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ABSTRACT
This paper presents a rigorous mathematical theory for the
detection of data races in threaded programs. After creating
a structure with precise definitions and theorems, it goes on
to develop four algorithms with the goal of detecting at least
one race in the situation where the history kept on previous
memory accesses is limited. The algorithms demonstrate the
tradeoff between the amount of access history kept and the
kinds of data races that can be detected. One of these algo-
rithms is a reformulation of a previously known algorithm;
the other three are new. One of the new ones is actually
used in the tool called IntelR©Thread Checker.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Algorithms, Theory, Reliability

Keywords
Data Race, Access Conflict, Thread, Synchronization, Vec-
tor Clock, Happens-before, Dependence

1. INTRODUCTION
Consider a programming environment where a number of

threads are active simultaneously. The instructions in these
threads can be arbitrarily interleaved. If two threads access
the same location x in shared memory and at least one of the
accesses is a ‘write,’ then the final outcome of the program
may depend on the order of the two accesses. This is another
way of saying that a data race may exist in x.

A number of researchers have worked on data race detec-
tion. Netzer and Miller gave formal definitions and charac-
terizations of different types of races in [6]. They also show
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that the problem of detecting data races in a program is
NP-hard. There is no efficient tool that can detect all po-
tential races in the source code of a given parallel program.
There is an on-the-fly approach to race detection that tries
to find at least one data race that actually happens during
a given execution of a program [8]. In such an approach,
one keeps records on accesses to various memory locations.
When a given location is accessed, the record on that access
is compared with records on previous accesses to the same
location to determine if a data race exists for that location.

A thread is divided into parts called segments, and seg-
ments of different threads are partially ordered based on the
way threads communicate among themselves. We keep track
of this partial order by assigning an integer vector called vec-
tor clock to each segment. Whether or not there is a data
race between two segments in a memory location they both
access is then determined by comparing the vector clocks of
the segments. Due to practical considerations, it is not pos-
sible to always carry the information on all segments that
have already accessed a given memory location. This implies
that we may not be able to detect all races in that location.
The focus then shifts to the question: Can we report that
there exists at least one race when races are present?

Algorithms for detecting at least one data race have been
given in [3], [7], [8], and [9]. In this paper, we present a
rigorous mathematical framework in which one can study
the tradeoff between the amount of access history kept and
the kinds of data races that can be detected. We derive
four algorithms based on theorems that show step by step
how our prediction capability improves by keeping more and
more extensive history. The first two algorithms on race
detection can detect races in many situations, and the last
two algorithms can detect races in every situation. Our basic
approach is similar to that in [3], [7], [8], and [9]. The fourth
algorithm on race detection (Algorithm 5) is actually the
algorithm used in [3] and [8], stated in our framework. It is
described in Section 3.4.

An on-the-fly technique reports only races that happen in
a particular execution of the given program. A technique
based on model checking searches exhaustively for races and
can find those in execution paths rarely taken. However,
the search space for such technique could be huge. A hybrid
scheme is presented in [10] that tries to combine the advan-
tages of both approaches while minimizing the difficulties of
both.

For threaded programming, Intel has produced a suite
of tools one of which is the IntelR©Thread Checker. It is
a dynamic analysis tool for detecting violations in the use
of threading and synchronization API’s, including incorrect
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argument usage, incorrect lock usage, and incorrect usage
of shared variables. The last item gives rise to data races
caused by the lack of synchronization. The second algorithm
on race detection (Algorithm 3) presented in this paper is the
one that the Thread Checker uses. Implementation issues
for this algorithm are discussed in [1].

Section 2 builds up the basic structure of the theory, while
Section 3 studies in detail the problem of race detection
with limited history. We describe the prior work relevant
to this paper in Section 4, and finally, some conclusions are
given in Section 5. Theorems, lemmas, and remarks are
numbered consecutively in the same sequence. Algorithms
are numbered separately.

2. BASIC CONCEPTS
A thread in a program is a sequence of instructions that

can be run independently. We consider an execution of
a program on a multiprocessor system in an environment
where multiple threads can be run in parallel. Typically,
the program starts out as a single thread which then cre-
ates several other threads, and as execution continues more
threads are created and terminated. The goal of this section
is to explain the theoretical basis of a structure that enables
us to detect data races in a multi-threaded program.

In the subsections that follow, we define precisely the
parts of a thread called segments, the precedence order be-
tween segments, and the vector clocks of segments that rep-
resent this order. We give an algorithm for the computation
of vector clocks, and derive the condition (involving vector
clocks) under which two segments are parallel. We define
data races and derive conditions for their existence.

2.1 Segments of a Thread
Creation or termination of threads and communication

among threads are all controlled by executing certain special
sequences of instructions called synchronization operations,
or sync ops for short. It is convenient to distinguish between
two types of sync ops: posting and receiving. A sync op
executed on a thread T is a posting sync op, if it posts some
information carried by T that can be read later by T itself or
by some other thread. A sync op executed on a thread T is a
receiving sync op, if it reads the information already posted
by one or more posting sync ops. A given sync op cannot
both post and receive. However, the information posted by
a single posting op can be read by more than one receiving
op, and a given receiving op may read information posted
by more than one posting op.

We assume that when a thread T0 creates a thread T , a
posting sync op A0 is executed on T0 and a receiving sync
op A is executed on T . Thus, T starts with a receiving
sync op. (In the special case when T is the main thread
with which a given program starts, the role of its creator T0

is played by the operating system.) When T ends, its last
action is to execute a posting sync op. At any point during
its lifetime, T may execute a posting or a receiving sync op
to communicate with other threads (or itself).

