
Implementing the 3D Alternating Direction Method on the

Hypercube ∗

John Bruno and Peter R. Cappello

Department of Computer Science

University of California

Santa Barbara, CA 93106

August 16, 1989

Abstract

The paper considers computational domains structured as a 3D grid of cells. It presents a

cell-to-hypercube map that is useful for implementing the Alternating Direction Method (ADM).

The map is shown to be perfectly load-balanced, and to optimally preserve adjacencies between

cells in the computational domain.

1 Introduction

Twizell [11] notes,

The ADM was introduced by Peaceman and Rachford [6] for the numerical solution of elliptic

and parabolic partial differential equations.

These methods are used for the solution of the Dirichlet problem, the Neumann problem, and the Robbins

problem, among others [11]. The Cartesian space is taken to be the physical problem domain and the

solution is sought over a rectangular box. Other geometries are accommodated by transforming the

cartesian domain into other curvilinear coordinates. The ADM’s computational domain D consists of a

set of points which are uniformly spaced over the problem domain. These points are called grid points
and are indexed by positive integers (i, j, k) such that 1 ≤ i ≤ I, 1 ≤ j ≤ J , and 1 ≤ k ≤ K, where I,

J , and K are positive constants.

Abstractly, each iteration of the procedure consists of 3 steps:

1. Perform I × J independent computations (e.g., solving tridiagonal systems) each of size K.

2. Perform J ×K independent computations (e.g., solving tridiagonal systems) each of size I.

3. Perform I ×K independent computations (e.g., solving tridiagonal systems) each of size J .

∗This work supported in by the National Science Foundation under grant MIP89-20598, Intel Corporation, the

University of California MICRO Program, and by a grant from the Lawrence Livermore National Laboratory.

1



 

 

 

y-sweep

z-sweepy

x

z

x-sweep

Figure 1: Preferred Cell Shapes

Considering step 1 above, the I × J independent computations are indexed by (i, j) and can be

carried out in parallel. For a fixed value of (i, j), the computation typically requires values associated

with grid points with indices (i, j, k), for 1 ≤ k ≤ K, and values associated with neighboring grid points.

For example, a typical computation involves solving a tridiagonal linear system of equations where the

coefficients are associated with the grid points along the line (i, j, k), for 1 ≤ k ≤ K. The computation

“sweeps” along the line from (i, j, 1) to (i, j, K) during the elimination phase, and then “sweeps” along

the line from (i, j, K) to (i, j, 1) during the back substitution phase. Similar comments apply to steps 2

and 3 where the “sweeps” traverse coordinate directions i and j, respectively.

When implementing the ADM, an important, if not overriding, consideration is the processor com-

munication resulting from the assignment of grid points to processors [2, 5, 8, 4]. Considering only step

1 of an iteration, it is desirable to map the computational domain onto the hypercube so that all grid

points with equal i and j coordinates are assigned to the same node. If this were so, the computation

associated with a particular i and j would be completed using little or no communication with other

nodes. Considering only step 2 of an iteration, it is desirable to map the computational domain onto

the hypercube so that all grid points with identical j and k coordinates are assigned to the same node.

Finally, considering only step 3 of an iteration, we want to map all grid points with identical i and k

coordinates to the same node.

In Fig. 1, we show the 3 different partitions of the computational domain into “cells” which would

accommodate the above computations. According to step 1, we prefer cells shaped like the one labeled

z-sweep; according to step 2, we prefer cells shaped like the one labeled x-sweep; and lastly, for step 3,

we prefer cells shaped like the one labeled y-sweep.

The 3 different partitions are not compatible, and it is costly to change the partition (and the

assignment of cells to processors) between each step of an iteration. We thus are motivated to seek a cell

size and shape and assignment of cells to processors that can be maintained throughout the computation

and which accommodates an efficient implementation of each step of an iteration.

2



 

 

a

c

b

4 5

6 7

0 1

2 3

Figure 2: Adjacency Preserving 1-1 Mapping

2 Cell-To-Node Mappings

In this section we discuss the effect of “cell-to-node” mappings on the efficiency of our implementation.

The efficiency depends on a number of factors [5]:

Load balancing: Assign an equal amount of computational work to each node.

