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ABSTRACT

Jicos is a Java-centric distributed service for high-
performance parallel computing. Its API is especially
suited to divide-and-conquer computations. Computational
tasks can access a global read-only input object and a muta-
ble object that is shared asynchronously. These features en-
able an elegant expression of branch-and-bound optimiza-
tion, which is used as the benchmark for the performance
experiments. The API includes a simple set of application-
controlled directives for improving performance by reduc-
ing communication latency or overlapping it with task exe-
cution. The architecture manages a host processor set that
can change during the program execution for reasons that
include faulty hosts. Experimental results confirm high
parallel efficiency on branch-and-bound. Experiments also
confirm efficient recovery from host failures. JICOS reports
a computation’s actual critical path time, which can be used
to calculate the maximum available parallelism of a prob-
lem instance.
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1 Introduction

For high-performance, distributed computing services,
there is increasing interest in supporting more complex al-
gorithm classes than Master-Worker by systems: whose
compute servers may join and/or leave during program ex-
ecution; that tolerate faulty compute servers during pro-
gram execution; and that scale to a large number of com-
puter servers with good speedup. Branch-and-bound con-
stitutes a large class of algorithms. Its implementation is
more complex than master-worker for at least 3 reasons:
First, the fixed-depth task decomposition tree associated
with Master-Worker generalizes to a dynamic-depth task
decomposition tree. Second, the task decomposition tree
is quite unbalanced, due to the bounding process (also
known as pruning), in a way that depends on the prob-
lem instance, and thus is revealed only at execution time.
Thirdly, tree pruning, to proceed efficiently, requires com-
munication among the compute servers, as they discover
new bounds. A wealth of important combinatorial op-
timization problems are routinely solved via branch-and-
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bound (e.g., Integer Linear Programming, the Traveling
Salesman Problem, and a variety of operations research
problems). Thus, if we can efficiently speed up an adap-
tively parallel implementation of branch-and-bound com-
putations on a distributed system that tolerates faulty com-
pute servers, then the usefulness of, and demand for, clus-
ter/network/grid computing will increase dramatically. In-
deed, some work has been done on fault-tolerant, distrib-
uted branch-and-bound [17, 9, 12, 10, 11].

The contribution of this paper to the study of high-
performance, adaptively parallel cluster/network comput-
ing is to integrate architectural and language constructs that
enable the elegant expression of branch and bound com-
putation, and a distributed implementation that 1) exhibits
good speedup, even for small tasks (e.g., 2 sec.), and 2)
efficiently tolerates the failure of compute servers.

Background

Java’s attraction as a distributed computing platform in-
cludes its solution to the portability/interoperability prob-
lem associated with heterogeneous machines and OSs.
Please see [16] for an enumeration of other advantages.
The use of a virtual machine is a significant difference
between Java-based systems and previous systems. Java-
based efforts are orthogonal to Grid efforts: In principle,
they can be loosely coupled to the Grid via Grid proto-
cols. The Java CoG Kit[16] facilitates such couplings. The
Java-based research can be partitioned into: 1) systems that
run on a processor network whose extent and communi-
cation topology are known a priori (although which par-
ticular resources are used to realize the processor network
may be set at deployment time, perhaps via Grid resource
reservation mechanisms); 2) systems that make no assump-
tion about the number of processors or their communica-
tion topology. We focus on systems in category 2, which
can be further subdivided into: 1) those that support adap-
tive parallelism (originally defined in [7]); 2) those that do
not. We focus on the first category, which includes Pop-
corn [4], Charlotte [2], Atlas [1], Javelin, Bayanihan [13],
and Satin [18], among others. Like Atlas, CX [5, 6] sup-
ports a divide-and-conquer API, and adaptively parallel al-
gorithms with faulty processors. Satin is most like Jicos: It
is Java-centric, tolerates faulty compute servers, and sup-
ports small-grained, adaptively parallel computation with a
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divide-and-conquer API. It is compatible with large-scale
cluster settings, LAN/WAN, and corporate intranets. How-
ever, unlike Satin, all tasks in Jicos have access to a com-
mon environment consisting of an immutable input object
and a mutable object that is shared asynchronously.

