see also [28]). Melhem and Rheinboldt

[19] give a mathematical model for the verification of systolic networks.

A system of uniform recurrence equations, as defined by Karp, Miller, and Winograd

[12, 11], maps especially well onto a systolic/wavefront array. This is noted explicitly by

Chen and Mead [4], and Quinton [25, 26], for example. Linearly mapping a system of

recurrence equation’s index sets into spacetime, has been pursued by Cappello and Steiglitz

[1, 2, 3]. Fortes et al. [9] survey seventeen methodologies for the design of systolic arrays.

Systematic translation from either a program fragment or a system of uniform recurrence

equations to systolic/wavefront arrays has been studied by Moldovan [22] [21], Quinton

[25, 26], Winkler and Miranker [20], Delosme and Ipsen [7], and Moldovan and Fortes [23].

Rao [27] introduces and analyzes a class of algorithms, called regular iterative algorithms,

which contains systolic algorithms.

A system of uniform recurrence equations typically can be mapped linearly into space-

2

time so that interprocessor communication requires only a fixed amount memory, and fixed-

length interconnections. There is no such linear mapping into spacetime for systems of affine

recurrence equations which are not uniform. Delosme and Ipsen [8] present the first ele-

ments of a methodology for determining systolic array schedules for a 2-dimensional system

of affine recurrence equations. Choffrut and Culik [5] treat a related problem. They apply

a geometric transformation to a systolic array, such that an output can be fed back as an

input via physically neighboring connections. They fold the array, eliminating long wires

for connections between elements (in a 2-dimensional array) that are related by reflections

and/or rotations. Yaacoby and Cappello [29] treat systems of affine recurrence equations

of any finite dimension. They formulate a ‘generalized fold’, and provide a procedure for

converting a system of affine recurrence equations to an equivalent system that is uniform

except for points near its boundaries. These latter systems are called systems of quasi-

uniform recurrence equations.

In this paper a method is presented which decouples the dimensions of the system before

conversion whenever possible, thus simplifying the conversion. Such a decoupling entails

finding a similarity transformation that can be applied to an integer matrix group which

partially diagonalizes each matrix in the group. This partial diagonalization is reminiscent

of the Jordan form. The Jordan form however cannot be used for three reasons:

• We have a group of matrices, not a single matrix;

• The similarity matrix must be integer;

• The transformed matrix group must be integer.

This decoupling also may be useful in other applications.

2 Definitions

The equations in Ex. 1 below are an example of a system of recurrence equations (SRE).

3

Example 1

1 ≤ j ≤ n− 1,

1 ≤ i ≤ j − 1, a3(i, j) = a3(i + 1, j − 1) (1)

1 ≤ i ≤ j + 1, a2(i, j) = −a3(i + 1, j)a2(j + 2− i, j − 1) + a2(i, j − 1) (2)

These recurrence equations are used to illustrate some of the following definitions, which

are related to an SRE.

Index set: The set of points where an array is computed or used.

Domain of computation: The set of points Ci where an array ai is computed

(e.g., C2 = {(i, j)|1 ≤ j ≤ n− 1, 1 ≤ i ≤ j + 1} in Eq. (2)).

Dependence map: A function δij from the domain of computation of array aj to the index

set of ai, on which the computation of aj depends (e.g., δ32(p) = p + (1 0)T in

Eq. (2)).

Affine dependence: A dependence map of the form: δij(p) = Dijp + dij where Dij ∈ Zn×n,

and dij ∈ Zn (e.g., δ22(p) =



−1 1

0 1


 p +




2

−1


 in Eq. (2)).

In the remainder of this paper, we assume that Dij is nonsingular and integer, unless

specified otherwise.

Uniform dependence: An affine dependence of the form: δij(p) = p + dij (i.e., Dij = I).

A system of affine [uniform] recurrence equations (SARE [SURE]): SRE where the depen-

dence maps are affine [uniform], and every array is computed in one recurrence equa-

tion for its entire domain of computation (e.g., Eqs. (1,2) are an SARE).