The sync ops on a given thread are executed in a definite
order. These operations are used to partition the thread into
parts called segments. A segment of a thread is a maximal
sequence of instructions containing exactly one sync op that
ends the sequence. If a segment S ends with a sync op A,
we say that S is defined by A. Also, S is a posting or a

receiving segment, if A is a posting or a receiving sync op,
respectively. In the previous paragraph, the segment of T0

that ends with A0 is a posting segment, and the first segment
of T is a receiving segment consisting only of the receiving
sync op A. Also, the last segment of any thread is a posting
segment.

Consider a thread T and label the distinct sync ops on
it by A1, A2, . . . , An in the order of their execution. Let
Sk denote the segment defined by Ak, where 1 ≤ k ≤ n.
For 2 ≤ k ≤ n, the segment Sk consists of the sequence
of instructions between Ak−1 and Ak, including Ak and ex-
cluding Ak−1. The first segment S1 consists only of the
instructions belonging to the sync op A1.

1 The segments
of T are executed in the order: S1, S2, . . . , Sn. In a given
segment Sk, the instructions are executed sequentially. The
sync op Ak is always executed last, but the other instruc-
tions in Sk, if any, are executed in an unspecified order. No
instructions of Sk are executed before the execution of Ak−1

is complete.
A segment on a thread knows exactly how many segments

on that thread have already executed. However, it has only
a partial knowledge of how many segments on a different
thread have already executed. Any such knowledge that the
segment has is based upon the information, if any, that its
thread has already received by executing receiving sync ops.
Since a global clock is not available, we have to base our
analysis on this incomplete knowledge.

We formalize the ideas of the previous paragraph by defin-
ing a relationship ≺ among segments of the entire program
as follows. Let S denote a segment on a thread T and S′

a segment on a thread T ′. We have S ≺ S′, if one of the
following holds:

1. T = T ′ and S is executed before S′.

2. S is a posting segment on T defined by a sync op A, S′

immediately follows a receiving segment on T ′ defined
by a sync op B, and B reads the information posted
by A. (See Figure 1.)

3. There exists a finite sequence of segments S0, S1, S2, . . . ,
Sm in the program with

S = S0 ≺ S1 ≺ S2 ≺ · · · ≺ Sm−1 ≺ Sm = S′,

such that for 0 ≤ p ≤ m − 1, the relation Sp ≺ Sp+1 holds
in the sense of either Condition 1 or Condition 2.2 If S ≺
S′, the segments S and S′ must be distinct. As usual, the
notation S � S′ means either S ≺ S′ or S = S′. It is
clear that � is a partial order on the set of segments in the
program.

We have collected below some statements that should
clear up possible misconceptions on the definition of the re-
lation ≺.

Remarks 1

1. If S ≺ S′, then segment S must finish executing before
segment S′ starts (in the particular program execution
under consideration).

1This is not unique to S1. An arbitrary segment Sk need
not contain any instructions other than those belonging to
its sync op Ak.
2Condition 3 can now be taken as the general definition of
≺, since the other two conditions are its special cases.
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Figure 1: Segment S of Thread T precedes Segment
S′ of Thread T ′.

2. Even if S finishes executing before S′ starts, the rela-
tion S ≺ S′ may or may not be true.

3. If S and S′ overlap or S finishes before S′ starts, then
S′ ≺ S is false.

4. The relation ≺, when restricted to segments of a fixed
thread, is a total order. If S and S′ are both segments
of the same thread, then it is true that S ≺ S′ if and
only if S is executed before S′.

We often find it convenient to say in words that “S pre-
cedes S′” to indicate that S ≺ S′. From now on, precedence
among segments should always be understood in this nar-
rowly restricted sense.

We end this subsection by introducing the concept of two
segments being parallel. This is crucial in the analysis for
data race detection. Two distinct segments S and S′ in the
given program are parallel, and we write S ‖ S′, if they are
not comparable in terms of the relation ≺. In other words,
we have S ‖ S′ if and only if S ≺ S′ and S′ ≺ S are both
false. It is worthwhile to remember that when two segments
are parallel, they are necessarily distinct and they belong to
two distinct threads.

2.2 Vector Clock of a Segment
We need a numerical representation for the partial order
�, so that given two thread segments one can easily decide
whether or not they are parallel. To this end, we associate
an integer vector called vector clock with each segment S;
it keeps track of how many posting segments on various
threads precede S.

Consider any segment S on any thread T in the program.
Let TS denote the set of all threads known to S. This set
consists of T itself, and every other thread T ′ with a posting
segment S′ such that S′ ≺ S. The vector clock of S is a
function VS : TS → {0, 1, 2, . . . ,∞} defined as follows: For
all T ′ ∈ TS ,

VS(T ′) = [Number of posting segments S′ on T ′ such that

S′ ≺ S].

We adopt the convention that VS(T ′) = 0 if T ′ is not
known to S (i.e., if T ′ 6∈ TS). Then, the vector clock VS(T ′)
is defined for each segment S and each thread T ′. This
makes it possible to compare two vector clocks whose do-
mains of definition were originally different.

The vector clock of a segment is determined by the vector
clocks of its immediate predecessors, if any. We now give a
detailed discussion of this relationship that will lead to an
algorithm for the computation of vector clocks.

As before, S is a segment of a thread T . First, let S be
the first segment of T . Then, there are no segments that
precede S and the only thread known to S is T . This means
TS = {T} and VS(T ) = 0.

Assume next that S is not the first segment of T . Let S1

denote the segment of T that immediately precedes S. Two
cases arise.

