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The Product Rule

If a procedure has 2 steps and there are n1 ways to do the 1st task and, for each of these ways,
there are n2 ways to do the 2nd task, then there are n1n2 ways to do the procedure.

The Sum Rule

If sets A and B are disjoint, then |A ∪B| = |A|+ |B|.

Permutations

1. A permutation of a set of objects is an arrangement of these objects.

2. An arrangement of r elements of a set is called an r-permutation.

3. If n ∈ Z+ and r ∈ Z+ with 1 ≤ r ≤ n, then there are

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) = n!/(n− r)!

r-permutations of a set with n elements.

Combinations

1. An r-combination of elements of a set is a subset with r elements.

2. The number of r-combinations (or r-subsets) of a set of n elements is denoted C(n, r) or(
n
r

)
. These numbers are referred to as binomial coefficients.

3. The number of r-permutations from a set of n elements, P (n, r), can be counted using the
product rule:

(a) Select the r elements to be permuted from the set of n elements:

(
n
r

)

(b) Permute the r elements: r!
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That is,

P (n, r) =

(
n
r

)
P (r, r).

Thus, (
n
r

)
=

P (n, r)
P (r, r)

=
n!

(n− r)!r!
= n(n− 1)(n− 2) · · · (n− r + 1)/r!.

4. For every subset of r elements, A, there is a corresponding subset, A, of n− r elements: The
number of r-subsets equals the number of (n− r)-subsets:

(
n
r

)
=

(
n

n− r

)
.

The Binomial Theorem

(x + y)n =
n∑

j=0

(
n
j

)
xn−jyj

=

(
n
0

)
xny0 +

(
n
1

)
xn−1y1 +

(
n
2

)
xn−2y2 + · · ·+

(
n
n

)
x0yn.

1. Evaluating the Binomial Theorem at x = y = 1, we get

2n =
n∑

j=0

(
n
j

)

=

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
n

)
.

2. Evaluating the Binomial Theorem at x = 1 and y = −1, we get

0 =
n∑

j=0

(
n
j

)
(−1)j

Moving all the negative terms to the other side, we get
(

n
0

)
+

(
n
2

)
+

(
n
4

)
+ · · · =

(
n
1

)
+

(
n
3

)
+

(
n
5

)
+ · · · ..

3. Any valid manipulation of the Binomial Theorem yields some identity involving binomial
coefficients.

Some other Binomial Identities

We can use committee arguments to arrive at other binomial identities.
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Pascal’s Identity

(
n + 1

k

)
=

(
n

k − 1

)
+

(
n
k

)
.

Vandermonde’s Identity

(
m + n

r

)
=

r∑

k=0

(
m

r − k

) (
n
k

)
.

Combinations with Repetition

• How many ways are there to select n items from a set of r elements when repetition is allowed?

• How many nonnegative integer solutions are there to the equation

x1 + x2 + · · ·+ xr = n?

• How many ways are there to distribute n identical objects into r distinct boxes?

The answer to the questions above is

(
n + r − 1

r − 1

)
=

(
n + r − 1

n

)
.

Arrangements with Repetition

• How many arrangements are there of n1 objects of type 1, n2 objects of type 2, . . ., nr objects
of type r, where n1 + n2 + · · ·+ nr = n ?

• How many ways are there to distribute n distinct objects into r distinct boxes so that ni

objects are put in box i, for i = 1, 2, . . . , r?

The answer to the questions above is

n!
n1!n2! · · ·nr!

.

Inclusion-Exclusion

Let’s say that we want to count a set of objects that can be characterized as having either property
P1, P2, . . . , or Pn. Further, Ai is the set of objects that have property Pi, for i = 1, 2, . . . , n. Then
the set of objects we are interested in counting is

A1 ∪A2 ∪ · · · ∪An.

The inclusion-exclusion formula allows us to count the elements in this union of sets, even
though the sets may not be disjoint:
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|A1 ∪A2 ∪ · · · ∪An| =
∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |

+
∑

1≤i<j<k≤n

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n+1|A1 ∩A2 ∩ · · · ∩An|

Now, let’s say that we want to count a set of objects that can be characterized as having
property P1, P2, . . . , and Pn. Further, Ai is the set of objects that do not have property Pi, for
i = 1, 2, . . . , n. Then, the set of objects we are interested in counting is

A1 ∩A2 ∩ · · · ∩An.

However, by De Morgan’s law,

A1 ∩A2 ∩ · · · ∩An = A1 ∪A2 ∪ · · · ∪An = U − (A1 ∪A2 ∪ · · · ∪An).

The inclusion-exclusion formula thus allows us to solve such counting problems.
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