2 API

Computation is modelled by an directed acyclic graph
(DAG) whose nodes represent tasks. An arc from node
v to node u represents that the output of the task repre-
sented by node v is an input to the task represented by node
u. Tasks have access to a shared object. The semantics
of “shared” reflects the envisioned computing context—a
computer network: The object is shared asynchronously.
This limited form of sharing is of value in only a limited
number of settings. However, branch and bound is one
such setting, constituting a versatile paradigm for coping
with computationally intractable optimization problems.

Divide and conquer

Tasks are central to the API; they encapsulate computation
via the execute method:

public Qpject execute( Bwironnent environy;

The Environment object is described below. Let A be
a task. It has an array of input objects (possibly of length
0). It returns either an output Object, which is an input
to its successor task, A’, or it decomposes into a sequence
of subtasks and returns a compose task. Each subtask pro-
duces an output that is an input to the compose task. The
return value of the compose task is the output associated
with task A, an input of task A’. Thus, the decomposition
of a task into subtasks occurs in one task; the composi-
tion of the subtasks into a solution occurs in another task.
Separating task decomposition from subtask composition
is called explicit continuation passing [3]. It improves host
utilization and enables efficient recovery from host failure.
From the foregoing, we see that the DAG of tasks is re-
vealed to Jicos only at execution time: Task scheduling is
done at execution-time.

The common environment

A computation’s tasks access a common Environment ob-
ject, which has the read-only input object for the entire
computation (not an input for a particular task) and the mu-
table shared object. For example, in a traveling salesman
problem (TSP), one might want the distance matrix to be
in the Environment’s input object. Tasks access the shared
object via the Environment getShared method, and mutate
it via the setShared method. A shared object implements

the Shared interface, which includes the isNewerThan
method:
public boolean i sNewer Than(Shared shar ed)

throns NIl | Foi nter Excepti on;
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The semantics of shared are weak, but appropriate for dis-
tributed computing: When the value of a Shared object
changes, its value is propagated asynchronously. When an
environment receives a new value for the shared object, it
asks the shared object if the proposed new value is indeed
newer than itself, via its isNewerThan method: The im-
plementation of the Shared object operationally defines the
meaning of “newer.” For example, in a TSP problem, the
distance of the best known tour may be a shared object.
Then, when a new tour is found, its total distance can be
shared. In this case, the isNewerThan method would return
true if and only if the proposed total distance is, in fact, less
than the total distance of the locally best known tour. In a
distributed setting this may not always be the case, hence
the need to check.

3 Architecture

J1C08, a Java-centric network computing service that sup-
ports high-performance parallel computing, is an ongoing
project that: virtualizes compute cycles, stores/coordinates
partial results - supporting fault-tolerance, is partially
self-organizing, may use an open grid services architec-
ture [14, 15] frontend for service discovery (not presented),
is largely independent of hardware/OS, and is intended
to scale from a LAN to the Internet. JICOS is designed
to: support scalable, adaptively parallel computation
(i.e., the computation’s organization reduces completion
time, using many transient compute servers, called hosts,
that may join and leave during a computation’s execution,
with high system efficiency, regardless of how many hosts
join/leave the computation); tolerate basic faults: Jicos
must tolerate host failure and network failure between hosts
and other system components; hide communication laten-
cies, which may be long, by overlapping communication
with computation. JICOS comprises 3 service component
classes.

Hosting Service Provider (HSP): Jicos clients (i.e.,
processes seeking computation done on their behalf)
interact solely with the hosting service provider
component. A client logs in, submits computational
tasks, requests results, and logs out. When interacting
with a client, the hosting service provider thus acts as
an agent for the entire network of service components.
It also manages the network of task servers described
below. For example, when a task server wants to join
the distributed service, it first contacts the hosting
service provider. The HSP tells the task server where
it fits in the task server network.

Task Server: This component is a store of Task objects.
Each Task object that has been spawned but has not
yet been computed, has a representation on some task
server. Task servers balance the load of ready tasks
among themselves. Each task server has a number of
hosts assigned to it. When a host requests a task, the



task server returns a task that is ready for execution, if
any are available. If a host fails, the task server reas-
signs the host’s tasks to other hosts.

Host: Each host repeatedly requests a task for execution,
executes the task, returns the results, and requests an-
other task. It is the central service component for vir-
tualizing compute cycles.

