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Introduction

A mathematical proof, no less than a poem, musical composition, or computer
program, can be a thing of beauty. Composing a mathematical proof is similar,
in some respects, to the human artifacts mentioned above: The first version is
not the final version. There are stylistic considerations, as one seeks precision,
clarity, and elegance. Achieving these attributes entails iteratively refining the
proof, as one would an essay, poem, musical composition, or computer program.

Incremental improvements are at best inconvenient when the proof is ren-
dered with a pencil and paper, enough so that, to seek excellence, one must
venture into a machine-readable medium. Latex currently is the easiest and
most popular tool for this purpose. Its use eliminates the inhibition and incon-
venience associated with erasing and rewriting, and enables rapid production
of multiple lines of mathematics that differ symbolically only in small ways.
These seemingly minor mechanical advantages are key to the accumulation of
improvements needed to turn a first draft into an elegant proof of publication
quality.

In producing the proofs below, I hope to help you 1) learn by example
what I like to see in the form of a proof, and 2) explore personally issues of
mathematical style. If you think any of the proofs are incorrect or could be
simpler, clearer, or improved in any other way, please email me.

On a separate page, the latex used to produce these proofs is provided as
evidence that latex is a labor-saving device, even for mathematical work as
ephemeral as homework.

Style

I encourage a mathematical style that I think is appropriate for a student taking
a first course where mathematical proofs are the coin of the realm: As you
mature mathematically, some elements can be abbreviated or omitted. For now,
err on the side of giving an explanations where none is needed. Similarly, strive
for a form that is clear to another first-year student. Indeed, asking another
student to read your proof is a good source of feedback.

One source of thoughts about mathematical writing style is a document by
Goss [4]. Another is by Gillman [3]. There also is a guide to the use of the
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Americam Mathematical Society (AMS) Latex package [2] and an AMS author-
related FAQ [1].

Below, I produce a few style notes, certainly not a comprehensive list. Also,
some of these notes run against the grain of convention. Please use your own
judgment.

1. It generally is considered bad form to mix mathematical symbols with
English words (e.g., ∀n ∈ N,n2 is greater than 0.) I disagree. Please use
mathematical symbols as much as possible; this results in fewer characters,
enabling the eye to see more content at once. I also disagree, and for the
same reasons, with the rule that numbers less than 10 should be written
in English. In my opinion, this is like saying, for the number 7, “Why use
a single universally understood symbol, when we can use a sequence of
five letters that only English speakers understand?”

2. It often is helpful to give a concrete example before giving a fully general
proof.

3. A proof should be free of debris that obscures the forest for the trees. Omit
purely routine symbol manipulation (i.e., not requiring a trick). What
constitutes a “trick” however depends on your audience: Whether or not
a proof is well written depends on the intended audience.

4. A diagram or picture may convey properties better than a 1000 words.
Fig. 1 is a fine proof of the Pythagorean theorem.

Figure 1: Proof of Pythagorean theorem.
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Mathematical Induction

The following proofs are of exercises in Rosen [5], §5.1: Mathematical Induction.

Exercise 62

Show that n lines separate the plane into (n2 +n+ 2)/2 regions, if no 2 of these
lines are parallel and no 3 pass through a common point.

Let rn denote the number of regions in the partition of the plane by n lines,
where no 2 of these lines are parallel and no 3 pass through a common point.

Theorem. ∀n ∈ N rn = (n2 + n + 2)/2.

Proof. By induction on n, the number of lines.
Basis: n = 0: If the plane is partitioned by 0 lines, there is 1 = (02 + 0 + 2)/2
region.
Induction hypothesis: rn = (n2 + n + 2)/2.
Induction: Let there be n + 1 lines in the plane, where no lines are parallel
and no 3 lines intersect at the same point. Remove any line. By the inductive
hypothesis, the remaining n lines partition the plane into (n2 +n+2)/2 regions.
Fig. 2(A) illustrates a plane partitioned into 11 regions by 4 lines. In part (B),
adding a 5th (red) line increases the number of regions by 5.

