Combinatorics Summary

Department of Computer Science
University of California, Santa Barbara

Fall 2006

The Product Rule

If a procedure has 2 steps and there are n_{1} ways to do the $1^{\text {st }}$ task and, for each of these ways, there are n_{2} ways to do the $2^{n d}$ task, then there are $n_{1} n_{2}$ ways to do the procedure.

The Sum Rule

If sets A and B are disjoint, then $|A \cup B|=|A|+|B|$.

Permutations

1. A permutation of a set of objects is an arrangement of these objects.
2. An arrangement of r elements of a set is called an r-permutation.
3. If $n \in \mathbf{Z}^{+}$and $r \in \mathbf{Z}^{+}$with $1 \leq r \leq n$, then there are

$$
P(n, r)=n(n-1)(n-2) \cdots(n-r+1)=n!/(n-r)!
$$

r-permutations of a set with n elements.

Combinations

1. An r-combination of elements of a set is a subset with r elements.
2. The number of r-combinations (or r-subsets) of a set of n elements is denoted $C(n, r)$ or $\binom{n}{r}$. These numbers are referred to as binomial coefficients.
3. The number of r-permutations from a set of n elements, $P(n, r)$, can be counted using the product rule:
(a) Select the r elements to be permuted from the set of n elements: $\binom{n}{r}$
(b) Permute the r elements: r !

That is,

$$
P(n, r)=\binom{n}{r} P(r, r)
$$

Thus,

$$
\binom{n}{r}=\frac{P(n, r)}{P(r, r)}=\frac{n!}{(n-r)!r!}=n(n-1)(n-2) \cdots(n-r+1) / r!
$$

4. For every subset of r elements, A, there is a corresponding subset, \bar{A}, of $n-r$ elements: The number of r-subsets equals the number of $(n-r)$-subsets:

$$
\binom{n}{r}=\binom{n}{n-r}
$$

The Binomial Theorem

$$
\begin{aligned}
(x+y)^{n} & =\sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j} \\
& =\binom{n}{0} x^{n} y^{0}+\binom{n}{1} x^{n-1} y^{1}+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n} x^{0} y^{n}
\end{aligned}
$$

1. Evaluating the Binomial Theorem at $x=y=1$, we get

$$
\begin{aligned}
2^{n} & =\sum_{j=0}^{n}\binom{n}{j} \\
& =\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n} .
\end{aligned}
$$

2. Evaluating the Binomial Theorem at $x=1$ and $y=-1$, we get

$$
0=\sum_{j=0}^{n}\binom{n}{j}(-1)^{j}
$$

Moving all the negative terms to the other side, we get

$$
\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=\binom{n}{1}+\binom{n}{3}+\binom{n}{5}+\cdots . .
$$

3. Any valid manipulation of the Binomial Theorem yields some identity involving binomial coefficients.

Some other Binomial Identities

We can use committee arguments to arrive at other binomial identities.

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k} .
$$

Vandermonde's Identity

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k} .
$$

Combinations with Repetition

- How many ways are there to select n items from a set of r elements when repetition is allowed?
- How many nonnegative integer solutions are there to the equation

$$
x_{1}+x_{2}+\cdots+x_{r}=n ?
$$

- How many ways are there to distribute n identical objects into r distinct boxes?

The answer to the questions above is $\binom{n+r-1}{r-1}=\binom{n+r-1}{n}$.

Arrangements with Repetition

- How many arrangements are there of n_{1} objects of type $1, n_{2}$ objects of type $2, \ldots, n_{r}$ objects of type r, where $n_{1}+n_{2}+\cdots+n_{r}=n$?
- How many ways are there to distribute n distinct objects into r distinct boxes so that n_{i} objects are put in box i, for $i=1,2, \ldots, r$?

The answer to the questions above is

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

Inclusion-Exclusion

Let's say that we want to count a set of objects that can be characterized as having either property P_{1}, P_{2}, \ldots, or P_{n}. Further, A_{i} is the set of objects that have property P_{i}, for $i=1,2, \ldots, n$. Then the set of objects we are interested in counting is

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n} .
$$

The inclusion-exclusion formula allows us to count the elements in this union of sets, even though the sets may not be disjoint:

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| & =\sum_{1 \leq i \leq n}\left|A_{i}\right|-\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{n+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Now, let's say that we want to count a set of objects that can be characterized as having property P_{1}, P_{2}, \ldots, and P_{n}. Further, A_{i} is the set of objects that do not have property P_{i}, for $i=1,2, \ldots, n$. Then, the set of objects we are interested in counting is

$$
\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}}
$$

However, by De Morgan's law,

$$
\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n}}=\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=U-\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right) .
$$

The inclusion-exclusion formula thus allows us to solve such counting problems.