When a client logs in, the HSP propagates that login
to all task servers, who in turn propagate it to all their hosts.
When a client logs out, the HSP propagates that logout to
all task servers, which aggregate resource consumption in-
formation (execution statistics) for each of their hosts. This
information, in turn, is aggregated by the HSP for each task
server, and returned to the client. Currently, the task server
network topology is a torous. However, scatter/gather op-
erations, such as login and logout, are transmitted via a task
server tree: a subgraph of the torous. See Figure 1.
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Figure 1. A JICOS system that has 9 task servers. The task
server topology, a 2D torous, is indicated by the dashed
lines. In the figure, each task server has 4 associated hosts
(the little black discs). The client interacts only with the
HSP.

Task objects encapsulate computation: Their inputs
& outputs are managed by J1C0S. Task execution is idem-
potent, supporting the requirement for host transience and
failure recovery.

HIDING COMMUNICATION LATENCY

J1cos’s APl includes a simple set of application-controlled
directives for improving performance by reducing commu-
nication latency or overlapping it with task execution.

Task caching When a task constructs subtasks, the first
constructed subtask is cached on its host, obviating
its host’s need to ask the TaskServer for its next task.
The application programmer thus implicitly controls
which subtask is cached.

Task pre-fetching The application can help hide commu-
nication latency via task pre-fetching:

Implicit: A task that never constructs subtasks is
called atomic. The Task class has a boolean
method, isAtomic. The default implementa-
tion of this method returns true, if and only
if the task’s class implements the marking in-
terface, Atomic. Before invoking a task’s exe-
cute method, a host invokes the task’s iSAtomic
method. If it returns true, the host pre-fetches
another task via another thread before invoking
the task’s execute method.

Explicit: When a task object whose iSAtomic method
returned false (it did not know prior to the in-
vocation of its execute method that it would not
generate subtasks) nonetheless comes to a point
in its execute method when knows that it is not
going to construct any subtasks, it can invoke its
environment’s pre-fetch method. This causes its
host to request a task from the task server in a
separate thread.

Task pre-fetching overlaps the host’s execution of
the current task with its request for the next task.
Application-directed pre-fetching, both implicit and
explicit, thus motivates the programmer to 1) iden-
tify atomic task classes, and 2) constitute atomic tasks
with compute time that is at least as long as a Host—
TaskServer round trip (on the order of tens of mil-
liseconds, depending on the size of the returned task,
which affects the time to marshal, send, and unmar-
shal it).

Task server computation When a task’s encapsulated
computation is little more complex than reading its in-
puts, it is faster for the task server to execute the task
itself than to send it to a host for execution. This is
because the time to marshal and unmarshal the input
plus the time to marshal and unmarshal the result is
less than the time to simply compute the result (not to
mention network latency). Binary boolean operators,
such as min, max, sum (typical linear-time gather op-
erations) should execute on the task server. All Task
classes have a boolean method, executeOnServer. The
default implementation returns true, if and only if the
task’s class implements the marking interface, Execu-
teOnServer. When a task is ready for execution, the
task server invokes its executeOnServer method. If it
returns true, the task server executes the task itself:
The application programmer controls the use of this
important performance feature.

Taken together, these features reduce or hide much of the
delay associated with Host—TaskSever communication.



TOLERATING FAULTY HOSTS

To support self-healing, all proxy objects are leased (a ba-
sic concept in the Jini architecture). When a task server’s
lease manager detects an expired host lease and the offer
of renewal fails, the host proxy: 1) returns the host’s tasks
for reassignment, and 2) is deleted from the task server.
Because of explicit continuation passing, recomputation is
minimized: Systems that support divide-and-conquer but
which do not use explicit continuation passing, such as
Satin [18], need to recompute some task decomposition
computations, even if they completed successfully. In some
applications, such as TSP, decomposition is computation-
ally complex. On Jicos, only the task that was currently
being executed needs to be recomputed. This is an archi-
tecturally significant improvement. In the TSP instance that
we use for our performance experiments, the average task
time is 2 sec. Thus, the recomputation time for a failed host
is, in this instance, a mere 1 sec, on average.