First, suppose S1 is a posting segment. On T , the num-
ber of posting segments preceding S is one more than the
number of posting segments preceding S1, since S1 itself
is a posting segment and it precedes S. Hence, VS(T ) =
VS1(T ) + 1. Any information about other threads that T
may have at the start of S was already available at the start
of S1. A posting segment S′ on a thread T ′ 6= T precedes S
iff it precedes S1. Hence, a thread T ′ 6= T is known to S iff
it is known to S1, and on such a thread the set of posting
segments preceding S is identical to the set of posting seg-
ments preceding S1. In other words, TS = TS1 and we have
VS(T ′) = VS1(T

′) for each T ′ ∈ TS other than T .
Second, suppose S1 is a receiving segment. Computation

of VS is now a little more complicated. Let PS denote the
set of all immediate predecessors of S. (This set, of course,
contains S1.) A thread is known to S if and only if it is
known to at least one member of PS . Hence, we have TS =S
{TS′ : S′ ∈ PS}. We need to compute the value of VS on

each thread in TS .
On T itself, the set of posting segments that precede S

is now exactly the same as the set of posting segments that
precede S1, since S1 is not a posting segment. Hence, we
have VS(T ) = VS1(T ).

Next, let T ′ denote any thread other than T known to S.
The value VS(T ′) is the number of posting segments of T ′

that precede S. Each immediate predecessor of S brings a
count of such segments. We will get VS(T ′) by taking the
maximum of all such counts. Let S′ denote any immediate
predecessor of S. If S′ is on T ′, then the number of posting
segments on T ′ that precede S is at least one more than
the number of posting segments that precede S′, since S′

itself is a posting segment on T ′ preceding S. Thus, the
contribution of S′ to VS(T ) in this case is [VS′(T

′) + 1]. If
S′ is not on T ′, then its contribution to VS(T ) is simply
VS′(T

′). Taking account of all these contributions, we get

VS(T ′) = max{VS′(T
′) + δ(S′, T ′) : S′ ∈ P(S)},

where δ(S′, T ′) = 1 if S′ is on T ′, and δ(S′, T ′) = 0 other-
wise.

The above discussion is encapsulated in the form of an
algorithm.

Algorithm 1 (Computation of Vector Clocks) This
algorithm shows how to compute the vector clock of any
segment of any thread in a given program. It has to be
applied recursively starting with the first segment of the
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original master thread that starts the program. The set of
threads known to a segment S is denoted by TS . The vector
clock of S is denoted by VS ; it is a mapping of TS to the set
of nonnegative integers. For any given segment S, we find
the set TS , and compute the value of VS at each member T ′

of TS . This is done by processing the corresponding items
of the immediate predecessors of S.

If S is the first segment of a thread T , then
TS ← {T}
VS(T )← 0

else
S1 ← the immediate predecessor of S on T
if S1 is a posting segment, then
TS ← TS1

VS(T )← VS1(T ) + 1
VS(T ′)← VS1(T

′) for every other T ′ ∈ TS

else
PS ← the set of immediate predecessors of S
TS ←

S
{TS′ : S′ ∈ PS}

VS(T )← VS1(T )
for T ′(6= T ) in TS

VS(T ′)← max{VS′(T
′) + δ(S′, T ′) : S′ ∈ PS}

(As defined above, δ(S′, T ′) = 1 if S′ is on T ′, and δ(S′, T ′) =
0 otherwise.) Note that according to our convention VS′(T

′)
is always defined: if a thread T ′ ∈ TS is not known to some
predecessor S′ of S, we take the default value 0 for VS′(T

′).

Remarks 2 Note that by counting only posting segments
in the definition of a vector clock, we keep the values of
vector clocks relatively low. But this also means that two
consecutive segments on the same thread may have identical
vector clocks. Let S1 and S denote two consecutive segments
on a thread T , such that S comes after S1. Suppose S1 is a
receiving segment, and the sync op defining it has only read
information posted by a sync op executed on T itself a while
back. Then we have TS = TS1 , and VS(T ′) = VS1(T

′) for
each T ′ ∈ TS .

The following theorem gives a necessary and sufficient
condition for a segment S to precede another segment S′

in terms of their vector clocks.

Theorem 3. Let T and T ′ denote two distinct threads, S
a segment on T , and S′ a segment on T ′. Then S ≺ S′ if
and only if VS(T ) < VS′(T ).

Proof. The ‘only if’ Part. Let S ≺ S′. We show that
VS(T ) < VS′(T ). By definition, there exists a finite se-
quence of segments S0, S1, S2, . . . , Sm in the program, such
that S0 = S, Sm = S′, and

S = S0 ≺ S1 ≺ S2 ≺ · · · ≺ Sm−1 ≺ Sm = S′,

where each of the relations Sp ≺ Sp+1 holds in the sense of
either Condition 1 or Condition 2 in the definition of ≺.

Since S = S0 is on thread T and S′ = Sm is not, there
exists a smallest integer p such that the segment Sp is on
T , but the segment Sp+1 is not. Then for Sp ≺ Sp+1 to
hold, Sp must be a posting segment. From the relations
S � Sp ≺ Sp+1 � S′, it follows that the number of posting
segments on T preceding S′ is at least one more than the
number of posting segments on T preceding S. Therefore,
VS(T ) < VS′(T ).

The ‘if’ Part. Let VS(T ) < VS′(T ). We need to show
that S ≺ S′. Let S1, S2, . . . , Sn denote all the posting seg-
ments on T , labelled such that S1 ≺ S2 ≺ · · · ≺ Sn. Write
k = VS(T ), so that there are exactly k posting segments
on T preceding S. Since these must be the first k posting
segments on T , we have

S1 ≺ S2 ≺ · · · ≺ Sk ≺ S � Sk+1. (1)

Since VS′(T ) ≥ VS(T ) + 1 = k + 1, there are at least (k + 1)
posting segments on T preceding S′. Again, this means that
the first (k + 1) posting segments on T must precede S′, so
that

S1 ≺ S2 ≺ · · · ≺ Sk ≺ Sk+1 ≺ S′. (2)

From (1) and (2) we get S � Sk+1 ≺ S′, that is, S ≺ S′. �

Corollary 1. A segment S on a thread T is parallel to a
segment S′ on a thread T ′, iff VS(T ) ≥ VS′(T ) and VS′(T

′) ≥
VS(T ′).