Communication: Minimize the amount of communication and the distance messages must travel.

We partition the computational domain D into subsets called cells. Each cell is a “box” of grid points

and is identified by its coordinates (a, b, c) where 0 ≤ a < Na, 0 ≤ b < Nb, and 0 ≤ c < Nc. Assuming

Na divides I, Nb divides J , and Nc divides K, each cell is assigned (I/Na)(J/Nb)(K/Nc) grid points.

Two cells are said to be adjacent if exactly one of their corresponding indices differs by one and the other

corresponding indices are equal. For example, the cell with indices (a, b, c) is adjacent to the cell with

indices (a, b− 1, c). Thus the cells form an Na ×Nb ×Nc grid.

A d-dimensional hypercube is a graph of 2d nodes(processors), each numbered with a distinct non-

negative integer less than 2d, with an edge between a pair of nodes if the binary representations of their

node numbers differ in exactly one bit position. Two nodes are said to be adjacent if there is an edge

between them. The distance between two nodes is equal to the number of bit positions in which the

representations of the node numbers differ. We are concerned about the distance between two nodes

since it is equal to the minimum number of communication links that must be traversed by a message

transmitted between the two nodes [1, 10].

A cell-to-node mapping assigns a node number to each cell in the computational domain. We say

that a cell-to-node mapping is adjacency preserving if it maps adjacent cells into adjacent nodes.

Cell-to-node mappings are represented by labeling each cell with the hypercube node number assigned

to the cell. That is, if θ is a cell-to-node mapping then the cell with indices (a, b, c) is labeled with node

number θ(a, b, c). For example, suppose we have a 3-dimensional hypercube and Na = Nb = Nc = 2.

In Fig. 2, we show an adjacency preserving 1-1 mapping of the cells onto the nodes of the hypercube.

The figure depicts a 2× 2× 2 grid of cells in which each cell is labeled with the node number to which

it maps.

Using the mapping shown in Fig. 2, the z-sweep of step 1 of the ADM sweeps along the c axis

during the elimination phase from cell (a, b, 0) to cell (a, b, 1) and from cell (a, b, 1) to (a, b, 0) during the

back-substitution phase ( for each a, b such that 0 ≤ a, b ≤ 1). Note that within each cell we may have

up to I/Na×J/Nb independent systems to solve. Since the cells (a, b, 0) are labeled with only half of the

3



 

 

a

c

b

0 1

2 3

01

3 2

Figure 3: A Many-To-One Mapping

node numbers (0,1,2, and 3), the rest of the nodes are initially idle during the first part of the elimination

phase. At the end of the first part of the elimination phase nodes 0,1,2, and 3 transmit intermediate

results to nodes 4,5,6, and 7, respectively. When nodes 4, 5, 6, and 7 take over the elimination phase,

the initially active nodes become idle. Indeed, it is easy to see that at least half of the nodes are idle at

every point in time. This is also true for steps 2 and 3 of the ADM using this cell-to-node mapping.

Next consider a 2-dimensional hypercube, and a computational domain partitioned into 8 cells. A

cell-to-node mapping for this case is shown in Fig. 3. Since each node is assigned a cell with c = 0, all
nodes have work to do, and are initially active during the first part of the elimination phase of step 1.

Furthermore, all the nodes are assigned a cell with c = 1, so that all the nodes remain active after they

are finished with cells having c = 0. The situation is the same on the back-substitution phase. Step 2

is also favorable since all the nodes are assigned cells with a = 0 and a = 1. Step 3 is not as favorable

since only half of the nodes are assigned cells with b = 0. Therefore, at least half of the nodes are idle

throughout step 3.

These examples demonstrate the nature of the relationship between the cell-to-node mapping and

the potential efficiency of our implementation.

It follows that the best case would be to have every node assigned exactly one cell for each

different value for a, b, and c and have adjacent cells map into adjacent nodes or the same

node.

This would mean that in each step, every node would be busy except for the time during the transmission

of intermediate results to neighboring cells. We have not achieved this condition in the previous example

since nodes 0 and 1 are not assigned any cell with b = 1, and nodes 2 and 3 are not assigned any cell

with b = 0. We prove in the next section that such a cell-to-node mapping does not exist.