3 Decoupling the Dimensions of an SARE

This section describes how the dimensions of an SARE can be decoupled. This procedure

is applied before converting the SARE to a system of quasi-uniform recurrence equations

4

(a system that is uniform except for points near it boundaries [30]). This reduces the

dimension of the SARE that needs to be converted.

3.1 Decoupling a finite group of integral matrices

The following lemma was proved by C. Hermite in 1849 [18].

Lemma 3.1.1 Let a1, a2, . . . , an be integer1 numbers with greatest common divisor dn (in

case all numbers are zero, define dn = 0). There exists an integral matrix of determinant

dn having a1, a2, . . . , an as its first row.

The matrix constructed in the proof of the above lemma is almost lower triangular

(except for the first row).

The following theorem is useful in decoupling the dimensions in SAREs that can be

converted to a system of quasi-uniform recurrence equations.

Lemma 3.1.2 Let G be a finite group of integral matrices {Di} (i.e., G ⊂ GL(n,Z)). If

there exists a nonzero vector π ∈ Zn which satisfies πT Di = πT ∀Di ∈ G, then there exists

M ∈ Zn×n such that

MDiM
−1 =




1 0 . . . 0

0

.

. Bi

.

0




, ∀Di ∈ G (1)

where Bi ∈ Z(n−1)×(n−1), and the first row of M is πT .

Proof. Suppose π is primitive2. According to Lemma 3.1.1 there exists a matrix A,

having πT as the first row, whose determinant is 1. A−1 thus is integral. The first row of

1The ai, in general, can be elements of any principal ideal ring.

2That is, the greatest common divisor of its components is 1.

5

ADiA
−1 is 1, 0, 0, . . . , 0 for all Di ∈ G. Also, since all matrices are integral, their product

is integral. Denote the above product by




1 0

li Bi


, where li is a column vector, and Bi is

an (n − 1) × (n − 1) sub-matrix. Since A is fixed for all Di ∈ G, G is reducible [6]. From

Maschke’s theorem [24, Thm. 9 pp. 14], it follows that G is fully reducible. Thus, there

exists a matrix M which satisfies Eq. 1. In particular, M = T−1A, where A is the matrix

mentioned above, and

T =




1 0
∑

li/h I


 , T−1 =




1 0

−∑
li/h I


 ,

where h is the order of G. From this construction (given in [24]), the first row of M is πT ,

as needed. Also, M is rational since A is integer, and T−1 is rational. By scaling all rows

of M except the first, and corresponding columns of M−1 (by a positive integer), one gets

an integral M , as needed. The first row of M is still πT . Also, the new M and M−1 still

satisfy Eq. 1.

Now, if π is not primitive, construct M ′ as above for π/ gcd(πi). Construct M as follows.

Multiply the first row of M ′ by gcd(πi), such that πT will be the first row of M , and divide

accordingly the first column of (M ′)−1. The new M and M−1 satisfy Eq. 1.

Example 1A

Consider Ex. 1 given in § 2. In that example, the dependence maps are:

δ1
22(i, j) =



−1 1

0 1


 ·




i

j


 +




2

−1


 ; δ2

22(i, j) =




1 0

0 1


 ·




i

j


 +




0

−1


 ;

δ32(i, j) =




1 0

0 1


 ·




i

j


 +




1

0


 ; δ33(i, j) =




1 0

0 1


 ·




i

j


 +




1

−1


 .

The linear parts of the dependence maps generate the group G which includes the following

two matrices: D0 = I, D1 =


 −1 1

0 1


. The vector πT = (0 1) is a common left

6

eigenvector of eigenvalue 1 for D0 and D1. (This vector is constructed in Ex. 1B using

Proc. 1. See § 3.2.) The matrix A, from Lemma 3.1.1, is A =


 0 1

−1 0


. Its inverse

is A−1 =


 0 −1

1 0


. We now have: AD0A

−1 = I, and AD1A
−1 =


 1 0

−1 −1


. Thus,

T =


 1 0

−1/2 1


, and T−1 =


 1 0

1/2 1


. We therefore get the following matrices: M =

T−1A =


 0 1

−1 1/2


, and M−1 = A−1T =


 1/2 −1

1 0


. Since we want M to be integer,

we multiply its second row by 2, and update M−1 accordingly, obtaining:

M =




0 1

−2 1


 , M−1 =




1/2 −1/2

1 0


 .