Proof. Note that S ‖ S′ holds iff the segments lie on
distinct threads, and both S ≺ S′ and S′ ≺ S are false.
However, by Theorem 3, S ≺ S′ is false iff VS(T ) ≥ VS′(T ),
and S′ ≺ S is false iff VS′(T

′) ≥ VS(T ′). �

2.3 Data Races
During its lifetime, a typical thread accesses (reads and

writes) several locations in the shared memory. A race con-
dition may be present when there is nothing to prevent two
threads from accessing the same location simultaneously.
There is a data race between two segments, if the segments
are parallel, and if there is a location in shared memory ac-
cessed by both such that one of the accesses is a ‘write.’
Data races in a given threaded program depend very much
on the particular execution of the program being considered.

We state now a set of necessary and sufficient conditions
for two segments to have a data race, in terms of their vector
clocks and the sets of locations read and written by them.

Theorem 4. Let S denote a segment on a thread T and S′

a segment on a different thread T ′. Let RS denote the set of
memory locations read and WS the set of locations written
by the segment S, and similarly for the segment S′. Then
there is a data race between S and S′, iff the following two
conditions hold:

1. VS(T ) ≥ VS′(T ) and VS′(T
′) ≥ VS(T ′);

2. Either [RS ∪WS ]∩WS′ 6= ∅, or [RS′ ∪WS′ ]∩WS 6= ∅.

Proof. By definition, there is a data race between S and
S′, iff (a) S ‖ S′, and (b) either S′ writes at least one shared
memory location that is accessed by S, or S writes at least
one location that is accessed by S′. Condition 1 in the the-
orem represents (a) by the corollary of the last section, and
Condition 2 is just the symbolic version of (b). �

We now look at the race detection problem from the per-
spective of a single location in shared memory. A data race
in a shared memory location x exists, if there are two par-
allel segments that access x and at least one of the accesses
is a ‘write.’ The race detection scheme used by the Thread
Checker is based on the following result that is derived from
Theorem 4.
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Theorem 5. Let x denote a location in the shared memory.
Assume that x has been accessed first by a segment S on a
thread T , and then by a segment S′ on a different thread T ′.
Then there is a data race in x, if

1. VS(T ) ≥ VS′(T ) and

2. x ∈WS ∪WS′ .

Proof. Note that S′ ≺ S must be false in this case, since
otherwise S′ would have finished executing before S started
(see Remark 1.1.). So, by Theorem 3, we must already have
VS′(T

′) ≥ VS(T ′). Thus, the second inequality in the first
condition of Theorem 4 is already satisfied, and we need
only check the first inequality.

Also, we already know here that x ∈ RS ∪WS and x ∈
RS′ ∪WS′ . So, we need only check if x ∈WS or x ∈WS′ .�

In the next section, we will analyze a race in x in much
finer detail. To that end, we distinguish between data races
of different types. We need some definitions to classify the
various ways in which the accesses to x by two segments can
be related. First, there is an access conflict in x, if there are
two parallel segments such that they both access x. Since an
access is either a ‘read’ or a ‘write,’ there are four types of
access conflicts. A flow conflict in x exists, if there are two
parallel segments S and S′, such that x is first written by S
and then read by S′. The other three types of conflict in x
are defined similarly in terms of two parallel segments that
access x: An anti conflict exists if x is first read by S and
then written by S′, an output conflict exists if x is written
first by S and then by S′, and we get an input conflict if x
is read first by S and then by S′. When we define a data
race in x, input conflicts are not considered. Two segments
accessing x cause a data race in x, if they cause an access
conflict, and that conflict is of type: flow, anti, or output.
Sometimes, for emphasis, we may refer to a flow conflict as
a flow dependence race, and similarly for the other two types
of conflicts: anti and output. (There is no such thing as an
input dependence race.)

If it is important to focus on the two segments that are
involved in a conflict, we may use language like “the seg-
ments S and S′ cause a flow conflict in x,” or “there is an
output conflict between the segments S and S′,” and so on.

Theorem 5 can be modified in an obvious way to give a
set of sufficient conditions for an access conflict of any given
type. For example, we have the following result: Assume
that x has been accessed first by a segment S on a thread
T , and then by a segment S′ on a thread T ′. Then these
segments cause a flow conflict in x, if

1. VS(T ) ≥ VS′(T ) and

2. x ∈WS ∩RS′ .

3. RACE DETECTION WITH LIMITED
HISTORY

In this section, we study the practical question of how
much can be said (in terms of data races) when the record
kept about segments accessing a memory location is less
than complete.

Throughout this section, we focus on a given location x
in shared memory that is accessed at least once during an

execution of the given program. Let there be n accesses
to x during this execution, and let {S1, S2, . . . , Sn} denote
the chronological sequence of segments (of threads in the
program) from which these accesses came. Each entry in this
sequence corresponds to one access, so that if, for example,
the 4th and 5th accesses to x both came from the same
segment S, we will have S4 = S5 = S.

Suppose that at some point during execution, Sj is the
current segment that has just accessed x. If we have avail-
able now the record of a segment Si that accessed x previ-
ously, then Theorem 5 can be applied to decide if Si and Sj

cause a data race in x. Thus, if we always keep the records of
all segments that have accessed x, then we would definitely
know whether or not a data race in x exists, and would also
be able to find all pairs of segments that cause such races.

Due to space constraints, however, it may not be possible
to keep all the segments that have already accessed x at each
point during program execution. Then, typically, when we
find a segment Sj that has just accessed x, only a few of
the segments S1, S2, . . . , Sj−1 are available for comparison.
Since we cannot expect in this situation to be able to cap-
ture all data races that may be present in x, the important
question now is: “When there are data races in x, are we
always able to report that at least one such race exists?.”
The answer, of course, depends on which segments from the
set {S1, S2, . . . , Sj−1} are available for comparison with Sj .