We might relax the above conditions by requiring that each node be assigned at least one cell for each

different value for a, b, and c and that adjacent cells map into adjacent nodes. We can find cell-to-node

mappings which satisfy this condition and an example is shown in Fig. 4. Mappings such as these are

obtained by increasing Na ·Nb ·Nc. This is undesirable for the following reason. Normally, we associate a

process with each cell, called a cell process, which is responsible for the computation associated with all

the grid points within the cell. This means that if a cell-to-node mapping assigns r cells to a particular

4



 

 

 

0 1

2 3

1 0

23

3 2

1 0

2 3

0 1

b

a

c

Figure 4: Easy Mappings

node, then the node will contain r cell processes, one corresponding to each cell, and the processor

corresponding to the node will be multiplexed among the cell processes. The goal is to have the fewest
number of cells consistent with keeping all the processors busy for the duration of the computation. By

increasing Na ·Nb ·Nc we can often keep all processors busy (as we have done in this example) at the

expense of additional overhead due to processor multiplexing among the cell processes and additional

inter-processor communication [5].

Another possibility is to relax the constraint that adjacent cells map into adjacent nodes. Let gs(r)
denote a function which is defined for all integers r and s where 0 ≤ r < 2s, whose range is the set of

all binary strings of length s, and has the property that gs(r) and gs(r + 1 mod 2s) differ in exactly one

bit position. There are many possible functions gs and such functions are called Gray codes [7, 9]. We

define a cell-to-node mapping θ(a, b, c), where 0 ≤ a, b, c < 2d, as follows:

θ(a, b, c) = gd((b + c) mod 2d)¯ gd((a + c) mod 2d),

where ¯ denotes concatenation. The cell-to-node function θ maps a 2d × 2d × 2d domain of cells onto

a hypercube with 22d nodes.

The map’s adjacency properties affect its communication efficiency. We now turn our attention to

these properties.

Theorem 2.1 The cell-to-node mapping θ has the property that the pre-image of every node contains

exactly one cell for each value for a, b, and c and adjacent cells map to nodes which are at most distance

two apart.

Proof. Notice that θ(a, b, c) and θ(a + 1 mod 2d, b, c) differ in exactly one bit position. This is also

true if we add one to the b coordinate. However, θ(a, b, c) and θ(a, b, c + 1 mod 2d) differ in exactly two

bit positions. Therefore adjacent cells map to nodes which are at most distance two apart.

5



Consider fixing the value of a. As c varies over its 2d values the low-order bits of θ(a, b, c) range

over 2d distinct values. For any particular value of c, varying b over its 2d values causes the high-order

d bits of θ(a, b, c) to range over 2d distinct values. Accordingly, with a fixed, as b and c vary over their

22d values (cells), θ(a, b, c, ) ranges over 22d distinct values (nodes). Hence, we can conclude that the

pre-image of every node contains exactly one cell for each value of a. The argument can be repeated for

the b and c coordinates. Therefore, the pre-image of every node contains exactly one cell for each value

for a, b, and c.

Theorem 2.2 The cell-to-node mapping θ results in processor loading that is perfectly balanced: each

processor is assigned 2d cells.

Proof. From the previous Theorem, each processor is assigned exactly 1 cell for each value of a: Each

processor is assigned exactly 2d cells.

Boundary cells are those where at least 1 of the a, b, or c values are either 0 or 2d − 1. Boundary

processing occurs at boundary cells. The complexity of boundary processing may differ from interior

processing. It therefore is of interest to consider the distribution of boundary cells among the processors.

Using the Inclusion/Exclusion principle, we see that there are 6 ·22d−12 ·2d +8 boundary cells. Since the

number of processors (22d) does not divide the number of boundary cells, it is mathematically impossible

to assign every processor the same number of boundary cells. The following theorem establishes an

asymptotic approximation to this mathematically impossible, but desirable assignment of boundary cells.

Theorem 2.3 Let P denote the set of processors that are assigned 6 distinct boundary cells, one from

each of the 6 boundaries. Under the cell-to-node mapping θ, |P | = 22d −O(2d).