M now is an integral matrix whose first row is πT . MD1M
−1 =


 1 0

0 −1


, as needed.

Theorem 3.1 Let G be a finite group of integral matrices {Di} (i.e., G ⊂ GL(n,Z)).

If there exist k linearly independent vectors π1, π2, . . . , πk ∈ Zn which satisfy πT
j Di =

πT
j ∀j, ∀Di ∈ G, then there exists M ∈ Zn×n such that

MDiM
−1 =




Ik×k 0

0 Bi




n×n

∀Di ∈ G (2)

where Bi ∈ Z(n−k)×(n−k), and the first k rows of M are πT
1 , πT

2 , . . . , πT
k .

Proof. We prove it by induction on k. For k = 1, the theorem follows from Lemma 3.1.2.

Suppose it is true for k = l. We prove it for k = l + 1. By supposition, there exists Ml such

that

MlDiM
−1
l =




Il×l 0

0 Bi




n×n

∀Di ∈ G (3)

where Bi ∈ Z(n−l)×(n−l), and the first l rows of Ml are πT
1 , πT

2 , . . . , πT
l .

Let pT = πT
l+1M

−1
l , and denote the last n − l entries of p by p̃. We claim that p̃ 6= 0.

Suppose otherwise. Then since pT Ml = πT
l+1, it follows that πT

l+1 is a linear combination

7

of the first l rows of Ml. But these are πT
1 , πT

2 , . . . , πT
l , a contradiction; it is given that the

l + 1 vectors are linearly independent.

Let p̂ = c · p̃ ∈ Zn−l (i.e., c scales p̃ to be a nonzero integer vector p̂). Since {Di} form

a finite group, the Bi do too. Using Lemma 3.1.2, construct a matrix A ∈ Z(n−l−1)×(n−l)

such that



p̂T

A




(n−l)×(n−l)

Bi




p̂T

A



−1

=




1 0

0 B̂i


 ∀Bi, B̂i ∈ Z(n−l−1)×(n−l−1). (4)

Define Ml+1 as follows:

Ml+1 =




πT
1

...

πT
l+1[

0 A

]
Ml




where A is the matrix as defined above, and 0 is a zero submatrix of dimension (n−l−1)×l.

Ml+1 is an n×n integer matrix as needed, and its first l+1 rows are the given l+1 vectors.

Since the first l + 1 rows of Ml+1 are eigenvectors of eigenvalue 1 for all Di in G, the first

l + 1 rows of Ml+1DiM
−1
l+1 are

[
I 0

]

(l+1)×n
. The last n− l − 1 rows are:

[
0 A

]
MlDiM

−1
l+1 =

[
0 A

]
MlDiM

−1
l MlM

−1
l+1 =

[
0 A

]



I 0

0 Bi


 MlM

−1
l+1 =

[
0 A ·Bi

]
MlM

−1
l+1

From equation (4), ABi = B̂iA. Thus,

[
0 A ·Bi

]
MlM

−1
l+1 =

[
0 B̂i ·A

]
MlM

−1
l+1 = B̂i

[
0 A

]
MlM

−1
l+1 =

[
0 B̂i

]

The last equality follows from the fact that
[

0 A

]
Ml are the last n− l−1 rows of Ml+1,

and thus
[[

0 A

]
Ml

]
·M−1

l+1 =
[

0 I

]
. So, we have Ml+1DiM

−1
l+1 =




I 0

0 B̂i


.

8

3.2 Decoupling the dimensions of SAREs

The above theorem can be used to decouple the dimensions of an SARE whenever the SARE

can be converted to a system of quasi-uniform recurrence equations, and the group of the

linear parts of its cycle dependence maps3 has common left eigenvectors of an eigenvalue 1.

