Foundations of Computer Science Key Terms \& Results

Peter Cappello
Department of Computer Science
University of California, Santa Barbara

The Foundations: Logic \& Proofs

TERMS

proposition: a declarative statement that is true or false, but not both
propositional variable: a variable that represents a proposition
$\neg p$ (negation of p): the proposition with truth value opposite to the truth value of p
logical operators: operators used to combine propositions
compound proposition: a proposition constructed by combining propositions using logical operators $p \vee q$ (disjunction of p and q): the proposition " p or q," which is true if and only if at least 1 of p and q is true $p \wedge q$ (conjunction of p and $q)$: the proposition " p and q," which is true if and only if both p and q are true $p \rightarrow q(p$ implies $q)$: the proposition "if p then q," which is false if and only if p is true and q is false $p \leftrightarrow q$ (biconditional): the proposition " p if and only if q," which is true if and only if p and q have the same truth value
$p \oplus q$ (exclusive or of p and $q)$: the proposition " p XOR q," which is true when exactly 1 of p and q are true
converse of $p \rightarrow q: q \rightarrow p$
inverse of $p \rightarrow q: \neg p \rightarrow \neg q$
contrapositive of $p \rightarrow q: \neg q \rightarrow \neg p$
tautology: a compound proposition that always is true
contradiction: a compound proposition that always is false
predicate: the part of a sentence that attributes a property to the subject
propositional function: a statement containing 1 or more variables that becomes a proposition when each of its variables is assigned a value or is bound by a quantifier
domain (or universe) of discourse: the set of values a variable in a propositional function may take
$\exists x P(x)$ (existential quantification of $P(x)$): the proposition that is true if and only if there exists an x in the domain such that $P(x)$ is true
$\forall x P(x)$ (universal quantification of $P(x)$): the proposition that is true if and only $P(x)$ is true for every x in the domain
free variable: a variable not bound in a proposition function
bound variable: a variable that is quantified
scope of a quantifier: part of a statement where the quantifier binds its variable
argument: a sequence of statements
argument form: a sequence of compound propositions involving propositional variables
premise: a statement, in an argument or argument form, other than the final one
conclusion: the final statement in an argument or argument form
valid argument form: a sequence of propositions involving propositional variables where the truth of all the premises implies the truth of the conclusion
valid argument: an argument with a valid argument form
rule of inference: a valid argument form that can be used in the demonstration that arguments are valid fallacy: an invalid argument form
theorem: a mathematical assertion that can be shown to be true
conjecture: a mathematical assertion proposed to be true, but that has not been proven
proof: a demonstration that a theorem is true
axiom: a basic assumption of a theory, assumed to be true, that can be used as a basis for proving theorems
lemma: a theorem used to prove other theorems
corollary: a proposition that can be proved as a consequence of a theorem
vacuous proof: a proof that $p \rightarrow q$ is true based on the fact that p is false
trivial proof: a proof that $p \rightarrow q$ is true based on the fact that q is true
direct proof: a proof that $p \rightarrow q$ is true that proceeds by showing that q must be true when p is true proof by contraposition: a proof that $p \rightarrow q$ is true that proceeds by showing that p must be false when q is false proof by contradiction: a proof that p is true based on the truth of $\neg p \rightarrow q$, where q is a contradiction proof by cases: a proof decomposed into separate cases, where these cases cover all possibilities without loss of generality: an assumption in a proof that makes it possible to prove a theorem by reducing the number of cases needed in the proof
counterexample: an element x such that $P(x)$ is false
constructive existence proof: a proof that an element with a specified property exists by explicitly finding such an element
nonconstructive existence proof: a proof that an element with a specified property exists that does not explicitly find such an element

Results

- The following logical equivalences from Table 6:

Double negation: $\neg(\neg p) \equiv p$
Commutative:

$$
\begin{aligned}
& p \vee q \equiv q \vee p \\
& p \wedge q \equiv q \wedge p
\end{aligned}
$$

Associative:

$$
\begin{aligned}
& (p \vee q) \vee r \equiv p \vee(q \vee r) \\
& (p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
\end{aligned}
$$

Distributive:

$$
\begin{aligned}
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

DeMorgan's:

$$
\begin{aligned}
& \neg(p \vee q) \equiv \neg p \wedge \neg q \\
& \neg(p \wedge q) \equiv \neg p \vee \neg q
\end{aligned}
$$