It is the algebra of parallel segments that makes a limited
record-keeping scheme worth considering. It turns out that
even if two segments causing a race are ‘far apart’ in the
sequence {Sk}, they may force a race between two segments
that are often relatively ‘close.’ Thus, when the goal is not
to find all races but to detect if there is at least one race, it
is enough to look for races between close pairs of segments.
This could be possible by making available at each step only
a few segments that have accessed x in the ‘recent’ past.
These vague ideas are made precise below when we describe
three different algorithms based on three different record-
keeping schemes. The first scheme is very simple, the second
extends the first, and the third extends the second.

The following lemma describes a crucial property of the
algebra of parallel segments that is used repeatedly in the
results and conclusions to follow.

Lemma 6. Let {S1, S2, . . . , Sn} denote the chronological se-
quence of segments that have accessed a memory location x.
Let i, q1, q2, . . . , qt, j denote integers such that 1 ≤ i < q1 <
q2 < · · · < qt < j ≤ n. If the segments Si and Sj are paral-
lel, then the segments in at least one of the (t + 1) pairs:

(Si, Sq1), (Sq1 , Sq2), . . . , (Sqt−1 , Sqt), (Sqt , Sj)

are parallel.
In particular, if i, q, j denote integers such that 1 ≤ i <

q < j ≤ n, and the segments Si and Sj are parallel, then
either Si and Sq are parallel, or Sq and Sj are parallel (or
both).

Proof. We prove the special case; the general version fol-
lows easily by induction.

Since x is accessed by Si before it is accessed by Sq, we
cannot have Sq ≺ Si (Remark 1.1). Hence, there are two
distinct possibilities: either Si � Sq or Si ‖ Sq. Similarly,
for Sq and Sj , there are two distinct possibilities: either
Sq � Sj or Sq ‖ Sj .
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If Si ‖ Sq and Sq ‖ Sj are both false, then we have Si � Sq

and Sq � Sj , so that Si � Sj . This means Si and Sj cannot
be parallel, which is a contradiction. Hence, at least one of
Si ‖ Sq and Sq ‖ Sj is true. �

3.1 Adjacent Conflict Detection
In this subsection, we study access conflicts.3 As before,
{S1, S2, . . . , Sn} denotes the chronological sequence of seg-
ments that have accessed a given location x.

An access conflict in x exists between two segments Si and
Sj , where 1 ≤ i < j ≤ n, if the segments are parallel. An
access conflict between Si and Sj is called an adjacent access
conflict, or simply an adjacent conflict, if the segments are
also consecutive in the sequence {Sk}, that is, if i = j − 1.
The terms adjacent race, adjacent flow conflict, etc. are
defined similarly.

The following theorem shows that an access conflict be-
tween two segments that could be far apart in {Sk} always
forces an access conflict between two segments that are next
to each other.

Theorem 7. If there is an access conflict in x, then there
must exist at least one adjacent conflict in x.

Proof. Let Si and Sj , where 1 ≤ i < j ≤ n, denote
two segments that cause an access conflict in x. Then, by
definition, Si and Sj are parallel.

If i = j − 1, then the access conflict between Si and Sj is
an adjacent conflict, and we have nothing left to prove. So,
assume that i < j − 1. Taking t = j − i− 1 and

q1 = i + 1, q2 = i + 2, . . . , qj−i−1 = j − 1

in Lemma 6, we see that the segments in at least one of the
(j − i) pairs:

(Si, Si+1), (Si+1, Si+2), . . . , (Sj−2, Sj−1), (Sj−1, Sj)

are parallel. Since those two consecutive parallel segments
cause an adjacent conflict in x, there is an adjacent conflict
in x. �

Note that the above theorem deals with parallel segments
only; it does not guarantee that the type of the derived ad-
jacent conflict will be the same as that of the original access
conflict.

We can now state our most basic algorithm for detecting
races in a location x. To apply it we need to keep the in-
formation on only one segment: the most recent segment to
access x.

Algorithm 2 (Adjacent Conflict Detection Algorithm)
This algorithm detects all adjacent conflicts in a location x
in shared memory that is accessed by the given program.
The requirement is that the information about the last seg-
ment to access x is always available.

Whenever a segment Sj is found to access x, compare it
with the segment Sj−1 that was the last segment to access
x. If the segments are parallel, then there is an adjacent
conflict between them. In this case, note also the type of
the conflict. If this is an adjacent conflict of type flow, anti,
or output, then it represents a data race in x.

3Remember that a race is an access conflict, but an access
conflict need not be a race (when it is an input conflict).

If, at the end of program execution, no adjacent conflicts
are reported, then there is no access conflict and hence no
data race in x. If we report at least one adjacent conflict
of type flow, anti, or output, there is a data race. If only
adjacent input conflicts are reported, the algorithm is incon-
clusive.

Remarks 8 This algorithm fails to predict a race in x, when
there are races, but no adjacent races (only adjacent input
conflicts). To see this clearly, consider the example where
the first three segments S1, S2, S3 are such that S1 ≺ S2,
S2 ‖ S3, and S1 ‖ S3. Assume that S1 writes x, S2 reads x,
and S3 reads x. This algorithm will detect the adjacent in-
put conflict between S2 and S3, but not the flow dependence
race between S1 and S3.

We see in the next subsection that by keeping a little more
history, we can improve this algorithm to a large extent.

3.2 Local Conflict Detection
In this subsection, we study access conflicts of different

types. For each type, we find a result that shows how an
access conflict of that type between two arbitrary segments
forces an access conflict of the same or a different type, be-
tween two segments that are close in the sequence {Sk} in
a well-defined sense.