Figure 2: (A) A plane partitioned into 11 regions by 4 lines.
(B) A plane partitioned into 11 + 5 regions by adding a 5th (red) line.

In general, when line n + 1 is placed so that it is not parallel to any of
the other n lines and it intersects each line l at a point where no other lines
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intersect line l, then n such intersections are formed. Order these intersection
points from left to right (or bottom to top, if they are vertical). The region
to the left of (or below) the 1st intersection point, is divided into 2 regions by
line n + 1. Similarly, when this line enters the region to the right (or top) of
an intersection point, it subdivides this region into 2 regions. Since there are
n intersection points, this increases the number of regions by n, totalling n + 1
additional regions:

rn+1 = rn + n + 1 (1)

=
n2 + n + 2

2
+ n + 1 (2)

=
(n + 1)2 + (n + 1) + 2

2
(3)

Above, the inductive hypothesis is used to go from Eqn. (1) to (2).

Structural Induction

The following proofs are of exercises in Rosen [5], §5.3: Recursive Definitions &
Structural Induction.

Exercise 44

The set of full binary trees is defined recursively:

Basis step: The tree consisting of a single vertex is a full binary tree.

Recursive step: If T1 and T2 are disjoint full binary trees, there is a full binary
tree, denoted by T1 · T2, consisting of a root r together with edges con-
necting r to each of the roots of the left subtree T1 and the right subtree
T2.

Use structural induction to show that l(T ), the number of leaves of a full
binary tree T , is 1 more than i(T ), the number of internal vertices of T .

Theorem. If T is a full binary tree, l(T ) = i(T ) + 1.

Proof. By structural induction.
Basis: The full binary tree consisting of a single vertex, denoted •, clearly has
1 leaf and 0 internal vertices: l(•) = i(•) + 1.
Recursive step: Assume for full binary trees T1 and T2 that

l(T1) = i(T1) + 1 (4)

l(T2) = i(T2) + 1. (5)
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Figure 3: An illustration of full binary tree of T1 · T2.

For full binary tree T1 · T2 (see Fig. 3),

i(T1 · T2) = i(T1) + i(T2) + 1 (6)

l(T1 · T2) = l(T1) + l(T2) (7)

= (i(T1) + 1) + (i(T2) + 1) (8)

= i(T1 · T2) + 1. (9)

Eqns. (6) and (7) follow from the construction of T1 · T2; (8) follows from the
induction hypotheses; (9) follows from (6).

Equivalence Relations

The following proofs are of exercises in Rosen [5], §9.5: Equivalence Relations.

Exercise 54

Suppose that R1 and R2 are equivalence relations on a set A, and that P1 and
P2 are their respective partitions. Show that R1 ⊆ R2 ⇔ P1 refines P2.

Proof.

R1 ⊆ R2 ⇔ ∀a∀b (aR1b⇒ aR2b) (10)

⇔ ∀a([a]R1
⊆ [a]R2

) (11)

⇔ P1 refines P2. (12)

The left side of eqn. (10) is equivalent to the right side, by the definition of
subset. The right side of (10) is equivalent to (11) by the definition of equivalence
class. Eqn. (11) is equivalent to (12) by the definition of partitions P1 and P2

in terms of their corresponding relations, and the definition of refinement.
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Permutations & Combinations

The following proofs are of exercises in Rosen [5], §6.3: Permutations & Com-
binations.

Exercise 54

How many ways are there for a horse race with 4 horses to finish, if ties are
possible? (Note: Any number of the 4 horses may tie.)

The following general solution was contributed by Benjamin Chang.
Let H be a set of horses. Define binary relation, T on H, where (horse1, horse2) ∈

T when horse1 ties horse2. Since T is an equivalence relation, it partitions the
set of horses. A particular finish of a horse race corresponds to a particular
ordered partition of H.