Proof. It follows from Theorem 2.1 that each node labels exactly one cell on each of the six boundary

faces. We want to count all those nodes that label a cell that is part of two or more boundary faces. If

we simply count all the cells that are part of two or more boundary faces, this provides an upper bound

on the number of processors that label such cells. It is not difficult to count these cells and we get

12 · 2d − 16 = O(2d).

Except for O(2d) processors, this map has the remarkable property of assigning each of the 22d

processors the same number of boundary cells of each type: It is asymptotically balanced with respect

to the assignment of boundary cells. Again, it is mathematically impossible to assign the same number

of boundary cells to all processors.

An example of such a mapping is shown in Fig. 5. In this case, cells which are adjacent in the

z-direction are mapped into nodes which are at a distance 2 from each other. All other adjacencies are

preserved.

3 A Negative Result

In the previous section, we noted that the best map would have:

• adjacent cells map to adjacent nodes;

• every node contain exactly one cell for each different value for a, b, and c.

6



 

 

 

0 1 3 2
2 0 1 3

4 5 7 6

12 13 15 14

8 9 11 10

14 12 13 15

6 4 5 7

10 8 9 11
11 10 8 9

3 2 0 1

7 6 4 5

15 14 12 13

5 7 6 4

13 15 14 12

9 11 10 8

1 3 2 0

b

c

Figure 5: A Distance-2 Solution

In this section, we prove that such a map does not exist. If such a map did exist, then it would have the

following properties:

• The map would be from a 2n×2n×2n mesh of cells to a 2n-dimensional hypercube of processors.

• Adjacent cells in the mesh would map to adjacent processors in the hypercube.

• A plane of the mesh has 2n × 2n cells. For every mesh plane along the x, y, or z axis, each cell in

the plane would map to a distinct processor in the hypercube.

This existence question is formalized as a mapping problem between graphs.

3.1 The Problem

Let GM = (VM , EM ) be a 2n × 2n × 2n mesh graph: VM = {(i, j, k)|1 ≤ i, j, k ≤ 2n}, and EM =
{{p, q}|∀p, q ∈ VM ,m(p, q) = 1}, where m(p, q) denotes the Manhatten distance between p, q ∈ VM .

Let GC = (VC , EC) be a 2n-cube graph: VC = {(i1i2 · · · i2n)|ij ∈ {0, 1}, 1 ≤ j ≤ 2n}, and

EC = {{p, q}|∀p, q ∈ VC , h(p, q) = 1}, where h(p, q) denotes the Hamming distance between p, q ∈ VC .

Does there exist a surjection, η : VM 7→ VC satisfying the 2 conditions below?

1. ∀p, q ∈ VM ,m(p, q) = 1 ⇒ h(η(p), η(q)) = 1.

2. η is injective when restricted to any mesh plane along the x, y, or z axis.

3.2 Mesh Edge Labels

Let ζ be a map that satisfies condition 1 of η. If {p, q} ∈ EM , then by condition 1, h(ζ(p), ζ(q)) = 1:

ζ(p) differs from ζ(q) in exactly 1 bit position. This property is used to label the edges of the mesh.

7



s s

s s

s s

s s

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

00 10

01 11

10 00

11 01

1

1

1

1

2
2

2
2

1 1

1 1

Figure 6: A ζ-labeling. Each mesh vertex is labeled with its image under ζ.

Definition ζ-labeling: A map lζ : EM 7→ {1, 2, . . . , 2n} such that lζ({p, q}) = i when ζ(p) differs from

ζ(q) in the ith bit position (see, e.g., Fig. 6).

3.3 The Surjection Does Not Exist

Lemma 3.1.1 Let p ∈ VM . If η exists then

∀q 6= r ∈ VM , [m(p, q) = 1 ∧m(p, r) = 1] ⇒ lη({p, q}) 6= lη({p, r}).
Proof. (By contradiction.) Assume that if η exists then

∃q 6= r ∈ VM ,m(p, q) = 1 ∧m(p, r) = 1 ∧ lη({p, q}) = lη({p, r}).
Since q and r are adjacent to p, they share a plane. By condition 2 of η, their images are distinct. But

lη({p, q}) = lη({p, r}) ⇒ η(q) = η(r).

Theorem 3.1 Let p = (x, y), q = (x + 1, y), r = (x, y + 1), s = (x + 1, y + 1) represent 4 points in the

mesh that form a square1. If η exists then opposite sides of the square have the same η-label.