4 Performance Experiments

THE TEST ENVIRONMENT

We ran our experiments on a Linux cluster. The cluster
consists of 1 head machine, and 64 compute machines,
composed of two processor types. Each machine is a dual
2.6GHz (or 3.0GHz) Xeon processor with 3GB (2GB) of
PC2100 memory, two 36GB (32GB) SCSI-320 disks with
on-board controller, and an on-board 1 Gigabit ethernet
adapter. The machines are connected via the gigabit link
to one of 2 Asante FX5-2400 switches. Each machine
is running CentOS 4 with the Linux smp kernel 2.6.9-
5.0.3.ELsmp, and the Java j2sdk1.4.2. Hyperthreading is
enabled on most, but not all, machines.

THE TEST PROBLEM

We ran a branch-and-bound TSP application, using
kroB200 from TSPLIB, a 200 city euclidean instance. In
an attempt to ensure that the speedup could not be super-
linear, we set the initial upper bound for the minimal-length
tour with the optimum tour length. Consequently, each run
explored exactly the same search tree: Exactly the same
set of nodes is pruned regardless of the number of parallel
processors used. Indeed, the problem instance decomposes
into exactly 61,295 BranchAndBound tasks whose average
execution time was 2.05 seconds, and exactly 30,647 Min-
Solution tasks whose average execution time was less than
1 millisecond.

THE MEASUREMENT PROCESS

For each experiment, a hosting service provider was
launched, followed by a single task server on the same ma-
chine. When additional task servers were used, they were
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started on dedicated machines. Each host was started on
its own machine. Except for 28 hosts in the 120 proces-
sor case (which were calibrated with a separate base case),
each host thus had access to 2 hyperthreaded processors
which are presented to the JVM as 4 processors (we re-
port physical CPUs in our results). After the JICOS system
was configured, a client was started on the same machine
as the HSP (and task server), which executed the applica-
tion. The application consists of a deterministic workload
on a very unbalanced task graph. Measured times were
recorded by Jicos’s invoice system, which reports elapsed
time (wall clock, not processor) between submission of the
application’s source task (aka root task) and receipt of the
application’s sink task’s output. Jicos also automatically
computes the critical path using the obvious recursive for-
mulation for a DAG. Each test was run 8 times (or more)
and averages are reported.

Due to hyperthreading, 1 processor in the OS does not
correspond to 1 physical processor. It therefore is difficult
to get meaningful results for 1 processor. We consequently
use 1 machine, which is 2 physical CPUs, as our base case.
For the 120 processor measurements, we used the hetero-
geneous speedup formula from CX [6]. We had 3 separate
base cases for computing the 120 processor speedup.

For our fault tolerance test, we launched a JICOS sys-
tem with 32 processors as compute servers. We issued a kill
command to various compute servers after 1,500 seconds,
approximately 3/4 through the computation. The comple-
tion time for the total computation was recorded, and was
compared to the ideal completion time: 1500 + (732 —
1500) x 32/ Pfinai), Where Ppinq; denotes the number of
compute servers that did not fail.

To test the overhead of running a task server on the
same machine as a compute server, we ran a 22 proces-
sor experiment both with a dedicated task server and with a
task server running on the same machine as one of the com-
pute servers. We recorded the completion times and report
the averages of 8 runs.

THE MEASUREMENTS

T'p denotes the time for P physical processors to run the
application. A computation’s critical path time, denoted
T, is a maximum time path from the source task to the
sink task. We captured the critical path time for this prob-
lem instance: It is 37 seconds. A well known lower bound
on the completion time [3] is max{7s,71/P}. Thus,
(max{Two, T1/P})/Tp is a lower bound on the fraction of
perfect speedup that is actually attained. Figure 2 presents
speedup data for several experiments: The ordinate in the
figure is the lower bound of fraction of perfect speedup.
As can be seen from the figure, in all cases, the actual frac-
tion of perfect speedup exceeds 0.94; it exceeds 0.96, when
using an appropriate number of task servers. Specifically,
the 2-processor base case ran in 9 hours and 33 minutes;
whereas the 120-processor experiment (2 processors per
host) ran in under 12 minutes!
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Figure 2. Number of processors vs. % of ideal speedup.