As proved in [31], there is one such vector whenever the SARE has an affine schedule.

The following procedure finds all left eigenvectors of eigenvalue 1, common to all matrices

Di in a finite group G. We are given that D1, D2, . . . , Dk are the generators of G.

Procedure 1: Find vectors v such that ∀Di ∈ G, DT
i v = v.

Defining the following matrix:

A =




DT
1 − I

DT
2 − I
...

DT
k − I




kn×n

.

one can see that the required vectors form a basis of the null space of A. Steps 1 – 3 below

determine such a basis:

1. Perform 1) Gauss-Jordan reduction, 2) a possible row and column permutation4, and

3) deletion of zero rows, on matrix A. The resulting matrix is of the form:
[

Im×m E

]

m×n
.

2. If m = n (i.e., E is empty), then return (no such vector exists).

3. There are n−m independent vectors, for example, the columns of the following matrix:


−E

I


 .

3A cycle dependence map is a composition of dependences such that a variable depends on [a different

index value of] itself.

4For notational simplicity, we assume that no column permutation is needed.

9

The procedure above requires an exact solution. If all the matrices in the group

are integer, then the submatrix E is rational, since Gauss-Jordan reduction does not

introduce irrational numbers. In this case, these vectors can be scaled to integer

vectors, and the computer’s exact integer arithmetic can be used. However, as A gets

larger, the word size for elements of A also must increase. In case A is small, this

presents no problem, as can be seen in the next example.

Example 1B

Consider the SARE in Ex. 1. As mentioned in Ex. 1A, the linear parts of the de-

pendence maps, which generate a finite group G, include the following two matrices:

D0 = I D1 =


 −1 1

0 1


. The corresponding matrix A =



−2 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0




T

.

After Gauss-Jordan reduction and deleting zero rows we get:
[

I1×1 E

]

1×2
= (1 0).

Taking the column of



−E

I


, gives vT = (0 1).

Proc. 2 uses the above theorem and procedure to decouple the dimensions of an SARE

(that can be converted to a system of quasi-uniform recurrence equations [30]).

Procedure 2: Decouple the dimensions in a SARE.

1. Perform a tree conversion on the SARE5.

2. Invoke Proc. 1 to find all common left eigenvectors for an eigenvalue 1 of the linear

parts of the direct dependence maps (suppose there are k of them).

3. Generate the group using the linear parts of the direct dependence maps as generators.
5A tree conversion is a procedure that applies affine transformations to the index sets of the arrays [8]

and [30].

10

4. Compute the matrix M as described in the proof of Thm. 3.1.

5. Linearly transform all index sets by M , and update the dependence maps accordingly.

6. Reduce the dimension by k (delete the first k components of every index point, the

first k components of dij (the translation part of direct dependence δij), and the first

k rows and first k columns of every Dij (the linear part of direct dependence δij)).

The new dependence maps have dimension which is reduced by k. The conversion of an

SARE of reduced dimension [30] is simpler to construct and simpler to apply.

Example 1C

Consider the SARE in Ex. 1. Steps (1-4) in Proc. 2 have been done in Exs. 1B and 1A.

Step 5 now can be applied to the SARE, resulting in the following SARE.

1 ≤ i ≤ n− 1,

2− i ≤ j(j + i even) ≤ i− 2, a3(i, j) = a3(i− 1, j − 3) (1)

2 ≤ i ≤ n,

−1− i ≤ j(j + i odd) ≤ i− 3, a2(i, j) = −a3(i− 1, j − 2)a2(i− 1,−j − 5) + a2(i− 1, j − 1) (2)

The dependences in the last dimension are now: a2(j) depends on a3(j−2), on a2(−j−5)

and on a2(j − 1). a3(j) depends on a3(j − 3). It is now easier to convert the SARE to

an equivalent system of quasi-uniform recurrence equations [30] because there is one less

dimension.