- The following equivalences of implication:

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p
\end{aligned}
$$

- The following equivalences of biconditional:

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(\neg p \rightarrow \neg q) \\
& p \leftrightarrow q \equiv \neg(p \oplus q)
\end{aligned}
$$

- DeMorgan's laws for quantifiers

$$
\begin{aligned}
& \neg \exists P(x) \equiv \forall x \neg P(x) \\
& \neg \forall P(x) \equiv \exists x \neg P(x)
\end{aligned}
$$

- The following rules of inference for propositional logic:

Modus ponens: $[p \wedge(p \rightarrow q)] \rightarrow q$
Hypothetical syllogism: $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
Resolution: $[(p \vee q) \wedge(\neg p \vee r)] \rightarrow(q \vee r)$

- The rules of inference for quantified statements:

Universal instantiation: If $\forall x P(x)$, then $P(c)$ for any c in the domain.
Universal generalization: If $P(c)$ for arbitrary c, then $\forall x P(x)$
Existential instantiation: If $\exists x P(x)$, then $P(c)$ for some c in the domain. We however do not know which element in the domain c is.
Existential generalization: If $P(c)$ for some c, then $\exists x P(x)$

SET \& FUNCTIONS

TERMS

set: a collection of distinct objects
paradox: a logical inconsistency
element, member of a set: an object in a set
\emptyset (empty set, null set): the set with no members
universal set: the set containing all objects under consideration
Venn diagram: a graphical representation of a set or sets
$S=T$ (set equality): $\forall x(x \in S \leftrightarrow x \in T)$
$S \subseteq T(S$ is a subset of $T): \forall x(x \in S \rightarrow x \in T)$
$S \subset T(S$ is a proper subset of $T): S \subseteq T \wedge S \neq T$
finite set: a set with n elements, where n is a natural number
infinite set: a set that is not finite
$|S|$ (the cardinality of S): the number of elements in S
$P(S)$ (the power set of S): $\{s \mid s \subseteq S\}$
$A \cup B(A$ union $B): x \in A \cup B \leftrightarrow(x \in A \vee x \in B)$
$A \cap B(A$ intersection $B): x \in A \cap B \leftrightarrow(x \in A \wedge x \in B)$
$A-B(A$ minus $B): x \in A-B \leftrightarrow(x \in A \wedge x \notin B)$
\bar{A} (the complement of A): $U-A$, where U is the universal set.
$A \oplus B$ (symmetric difference of A and $B): x \in A \oplus B \leftrightarrow(x \in A \oplus x \in B)$
membership table: a table displaying the membership of elements in sets
function from A to B : an assignment such that, $\forall a \in A, a$ is assigned to exactly 1 element $b \in B$.
domain of f : the set A, where f is a function from A to B
codomain of f : the set B, where f is a function from A to B
b is the image of a under $\mathbf{f}: b=f(a)$
a is the pre-image of b under $\mathbf{f}: f(a)=b$
range of $f:\{b \mid \exists a \in A, f(a)=b\}$
onto function, surjection: f 's range is its codomain: $\forall b \in B \exists a \in A, f(a)=b$
1-to-1 function, injection: $a \neq b \rightarrow f(a) \neq f(b)$
1-to-1 correspondence, bijection: a function that is a surjection and an injection.
inverse of f : when f is a bijection, its inverse, denoted f^{-1}, is the function $f^{-1}(b)=a$, where $f(a)=b$ $f \circ g$ (composition of f and g): the function that assigns $f(g(x)$ to x
$\lfloor x\rfloor$ (floor function): the largest integer not exceeding x
$\lceil x\rceil$ (ceiling function): the smallest integer greater than or equal to x

RESULTS

- The following set identities from Table 1:

Complementation: $\overline{\bar{A}}=A$

Commutative:

$$
\begin{aligned}
& A \cup B=B \cup A \\
& A \cap B=B \cap A
\end{aligned}
$$

Associative:

$$
\begin{aligned}
& A \cup(B \cup C)=(A \cup B) \cup C \\
& A \cap(B \cap C)=(A \cap B) \cap C
\end{aligned}
$$

Distributive:

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

DeMorgan's:

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

The Fundamentals: Algorithms \& Growth of Functions

TERMS

algorithm: a finite sequence of precise instructions for performing a computation or solving a problem.
$f(x)$ is $O(g(x))$: the fact that $|f(x)| \leq C|g(x)|$, for all $x>k$, for some positive constants C and k.
$f(x)$ is $\Omega(g(x))$: the fact that $|f(x)| \geq C|g(x)|$, for all $x>k$, for some positive constants C and k.
$f(x)$ is $\Theta(g(x))$: the fact that $f(x)$ is $O(g(x))$ and $f(x)$ is $\Omega(g(x))$.
$a \mid b(a$ divides $b):$ there is an integer c such that $b=a c$.
$a \bmod b:$ the remainder when the integer a is divided by integer b.
$a \equiv b(\bmod m)(a$ is congruent to b modulo $m): m \mid(a-b)$.

RESULTS

division algorithm: Let $a \in Z$ and $d \in Z^{+}$. Then there are unique $q, r \in Z$ with $0 \leq r<d$ such that $a=d q+r$.

Induction \& RECURSION

Terms

the principle of mathematical induction: That the following statement is true:

$$
(P(1) \wedge \forall k[P(k) \rightarrow P(k+1)]) \rightarrow \forall n P(n) .
$$

basis step: The proof of $P(1)$ in a proof by mathematical induction of $\forall n P(n)$.
inductive step: The proof of $\forall k[P(k) \rightarrow P(k+1)]$ in a proof by mathematical induction of $\forall n P(n)$.
strong induction: That the following statement is true:

$$
(P(1) \wedge \forall k[(P(1) \wedge \cdots \wedge P(k)) \rightarrow P(k+1)]) \rightarrow \forall n P(n) .
$$

well-ordering property: Every nonempty set of nonnegative integers has a least element.
recursive definition of a function: a definition of a function that specifies an initial set of values and a rule for obtaining values of this function at integers from its values at smaller integers.
recursive definition of a set: a definition of a set that specifies an initial set of elements in the set and a rule for obtaining other elements from those in the set.
structural induction: a technique for proving results about recursively defined sets.
recursive algorithm: an algorithm that proceeds by reducing a problem to the same problem with smaller input.

Counting

TERMS

permutation: an ordered arrangement of the elements of a set
r-permutation: an ordered arrangement of r elements of a set
$P(n, r)$: the number of r-permutations of a set with n elements.
$C(n, r)$: the number of r-combinations of a set with n elements
$\binom{n}{r}$ (binomial coefficient): $C(n, r)$.
combinatorial proof of an identity: a proof that uses counting arguments to prove that both sides of an identity count the same set of objects in different ways
Pascal's triangle: a representation of the binomial coefficients where the i th row of the triangle contains $\binom{i}{j}$, for $j=0,1,2, \ldots, i$.

RESULTS

product rule: a basic counting technique: the number of ways to do a procedure that consists of 2 subtasks is the number of ways to do the 1 st subtask times the number of ways to do the 2 nd subtask after the 1 st subtask has been done
sum rule: a basic counting technique: the number of ways to do a task in 1 of 2 ways is the sum of the number of ways to do these tasks if they cannot be done simultaneously
pigeonhole principle: When more than k objects are placed in k boxes, there must be a box with more than 1 object.
generalized pigeonhole principle: When N objects are placed in k boxes, there must be a box with at least $\lceil N / k\rceil$ objects.
$P(n, r)=\frac{n!}{(n-r)!}$
$C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
Pascal's Identity: $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$
Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}$

There are $n^{r} r$-permutations of a set with n elements when repetition is allowed.
There are $C(n+r-1, r) r$-combinations of a set with n elements when repetition is allowed.
There are $\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}$ permutations of n objects where there are n_{i} indistinguishable objects of type i, for $i=$ $1,2, \ldots, k$.

RECURRENCE RELATIONS

TERMS

recurrence relation: a formula expressing terms of a sequence, except for some initial terms, as a function of 1 or more previous terms of the sequence
initial conditions of a recurrence relation: the values of the terms of a sequence satisfying the recurrence relation before this relation takes effect
divide-and-conquer algorithm: an algorithm that solves a problem recursively by splitting it into a fixed number of smaller problems of the same type