In the sequence of segments {S1, S2, . . . , Sn} that access
x, a member Sk is a read-segment if it reads x, or a write-
segment if it writes x. Consider now any fixed member Sj for
1 < j ≤ n. Segment Si in the subsequence {S1, S2, . . . , Sj−1}
is the last-read segment of Sj , if Si reads x and the seg-
ments Si+1, Si+2, . . . , Sj−1, if any, do not. Similarly, Si is
the last-write segment of Sj , if Si writes x and the segments
Si+1, Si+2, . . . , Sj−1, if any, do not.

An access conflict in x between two segments Si and Sj ,
where 1 ≤ i < j ≤ n, is a local access conflict, or simply
a local conflict, if Si is either the last-write or the last-read
segment of Sj . The terms local race, local flow conflict, etc.
are defined similarly. Note that Si is the last-write segment
of Sj for local flow and output conflicts, and Si is the last-
read segment of Sj for local anti and input conflicts. An
adjacent conflict of any given type is also a local conflict
of the same type, since Sj−1 is always either the last-read
or the last-write segment of Sj . The converse, of course, is
false.

We present below four theorems that show how an arbi-
trary access conflict of a given type leads to a local conflict
of the same or a different type.

Theorem 9. If there is an output conflict in x, then there
must exist at least one local output conflict in x.

Proof. Let there be an output conflict in x. Then there
are two segments Si and Sj in the sequence {Sk}, such that
i < j, Si ‖ Sj , and both segments write x.

If Si is the last-write segment of Sj , then the output con-
flict between them is local, and we have nothing left to
prove. So, assume i < j − 1 and that some of the seg-
ments Si+1, Si+2, . . . , Sj−1 write x. Let there be exactly t
such segments: Sq1 , Sq2 , . . . , Sqt , where 1 ≤ i < q1 < q2 <
· · · < qt < j ≤ n. Since Si and Sj are parallel, it follows
from Lemma 6 that the segments in at least one of the (t+1)
pairs:

(Si, Sq1), (Sq1 , Sq2), . . . , (Sqt−1 , Sqt), (Sqt , Sj)
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are parallel. Those two segments cause an output conflict
in x and that conflict is local. This completes the proof. �

Theorem 10. If there is an input conflict in x, then there
must exist at least one local input conflict in x.

Proof. The proof of this theorem is exactly similar to the
proof of Theorem 9; we just focus on read-segments instead
of on write-segments. �

Theorem 11. If there is a flow conflict in x, then there
must exist at least one local output or one local flow conflict
in x.

Proof. Let there be a flow conflict in x. Then there are
two segments Si and Sj in the sequence {Sk}, such that
i < j, Si ‖ Sj , Si writes x, and Sj reads x. After this point,
we proceed exactly as in the proof of Theorem 9. The only
difference now is that while the segments Si, Sq1 , Sq2 , . . . , Sqt

write x, the segment Sj reads it. So, if it turns out that Sqt

and Sj are parallel, then the conflict between them would
be a local flow conflict. If the segments in any of the first t
pairs are parallel, they will represent a local output conflict.

�

Theorem 12. If there is an anti conflict in x, then there
must exist at least one local input conflict or one local anti
conflict in x.

Proof. The proof is similar to the proofs of the previous
theorems and is omitted. �

Remarks 13

1. We can combine theorems 9 and 11 to say that a race
of type output or flow between two arbitrary segments
will always force a local conflict of type output or flow.
So, in order to detect the possible existence of an out-
put or flow dependence race, it is sufficient to check
for all local output and flow conflicts.

2. The case for an anti dependence race is more compli-
cated. Such a race may not produce a local conflict
of type output, flow, or anti. If we see a local anti
conflict, then we have detected a race. But, if we see
a local input conflict, then it may or may not indicate
an anti conflict. To see this better, consider the ex-
ample where the first three segments to access x are
as follows: S1 ‖ S2, S2 ≺ S3, S1 ‖ S3, S1 and S2 read
x, and S3 writes x. (See Figure 2.) There is an anti
dependence race here between S1 and S3, but it is not
a local race (since S1 is not the last-read segment of
S3). There is a local input conflict between S1 and S2,
but that does not qualify to be a race.

We state next our second algorithm for detecting races in
a location x. To apply it we need to keep the information
on only two segments: the last segment to read x and the
last segment to write x.

Algorithm 3 (Local Conflict Detection Algorithm)
This algorithm detects all local conflicts in a location x in
shared memory that is accessed by the given program. The
requirement is that the information about the last segment
to read x and the last segment to write x is always available.

t
t

t

t

t
t

S1

S2

S3

T T ′

Figure 2: S1 and S2 read x, S3 writes x; anti conflict
in x, also a local input conflict, but no local race.

Whenever a segment Sj is found to access x, compare it
first with its last-write segment to see if the segments cause
a local output or flow conflict. Then, compare Sj with its
last-read segment to see if the segments cause a local anti
or input conflict.

If, at the end of program execution, no local conflicts are
reported, there is no data race in x. If at least one local
conflict of type flow, anti, or output is reported, there is a
data race. If only local input conflicts are reported, then the
algorithm is inconclusive, since a discovered local input con-
flict may or may not signal an anti conflict between another
pair of segments.

Remarks 14 This algorithm fails to predict a race in x,
when there are races, but no output conflicts of any kind,
no flow conflicts of any kind, and no local anti conflicts.
This algorithm will detect the flow dependence race between
S1 and S3 in the example of Remark 8 (that Algorithm 2
failed to detect), but will not detect the anti dependence
race between S1 and S3 in the example of Remark 13.2.

The current version of the Intel Thread Checker uses the
Local Conflict Detection Algorithm.

3.3 Data Race Detection
In order to remedy the deficiency of the Local Conflict De-

tection Algorithm, we need to explore what, if any, clues are
given by an anti conflict when it does not force a local race.
This leads us to define a special class of anti conflicts that
are more general than adjacent conflicts. An anti conflict in
x between two segments Si and Sj , where 1 ≤ i < j ≤ n,
is near-adjacent, if for each k in i < k < j, the segment Sk

reads x and is parallel to Si. An adjacent anti conflict is
clearly near-adjacent, since this condition is then satisfied
vacuously.4

Theorem 15. If there is an anti conflict in x, then there
must exist at least one local output conflict or one near-
adjacent anti conflict in x.