Let Pn denote the number of ordered partitions of a set of n elements. For
example, there are 3 ordered partitions of {1, 2}:

1. ({1}, {2})

2. ({2}, {1})

3. ({1, 2}).

In general,

1. P0 = 1

2. Pn =
∑n

k=1

(
n
k

)
Pn−k.

The recursive case partitions the set of ordered partitions of a set with n elements
into n subsets according to the number of elements in the first subset of the
ordered partition.

For each k ∈ {1, 2, · · · , n}, there are

(
n
k

)
ways to select the k-set com-

prising the first part of the partition and Pn−k ways to complete the ordered
partition of a set with n elements.

P1 =

(
1
1

)
P0 = 1

P2 =

(
2
1

)
P1 +

(
2
2

)
P0 = 3

P3 =

(
3
1

)
P2 +

(
3
2

)
P1 +

(
3
3

)
P0 = 13

P4 =

(
4
1

)
P3 +

(
4
2

)
P2 +

(
4
3

)
P1 +

(
4
4

)
P0 = 75.
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Binomial Coefficients & Identities

The following proofs are of exercises in Rosen [5], §6.4: Binomial Coefficients &
Identities.

Exercise 32

Prove the Binomial Theorem using mathematical induction.

Proof. Basis: n = 0: 1 = (x + y)0 =

(
0
0

)
x0y0.

Induction hypothesis: (x + y)n =
∑n

j=0

(
n
j

)
xn−jyj .

Induction:

(x + y)
n+1

= (x + y)(x + y)
n

= (x + y)

[(
n
0

)
x
n
y
0

+

(
n
1

)
x
n−1

y
1

+ · · · +

(
n
j

)
x
n−j

y
j

+ · · · +

(
n
n

)
x
0
y
n
]

=

(
n
0

)
x
n+1

y
0

+

(
n
1

)
x
n
y
1

+ · · · +

(
n
j

)
x
n+1−j

y
j

+ · · · +

(
n
n

)
x
1
y
n

+

(
n
0

)
x
n
y
1

+ · · · +

(
n

j − 1

)
x
n−(j−1)

y
j

+ · · · +

(
n

n − 1

)
x
1
y
n

+

(
n
n

)
x
0
y
n+1

=

(
n + 1

0

)
x
n+1

y
0

+

(
n + 1

1

)
x
n
y
1

+ · · · +

(
n + 1

j

)
x
n+1−j

y
j

+ · · · +

(
n + 1

n

)
x
1
y
n

+

(
n + 1
n + 1

)
x
0
y
n+1

The 2nd equation uses the induction hypothesis. The sum that is broken over
2 lines is just x(x+y)n on one line plus y(x+y)n on the following line. The last

line makes use of the fact that

(
n + 1

0

)
=

(
n
0

)
and

(
n + 1
n + 1

)
=

(
n
n

)
,

and uses Pascal’s identity to form the coefficient of each term as the sum of like
terms in the preceding equation.

Applications of Recurrence Relations

The following proofs are of exercises in Rosen [5], §8.1: Applications of Recur-
rence Relations.

Let {an} be a sequence of real numbers. The backward differences of this
sequence are defined recursively as follows. The 1st difference 5an is

5an = an − an−1.

The (k + 1)st difference 5k+1an is

5k+1an = 5kan −5kan−1.

Exercise 50

Prove that an−k is expressible in terms of an,5an,52an, . . . ,5kan.
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Proof. Proof by induction on k.
Basis: k = 1: an−1 = an −5an.
Induction hypothesis: an−k is expressible in terms of an,5an,52an, . . . ,5kan.
Induction: We show that an−(k+1) is a function of an,5an,52an, . . . ,5k+1an.

an−(k+1) = a(n−1)−k (13)

= f(an−1,5an−1,52an−1, . . . ,5kan−1) (14)

= f(an −5an,5an −52an, . . . ,5kan −5k+1an). (15)

Eqn. 14 follows from 13 by the induction hypothesis; eqn. 15 follows from 14
by definition of backward differences.
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