Proof. This theorem asserts that a square in the mesh must have an η-labeling like that depicted in

Fig. 7.

Since q and r are adjacent to p in the mesh, lη({p, q}) 6= lη({p, r}), by Lemma 3.1.1. Let lη({p, q}) =
i and lη({p, r}) = j.

Case lη({q, s}) = k 6∈ {i, j}: Then η(r) differs from η(s) in 3 bit positions: i, j, and k. Since r is

adjacent to s in the mesh, condition 1 on η is violated.

Case lη({q, s}) = i: This case is precluded by the condition that Lemma 3.1.1 imposes on η.

Therefore, lη({q, s}) = j.

By an analogous case analysis, lη({r, s}) = i.

Corollary 3.1.1 Let p = (xp, yp, zp), q = (xp + 1, yp, zp) ∈ VM . If η exists and lη({p, q}) = i then

∀{r, s} ∈ EM , [xr = xp ∧ xs = xp + 1] ⇒ lη({r, s}) = i

1Hence, 2 coordinates suffice.

8



r r

r r

p q

r s

j j

i

i

Figure 7: Mesh vertices p, q, r, and s whose edges form a square. lη(p, q) = i ⇔ lη(r, s) = i.
lη(p, r) = j 6= i ⇔ lη(q, s) = j.

Proof. (By contradiction.) Assume that

∃{r, s} ∈ EM , xr = xp ∧ xs = xp + 1 ∧ lη({r, s}) 6= i

Let S = {{t, u} ∈ EM |xt = xp ∧ xu = xp + 1} and T = {e ∈ S|lη(e) = i}. We are given that

{p, q} ∈ T . Let {r, s} ∈ S − T be an edge that is ‘next to’ an edge {t, u} ∈ T (see Fig. 8). Then

lη({t, u}) = i and lη({r, s}) 6= i. The edges connecting mesh vertices r, s, t, and u form a square. The

η-labeling of these edges however is precluded by Thm. 3.1.

From Corollary 3.1.1, one sees that if η exists, then all edges in a x–y ‘plane’ have the same η-label.

This also is true for edges in a x–z, or y–z ‘plane.’ The definition of Ax, Ay, and Az are illustrated by

Fig. 9: Ax is the set of edges along the x ‘axis;’ Ay and Az are defined similarly: Ay = {e4, e5, e6}, and

Az = {e7, e8, e9}. Let Px = {i|∃e ∈ Ax, lη(e) = i}. Py and Pz are defined similarly.

The following lemma shows that since the extent of the mesh is 2n in each dimension, |Px,y,z| ≥ n.

Lemma 3.2.1 If η exists then |Px,y,z| ≥ n.

Proof. Let S = {η(v)|∃u, {u, v} ∈ Ax}, the set of vertex labels of vertices on the x ‘axis.’. By

condition 2 of η, |S| = 2n. In order to achieve 2n distinct vertex labels, at least n different bit positions

must vary.

Lemma 3.2.2 If η exists then Px ∩ Py = ∅, for x 6= y.

Proof. (By contradiction.) Assume that ∃i ∈ Px ∩ Py. One sees (Fig. 10) that i ∈ Px ∩ Py produces

squares whose edges all have the same label. This labeling, however, is precluded by Lemma 3.1.1.

Theorem 3.2 Let GM = (VM , EM ) be a 2n × 2n × 2n mesh graph, and GC = (VC , EC) be a 2n-cube

graph. There does not exist a surjection, η : VM 7→ VC satisfying:

1. ∀p, q ∈ VM ,m(p, q) = 1 ⇒ h(η(p), η(q)) = 1,

2. η is injective when restricted to any plane of the mesh.

9



-

6

¡
¡¡µ

x

y
z

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

i
i

i
i

i
i

i
i

i
i

i

i
i

i
i

jt
r

u
s

p q

Figure 8: The vertices of a 4× 4× 4 mesh are displayed. Only edges in S are shown.

Proof. Assume that η exists. By Lemma 3.2.2, |Px ∪Py ∪Pz| = |Px|+ |Py|+ |Pz|. By Lemma 3.2.1,

|Px|+ |Py|+ |Pz| ≥ 3n. But vertex names consist of only 2n bits.