Proof. Let there be an anti conflict in x. Then there are
two segments Sp and Sr, such that 1 ≤ p < r ≤ n, Sp ‖ Sr,
Sp reads x, and Sr writes x. We need to find two segments

4A local anti-conflict may not be near-adjacent.
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Si and Sj with similar properties, such that the segments
Sk between them, if any, read x and are parallel to Si.

First, assume that there are t segments Sq1 , Sq2 , . . . , Sqt

between Sp and Sr that write x, where 1 ≤ p < q1 < q2 <
· · · < qt < j ≤ n. (If there are no such segments, then take
q1 = r and skip to the next paragraph.) Since Sp and Sr

are parallel, it follows from Lemma 6 that the segments in
at least one of the (t + 1) pairs:

(Sp, Sq1), (Sq1 , Sq2), . . . , (Sqt−1 , Sqt), (Sqt , Sr)

are parallel. If the segments in one of the last t pairs are
parallel, we have a local output conflict, and we are done.
So, assume that the segments Sp and Sq1 in the first pair
are parallel.

Let j = q1. Then, Sp ‖ Sj and the segments Sp, Sp+1, . . . ,
Sj−1 all read x. Let i denote the largest integer such that
p ≤ i < j and Si ‖ Sj . Such an integer always exists, since
Sp ‖ Sj . It is clear that there is an anti conflict between
the segments Si and Sj . We claim that this anti conflict is
near-adjacent. If i = j − 1, then this is an adjacent anti
conflict, and we are done. So, assume i < j − 1. Take any k
such that i < k < j. Since Si ‖ Sj , it follows from Lemma 6
that either Si ‖ Sk, or Sk ‖ Sj . But, due to the way i was
chosen, Sk cannot be parallel to Sj . Hence, Si is parallel to
Sk. Since Sk obviously reads x, this completes the proof. �

Since Si is parallel to each of the segments Si+1, Si+2, . . . ,
Sj−1, to make sure that we have Si available for compar-
ison with Sj , it suffices to keep all read-segments parallel
to the last-read segment (between two consecutive write-
segments).

Theorems 9, 11, and 15 show that if there is a race in x (of
any kind) between any pair of segments, then there must also
be either a local output conflict, or a local flow conflict, or a
near-adjacent anti conflict. The third algorithm of Section 3
is the Race Detection Algorithm. It is designed to detect
all local output and local flow conflicts in x, and also all
near-adjacent anti conflicts. In this algorithm, we always
keep the last segment to write x, the last segment to read
x, and the set of all read-segments parallel to the last-read
segment since the last-write segment. Whenever a segment
Sj is found to access x, we compare it with the available
segments to determine if there is a local output conflict, or
a local flow conflict, or any near-adjacent anti conflicts.

This algorithm applied to a given location x in shared
memory will always accurately predict whether or not there
is at least one data race in x.

Algorithm 4 (Race Detection Algorithm) This algo-
rithm is for a location x in shared memory that is accessed
by the given program. It finds all conflicts of the following
types: local output, local flow, and near-adjacent anti. It
can always detect if there is a data race in x. (It may not,
however, find all races.) At any point during execution of
the program, let Sw denote the last segment to write x and
Sr the last segment to read x after Sw, if any. Let R denote
a set that consists of Sr and each read-segment between Sw

and Sr, that is parallel to Sr. We keep track of the segment
Sw and the set R, but not the segment Sr. Initially, Sw is
undefined and R is empty. Treat each notation of the form
S′ ‖ S used below as an abbreviation of the clause: S′ is
defined and parallel to S.

Repeat until program execution comes to an end:
S ← the next segment to access x;
If S writes x
then

if Sw ‖ S
then report a local output conflict in x,
if R 6= ∅
then

for each S′ ∈ R such that S′ ‖ S
report a near-adjacent anti conflict in x,

set R← ∅,
set Sw ← S;

else (i.e., if S reads x)
if Sw ‖ S
then report a local flow conflict in x,
delete each member of R that is not parallel to S,
put S in R.

If at least one conflict of type output, flow, or anti has
been reported, then

report that there is a data race in x,
else

report that there is no data race in x.

Remarks 16

1. This algorithm will detect the anti dependence race
between the segments S1 and S3 in the example of
Remark 13.2 (that Algorithm 3 failed to detect).

2. When the set R has more than one member, any two
distinct members are parallel.

3. The size of R cannot exceed the number of mutually
parallel read-segments between two consecutive write-
segments.

4. If we keep fewer than the read segments required in
this algorithm, then we may not always be able to
report a race when there is one. Consider the following
example:

Assume that the first 99 segments S1, S2, . . . , S99 to
access x are such that every two segments in the se-
quence are parallel and each segment reads x. Now,
suppose x is written by segment S100, such that the
segment S1 is parallel to S100 and each of the segments
S2, S3, . . . , S99 precedes S100. There is only one race
here: the anti-dependence race between S1 and S100.
To capture this race, we need to have S1 available when
S100 is found to access x. So, we cannot afford to drop
S1 as long as it is parallel to the last-read segment at
each step (since the last-write segment). The number
100 chosen here is arbitrary.

3.4 Current Conflict Detection
In this section, we describe the race detection algorithm

published in [3, 8]. The description is given in the framework
we have developed in this paper, so that this algorithm can
be easily compared with the ones we have already presented.