We get superlinear speedups for 4, 8, 16, and 32
processors. The standard deviation was less than 1.6% of
the size of the average. As such, the superlinearity can-
not be explained by statistical error. However, differences
in object placement in the memory hierarchy can have im-
pacts greater than the gap in speedup we observe [8]. So
within experimental factors beyond our control, Jicos per-
forms well.

We are very encouraged by these measurements, es-
pecially considering the small average task times. Javelin,
for example, was not able to achieve such good speedups
for 2 second tasks. Even CX [5, 6] is not capable of such
fine task granularity.

P, = Ty /T is a lower bound on the number of
processors necessary to extract the maximum parallelism
from the problem. For this problem instance, P, = 1,857
processors. Thus, 1,857 processors is a lower bound on
the number of processors necessary to bring the completion
time down to 7%, namely, 37 seconds.

Table 1. Fault Tolerance (Times are in seconds)

Processors | Theoretical | Measured Per cent
(Final) Time Time | Overhead

30 2119.43 2194.95 3.6%

26 2214.73 2300.92 3.9%

12 3048.58 2974.35 -2.4%

8 3822.87 4182.62 9.4%

6 4597.16 4884.86 6.3%

4 6145.74 6559.91 6.7%

Our fault tolerance data is summarized in Table 1.
Overhead is caused by the rescheduling of tasks lost when
a Host failed as well as some time taken by the TaskServer
to recognize a faulty Host. Negative overhead is a conse-

95.8% 96.7% 94.1%
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quence of network traffic and thread scheduling preventing
a timely transfer of the kill command to the appropriate
Host.

When measuring the overhead of running a task
server on a machine shared with a compute server, we re-
ceived an average of 3115.1 seconds for a dedicated task
server and 3114.8 seconds for the shared case. Both of
these represent 99.7% ideal speedup. This is not too sur-
prising: there is a slight reduction in communication la-
tency having the task server on the same machine as a com-
pute server, and the computational load of the task server
is small due to the simplicity of the compose task (it is a
comparison of two upper bounds). It therefore appears ben-
eficial to place a compute server on every available com-
puter in a JICOS system without dedicating machines to
task servers.

5 Conclusion and Future Work

Jicos is a Java-centric distributed service for high-
performance parallel computing. We briefly described its
API, which includes Cilk-like divide-and-conquer mecha-
nisms plus a globally accessible input object and an asyn-
chronously shared object. The architecture has 3 main
component types, a hosting service provider which medi-
ates clients with a network of task servers, each of which
has an associated, dynamic set of compute servers, called
hosts. Experimental results show that it maintains excellent
speedup: It performed a 200-city TSPLIB traveling sales-
man problem via branch-and-bound using 1 host (2 CPUs)
in 9 hours and 33 minutes, while doing the same problem
using 120 CPUs in under 12 minutes, attaining 96.66% of
ideal speedup in a heterogeneous environment.

Load balancing the tasks generated by branch-and-
bound computations is notoriously difficult. Our speedups
are quite good, due in no small part to the Jicos API, which
includes a simple set of application-controlled directives
for improving performance by reducing communication la-
tency or overlapping it with task execution. Transactions
are avoided. We intend to perform more detailed perfor-
mance experiments to get quantitative data on the effec-
tiveness of the latency-hiding techniques: caching tasks,
prefetching tasks, and executing tasks on the task server.
We intend to experimentally determine the number of hosts
that a task server can serve, as a function of the average
task time. This information may move us further in the di-
rection of autonomic computing, dynamically provisioning
task servers and hosts according to (moving) average task
execution times, for example.

Jicos currently gathers task execution times per task
class per host per task server. If this information is com-
bined with host characteristics, we could construct a sched-
uler that is aware of particular host and task characteristics,
with the goal of shortening the computation’s critical path
time, which is automatically calculated by the system for
each client computation.

The fault tolerance of our compute servers is efficient,



both when faults occur (as indicated by our fault tolerance
performance experiments), and when they do not (as indi-
cated by our speedup experiments, in which no faults oc-
cur). This efficiency is due primarily to JICOS’s use of a
space-based architecture and explicit continuation passing,
which minimizes the need for recomputation. We have a
plan, based on the Satin scheme, for enabling Jicos to re-
cover from task server failures.

Finally, the overhead of task servers is shown to be
quite small, further confirming the efficiency of JICOS as a
distributed system.
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