3.3 Generalizations

The above results can be generalized in two ways:

1. Let V = {π1, . . . , πk} be a set of linearly independent vectors such that for odd k,

∀Di ∈ G, πT
k Di = ±πT

k , and for 1 ≤ m ≤ bk/2c and ∀Di ∈ G either

(a) πT
2m−1Di = ±πT

2m−1, and πT
2mDi = ±πT

2m, or

(b) (π2m−1 + j · π2m)T Di = ±j · (π2m−1 + j · π2m)T

11

In this case, there exists an M ∈ Zn×n such that the first k rows of M are π′1 . . . π′k,

where π′i = cπi for some constant c, and

MDiM
−1 =




2

. . . 0

2

0 ±1

Bi




(5)

where 2 = ±




0 1

−1 0


 or ±




1 0

0 −1


 or ± I.

The row above matrix Bi with ±1 on the diagonal is present only in case k is odd.

The proof of this follows the same arguments as those in the proof of Thm. 3.1, with

induction on m (i.e., two vectors are added at a time), and by using Maschke’s theorem

as in lemma 3.1.2, but for a 2× 2 block.

2. Let V = {π1, . . . , πk} be a set of linearly independent vectors such that for odd k,

∀Di ∈ G, πT
k Di = ±πT

k , and for 1 ≤ m ≤ bk/2c and ∀Di ∈ G either

(a) πT
2m−1Di = ±πT

2m−1, and πT
2mDi = ±πT

2m, or

(b) (π2m−1 + j · π2m)T Di = λi,m(π2m−1 + j · π2m)T , where λi,m ∈ C.

In this case, there exists an M ∈ Rn×n such that the first k rows of M are π′1 . . . π′k,

where π′i = cπi for some constant c, and MDiM
−1 has the form in Eq. 5 with the

exception that 2 can be any ‘real Jordan block’. The proof of this is based on the

real Jordan form [10], using the same arguments as those in the proof of Thm. 3.1.

In the first case, we preserve the integer entries in D and d (the parts of the affine

dependence map), and the lattice remains in Zn. In the second case, these entries are not

necessarily integer, and the lattice is not necessarily in Zn. In this latter case, we thus have

to make a linear transformation M−1 at the end of the conversion. Also, in the second case

we no longer can work with integer arithmetic.

12

The above decoupling further simplifies the conversion process, but it is more difficult to

find the desired eigenvectors, since we no longer require that they be for the same eigenvalue

(i.e., Proc. 1 cannot be used).

References

[1] Peter R. Cappello. VLSI Architectures for Digital Signal Processing. PhD thesis,

Princeton University, Princeton, NJ, Oct 1982.

[2] Peter R. Cappello and Kenneth Steiglitz. Unifying VLSI array design with geometric

transformations. In H. J. Siegel and Leah Siegel, editors, Proc. Int. Conf. on Parallel

Processing, pages 448–457, Bellaire, MI, Aug. 1983.

[3] Peter R. Cappello and Kenneth Steiglitz. Advances in Computing Research, volume

2: VLSI theory, chapter Unifying VLSI Array Design with Linear Transformations of

Space-Time, pages 23–65. JAI Press, Inc., Greenwich, CT, 1984.

[4] Marina C. Chen and Carver Mead. Concurrent algorithms as space-time recursion

equations. In S-Y Kung, H. J. Whitehouse, and Thomas Kailath, editors, VLSI &

Modern Signal Processing. Prentice-Hall, Englewood Cliffs, 1985.

[5] C. Choffrut and K. Culik II. Folding of the plane and the design of systolic arrays.

Information Processing Letters, 17:149–153, 1983.

[6] C. W. Curtis and I. Reiner. Representation Theory of Finite Groups and Associative

Algebras. Interscience Publishers (John Wiley & Sons), New York, 1962.

[7] Jean-Marc Delosme and Ilse C. F. Ipsen. An illustration of a methodology for the

construction of efficient systolic architectures in VLSI. In Proc. 2nd Int. Symp. on

VLSI Technology, Systems and Applications, pages 268–273, Taipei, 1985.

[8] Jean-Marc Delosme and Ilse C. F. Ipsen. Systolic array synthesis: Computability and

time cones. Technical Report Yale/DCS/RR-474, Yale, May 1986.