4 Conclusion

In this paper, we have considered implementing the 3D ADM on a hypercube concurrent processor system.

Such an implementation entails mapping the grid points of the computational domain onto the nodes

of a hypercube concurrent processor. The best map would be to have adjacent cells map to adjacent

nodes (or the same node), and to have every hypercube node contain exactly one mesh cell for each

different x coordinate, one mesh cell for each different y coordinate, and one mesh cell for each different

z coordinate. We prove that such a map does not exist, but show how to construct the next best thing:

a map in which cells that are adjacent in the z axis map to hypercubes nodes that are of distance exactly

two apart, and in which x and y axis adjacencies are preserved. Moreover, this optimally adjacent map

is shown to be perfectly load balanced.

Although this modulo-based map has been analyzed with respect to the hypercube concurrent pro-

cessor, it is useful on any architecture that is capable of being configured as an m by n grid of processors

with toroidal edge connections. If we assume Na is a multiple of n and Nb is a multiple of m, then the

mapping to an m by n torus is easy to specify and does not require the use of the Gray code transforma-

tion, namely, θ(a, b, c) = ((a + c) mod m, (b + c) mod n) where (r, s) denotes the processor located in

the rth row and the sth column of the grid of processors. In order for each processor to be assigned an

10



-

6

¡
¡¡µ

x

y
z

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

¡¡
¡¡

¡¡

e1 e2 e3

e4

e5

e6

e7

e8

e9

Figure 9: The vertices of a 4× 4× 4 mesh are displayed. Edges along only the x, y, and z ‘axes’ are
shown. Ax = {e1, e2, e3}, the set of edges along the x ‘axis.’ Ay and Az are defined similarly.

-

6

¡
¡µ

x

y
z

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

Figure 10: The figure displays the vertices of a 4× 4× 4 mesh. Only those edges are shown whose
label is i.

11



equal number of cells, it is necessary that Nc be a multiple of lcm(m, n). Normally, we would partition

the computational domain so that Na = m and Nb = n and Nc = lcm(m,n). The reason is that

creating more domain cells results in additional overhead in processor multiplexing within a node and

additional inter-processor communication.

For the class of algorithms under consideration, one could use this mapping on SIMD machines

which provide 2D toroidal or hypercube connections, such as the Goodyear MPP, the Thinking Machines

Connection Machine, or the Active Memory Technologies DAP [3].

Acknowledgement

We benefited greatly from the criticism and suggestions of an anonymous referee.

References

[1] Geffrey C. Fox and et. al. Solving Problems on Concurrent Processors, volume 1. Prentice-Hall,

1988.

[2] Dennis B. Gannon and J. Van Rosendale. On the impact of communication complexity on the design

of parallel numerical algorithms. IEEE Trans. on Comput., C-33(12), December 1984.

[3] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, Bristol and Philadelphia,

1988.

[4] S. Lennart Johnsson, Youcef Saad, and Martin H. Schultz. Alternating direction methods on mul-

tiprocessors. Dept. of Computer Sci. DCS/RR-382, Yale Univ., October 1985.

[5] R. Morison and Steve Otto. The scattered decomposition for finite element problems. Journal of
Scientific Computing, 2, 1986.

[6] D. W. Peaceman and H. H. Rachford. Numerical solution of parabolic and elliptic differential

equations. SIAM J., 3:28–41, 1955.

[7] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and Practice.
Prentice-Hall, 1977.

[8] F. Saied, C-T Ho, A. Lennart Johnsson, and Martin Schultz. Solving schrodinger’s equation on the

intel ipsc by the alternating direction method. Dept. of Computer Sci. DCS/RR-502, Yale Univ.,

January 1987.

[9] J. Salmon. Binary gray codes and the mapping of a physical lattice into a hypercube. Caltech

Concurrent Computation Group C3P51, California Institute of Technology, January 1984.

[10] Charles Seitz. The cosmic cube. Communications of the ACM, 28(1):22–33, January 1985.

[11] E. H. Twizell. Computational Methods for Partial Differential Equations. Mathematics and Its

Applications. Ellis Horwood, Chichester, 1984.

12