Results

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Relations

Terms

binary relation from A to B : A subset of $A \times B$.
relation on A : a binary relation from A to itself.
$S \circ R:\{(s, t) \mid \exists x,(s R x \wedge x S t)\}$.
$R^{-1}:\{(t, s) \mid s R t\}$.
R^{n} : the $n^{\text {th }}$ power of R.
reflexive: a relation R on A is reflexive if $\forall a \in A, a R a$.
symmetric: a relation R on A is symmetric if $\forall a, b \in A, a R b \rightarrow b R a$.
antisymmetric: a relation R on A is antisymmetric if $\forall a, b \in A,(a R b \wedge b R a) \rightarrow a=b$.
transitive: a relation R on A is transitive if $\forall a, b, c \in A,(a R b \wedge b R c) \rightarrow a R c$.
directed graph or digraph: a set of elements called nodes or vertices and ordered pairs of these elements, called edges or arcs.
path in a digraph: a sequence of arcs $\left(a, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n}, b\right)$ such that the terminal node of each arc is the initial node of the succeeding arc in the sequence.
circuit (or cycle) in a digraph: a path in the digraph that begins and ends at the same node.
equivalence relation: a reflexive, symmetric, and transitive relation.
equivalent: if R is an equivalence relation, a is equivalent to b if $a R b$.
$[a]_{R}$ (equivalence class of a with respect to R): $\{b \mid a R b\}$.
partition of a set S : a collection of a pairwise disjoint nonempty subsets that have S as their union.
partial ordering: a relation that is reflexive, antisymmetric, and transitive.
poset (S, R) : a set S and a partial ordering R on S.
comparable: the elements a and b in the poset (A, \preceq) are comparable if $a \preceq b$ or $b \preceq a$.
incomparable: elements in a poset that are not comparable.
total (or linear) ordering: a partial ordering for which every pair of elements are comparable.

RESULTS

1. Let R be an equivalence relation. Then, the following 3 statements are equivalent:

- $a R b$.
- $[a]_{R} \cap[b]_{R} \neq \emptyset$.
- $[a]_{R}=[b]_{R}$.

2. The equivalence classes of an equivalence relation on a set A form a partition of A. Conversely, an equivalence relation can be constructed from any partition so that the equivalence classes are the subsets in the partition.

Graphs

TERMS

undirected edge: An edge associated with a set $\{u, v\}$, where u and v are vertices.
directed edge: An edge associated with an ordered pair (u, v), where u and v are vertices.
loop: An edge connecting a vertex with itself.
undirected graph: A set of vertices and a set of undirected edges each of which is associated with a set of 1 or 2 of these vertices.
simple graph: An undirected graph with no multiple edges and no loops.
multigraph: An undirected graph that may contain multiple edges but no loops.
directed graph: A set of vertices and a set of directed edges each of which is associated with an ordered pair of vertices.
adjacent: Two vertices are adjacent if there is an edge between them.
incident: An edge is incident to a vertex if the vertex is an endpoint of that edge.
$\operatorname{deg}(v)$ (the degree of the vertex v in an undirected graph): The number of edges incident to v with loops counted twice.
$\operatorname{deg}^{-}(v)$ (the in-degree of the vertex v in a graph with directed edges): The number of edges with v as their terminal vertex.
$\operatorname{deg}^{+}(v)$ (the out-degree of the vertex v in a graph with directed edges): The number of edges with v as their initial vertex.
K_{n} (Complete graph on n vertices): The undirected graph with n vertices where each pair of vertices is connected by an edge.
bipartite graph: A graph with a vertex set that can be partitioned into subsets V_{1} and V_{2} such that each edge connects a vertex in V_{1} and a vertex in V_{2}.
$K_{m, n}$ (Complete bipartite graph: The graph with a vertex set partitioned into a subset of m vertices and a subset of n vertices such that 2 vertices are connected by an edge if and only if one vertex is in the first subset and the other is in the second subset.
C_{n} (cycle of size n), $n \geq 3$: The graph with n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\}$. adjacency matrix: A matrix representing a graph using the adjacency of vertices.
incidence matrix: A matrix representing a graph using the incidence of edges of vertices.
circuit: A path of length $n \geq 1$ that begins and ends at the same vertex.
connected graph: An undirected graph with the property that there is a path between every pair of vertices.
strongly connected directed graph: An directed graph with the property that there is a directed path from every vertex to every vertex.

Euler circuit: A circuit that contains every edge of the graph exactly once.
Hamilton circuit: A circuit in a simple graph that visits each vertex exactly once.

RESULTS

1. There is an Euler circuit in a connected multigraph if and only if every vertex has even degree.