13

[9] José A. B. Fortes, King-Sun Fu, and Benjamin W. Wah. Systematic approaches to the

design of algorithmically specified systolic arrays. In Proc. Int. Conf. on Acoustics,

Speech, and Signal Processing, pages 300–303, Tampa, 1985.

[10] R. A. Horn and C. A. Johnson. Matrix Analysis. Cambridge Univ. Press, 1985.

[11] Richard M. Karp, Richard E. Miller, and Shmuel Winograd. Properties of a model

for parallel computations: Determinacy, termination, queueing. SIAM J. Appl. Math,

14:1390–1411, 1966.

[12] Richard M. Karp, Richard E. Miller, and Shmuel Winograd. The organization of

computations for uniform recurrence equations. J. ACM, 14:563–590, 1967.

[13] H.-T. Kung. Why systolic architectures. Computer, 15(1):37–45, Jan 1982.

[14] H.-T. Kung and Charles E. Leiserson. Algorithms for VLSI processor arrays. In

Introduction to VLSI Systems, pages 271–292. Addison-Wesley Publishing Co, Menlo

Park, CA, 1980.

[15] S-Y Kung. On supercomputing with systolic/wavefront array processors. Proceedings

of the IEEE, July 1984.

[16] Charles E. Leiserson, Flavio M. Rose, and James B. Saxe. Optimizing synchronous

circuitry by retiming. In Proc. Third Caltech Conf. on VLSI, Rockville, MD, 1983.

Computer Science Press.

[17] Charles E. Leiserson and James B. Saxe. Optimizing synchronous systems. In Proc.

IEEE 22nd Annual Symp. Foundations of Computer Science, Oct 1981.

[18] C. C. MacDuffee. The Theory of Matrices. Chelsea Publishing Co., New York, 1946.

[19] R. G. Melhem and W. C. Rheinboldt. A mathematical model for the verification of

systolic networks. SIAM J. Computing, 13(3):541–565, Aug. 1984.

14

[20] Willard L. Miranker and Andrew Winkler. Spacetime representations of computational

structures. Computing, 32:93–114, 1984.

[21] Dan I. Moldovan. On the analysis and synthesis of VLSI algorithms. IEEE Trans.

Comput., C-31:1121–1126, Nov. 1982.

[22] Dan I. Moldovan. On the design of algorithms for VLSI systolic arrays. Proc. IEEE,

71(1):113–120, Jan. 1983.

[23] Dan I. Moldovan and José A. B. Fortes. Partitioning and mapping algorithms into

fixed systolic arrays. IEEE Trans. on Computers, C-35(1):1–12, Jan. 1986.

[24] M. Newman. Matrix representation of groups. In Applied Mathematics Series - 60.

Institute for Basic Standards, National Bureau of Standards, Washington D.C. 20234,

July 1968.

[25] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equa-

tions. In Proc. 11th Ann. Symp. on Computer Architecture, pages 208–214, 1984.

[26] Patrice Quinton. The Systematic Design of Systolic Arrays, pages 229–260. Princeton

University Press, 1987.

[27] Sailash K. Rao. Regular Iterative Algorithms and Their Implementation on Processor

Arrays. PhD thesis, Stanford University, October 1985.

[28] Jeffrey D. Ullman. Computational Aspects of VLSI. Computer Science Press, Inc,

Rockville, MD 20850, 1984.

[29] Yoav Yaacoby and Peter R. Cappello. Converting affine recurrence equations to quasi-

uniform recurrence equations. Submitted to SIAM J. Computing, February 1988.

[30] Yoav Yaacoby and Peter R. Cappello. Converting affine recurrence equations to quasi-

uniform recurrence equations. In John H. Reif, editor, VLSI Algorithms and Architec-

tures, pages 319–328. Springer-Verlag, June 1988.

15

[31] Yoav Yaacoby and Peter R. Cappello. Scheduling a system of nonsingular affine re-

currence equations onto a processor array. J. VLSI Signal Processing, 1(2):115–125,

1990.

16