The previous three algorithms in Section 3 have been de-
scribed in terms of the chronological sequence of segments
S1, S2, . . . , Sn that access a given memory location x in an
execution of the program. Adjacent, local, and near-adjacent
conflicts were defined in a temporal sense in terms of this
sequence. The threads to which these segments belong have
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been implicit. Now we describe an algorithm where we al-
ways keep the last segment to write x and the last segment
to read x for each active thread. Like Algorithm 4, this
algorithm is able to detect at least one race if there are
races. The storage requirements are different however; we
comment on that issue in Remark 18 below. First, we need
some definitions and results.

We say that there is a current flow conflict in x between
two segments Si and Sj , where 1 ≤ i < j ≤ n, if at some
given point, Si is the last segment to write x on its thread,
Sj is the last segment to read x on its thread, and Si ‖ Sj .
Current conflicts of the other three types are defined in a
similar way. A current race in x is a current conflict of type
flow, anti, or output. Our algorithm in this subsection is
based on the following theorem.

Theorem 17. If there is an access conflict in x of a given
type, then there must be a current conflict in x of the same
type.

Proof. The particular type of conflict chosen is irrelevant
here. For definiteness, assume that there is a flow conflict in
x between two segments Si and Sj such that 1 ≤ i < j ≤ n.
Focus on the moment when Sj becomes the last segment to
read x on its thread. By hypothesis, Si has already written
x. If it is currently the last segment to write x on its thread,
then we have a current flow conflict, and there is nothing left
to prove.

Assume then that Si is not currently the last segment to
write x on its thread. Let Sq denote the last segment to
write x on the thread of Si, when Sj is the last segment
to read x on the thread of Sj . Note that we have i < q <
j. By hypothesis, Si and Sj are parallel. Lemma 6 then
implies that either the segments Si and Sq are parallel, or
the segments Sq and Sj are parallel. The first possibility is
ruled out since Si and Sq belong to the same thread. Hence,
Sq and Sj are parallel. These two segments cause a current
conflict in x. �

Corollary 2. If there is a race in x, then there must be a
current race in x.

Proof. A race is an access conflict of type flow, anti, or
output. If there is an access conflict of one of these three
types, then there must also be a current conflict of the same
type which is a current race. �

Algorithm 5 (Current Conflict Detection Algorithm)
This algorithm detects all current conflicts in a location x
in shared memory that is accessed by the given program.
It can always detect if there is a data race in x, although it
may not find all races. The requirement is that at any given
point and for each active thread T , the information about
the last segment on T to read x and the last segment on T
to write x are always available.

Whenever a segment Sj is found to access x, compare
it first with the last-write segment of each thread to see if
the segments cause a current output or flow conflict. Then,
compare Sj with the last-read segment of each thread to see
if the segments cause a current anti or input conflict.

If, at the end of program execution, we report at least one
current conflict of type flow, anti, or output, then there is a
data race in x. Otherwise, there is no data race in x.

Remark 18 Algorithms 4 and 5 have similar capabilities:
Each will predict at least one race if there are races, and each
will say there are no races when there are none. For a given
memory location x, Algorithm 5 needs to keep 2t segments
at each step where t is the number of active threads: 2
segments for each thread. Algorithm 4, on the other hand,
needs to keep only (p + 1) segments: 1 write-segment and p
read-segments that are mutually parallel. Thus, Algorithm 5
needs to keep (2t− p− 1) more segments than Algorithm 4.
Since these p read-segments are mutually parallel, they must
come from different threads, so that t ≥ p. Hence, we have
(2t− p− 1) ≥ t− 1. This difference is huge when there are
a large number of threads.

4. PREVIOUS WORK
The fundamental concept used in this paper is that of the

precedence relationship ‘≺’ between segments. This is the
happens-before relation ‘→’ introduced by Lamport in [4].
He also gives the definition of parallel (concurrent) segments.
Logical clocks defined by Lamport in the same paper do not,
however, quite capture the parallel relationship ‘‖’ between
segments. For that we had to use vector clocks.

Vector clocks have been used empirically by several re-
searchers to solve specific problems since the early 1980’s.
Fidge [2] and Mattern [5] are generally credited for intro-
ducing them as a formal concept and stating their basic
properties in 1988, independently of each other.

Our race detection method (based on vector clocks) is
similar to the one described in [3], [7], [8], and [9]. A hy-
brid detection method is described in [7] that combines two
techniques one of which is based on the happens-before re-
lation. Unlike the approach taken in [9], we do not use two
passes, and we keep the values of vector clocks relatively low
by counting only the posting segments that precede a given
segment.

The algorithmic approach in [3] and [8] is described in
detail in Section 3.4, rephrased in our framework to allow
direct comparison with the other algorithms in this paper.
Our Algorithm 4 and Algorithm 5 of [3, 8] both solve the
entire problem of detecting at least one data race when races
are present. Neither one will report a race when there are
none. However, the storage requirements of the two are
different. Let t denote the total number of threads and
N the total number of memory locations accessed. Then,
Algorithm 4 needs to keep (1 + p)N segments, where p ≤ t,
and Algorithm 5 needs to keep 2tN segments.

Algorithm 3 (used by the Intel Thread Checker) may
sometimes fail to detect a race in rare situations, but it needs
to keep only 2N segments. An experimental discussion of
how rare these situations are in real programs is beyond the
scope of the present paper.

5. CONCLUSIONS
We have provided a solid mathematical foundation for the

theory of data race detection. All four race detection algo-
rithms can be used in a practical situation with different
goals in mind. The Intel Thread Checker uses Algorithm 3.
Practical applications of this algorithm have been possible
due to the way it handles the tradeoff between the abil-
ity to always detect data races and the need to conserve
memory usage. By keeping the history of only two previous
accesses to a memory location, the Thread Checker manages
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to detect the existence of a data race in a vast majority of
situations. Algorithm 4 or Algorithm 5 can be used to gain
further improvement. Either one is capable of detecting at
least one data race if races are present. Also, they will not
report a race if there are none. While the two algorithms
have similar capabilities, our Algorithm 4 needs less storage
than the previously published Algorithm 5.
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