
Goldilocks: Efficiently Computing the

Happens-Before Relation Using Locksets

Tayfun Elmas1, Shaz Qadeer2, and Serdar Tasiran1

1 Koç University
2 Microsoft Research

Abstract. We present a new lockset-based algorithm, Goldilocks, for
precisely computing the happens-before relation and thereby detecting
data-races at runtime. Dynamic race detection algorithms in the liter-
ature are based on vector clocks or locksets. Vector-clock-based algo-
rithms precisely compute the happens-before relation but have signifi-
cantly more overhead. Previous lockset-based race detection algorithms,
on the other hand, are imprecise. They check adherence to a particu-
lar synchronization discipline, i.e., a sufficient condition for race freedom
and may generate false race warnings. Our algorithm, like vector clocks,
is precise, yet it is efficient since it is purely lockset based.
We have implemented our algorithm inside the Kaffe Java Virtual Ma-
chine. Our implementation incorporates lazy evaluation of locksets and
certain “short-circuit checks” which contribute significantly to its effi-
ciency. Experimental results indicate that our algorithm’s overhead is
much less than that of the vector-clock algorithm and is very close to
our implementation of the Eraser lockset algorithm.

1 Introduction

Race conditions on shared data are often symptomatic of a bug and their de-
tection is a central issue in the functional verification of concurrent software.
Numerous techniques and tools have been developed to analyze races and to
guard against them [15, 19, 7, 1]. These techniques can be broadly classified as
static and dynamic. Some state-of-the-art tools combine techniques from both
categories. This paper is about a dynamic race detection algorithm.

Algorithms for runtime race detection make use of two key techniques: lock-
sets and vector clocks. Roughly speaking, lockset-based algorithms compute at
each point during an execution for each shared variable q a set LS(q). The lockset
LS (q) consists of the locks and other synchronization primitives that, according
to the algorithm, protect accesses to q at that point. Typically, LS (q) is a small
set and can be updated relatively efficiently during an execution. The key weak-
ness of lockset-based algorithms in the literature is that they are specific to a
particular locking discipline which they try to capture directly in LS(q). For in-
stance, the classic lockset algorithm popularized by the Eraser tool [15], is based
on the assumption that each potentially shared variable must be protected by
a single lock throughout the whole computation. Other similar algorithms can
handle more sophisticated locking mechanisms [1] by incorporating knowledge
of these mechanisms into the lockset inference rules. Still, lockset-based algo-
rithms based on a particular synchronization discipline have the fundamental

shortcoming that they may report false races when this discipline is not obeyed.
Vector-clock [11] based race detection algorithms, on the other hand, are precise,
i.e., declare a race exactly when an execution contains two accesses to a shared
variable that are not ordered by the happens-before relation. However, they are
significantly more expensive computationally than lockset-based algorithms as
argued and demonstrated experimentally in this work.

In this paper we provide, for the first time, a lockset-based algorithm, Goldi-
locks, that precisely captures the happens-before relation. In other words, we
provide a set of lockset update rules and formulate a necessary and sufficient

condition for race-freedom based solely on locksets computed using these rules.
Goldilocks combines the precision of vector clocks with the computational effi-
ciency of locksets. We can uniformly handle a variety of synchronization idioms
such as thread-local data that later becomes shared, shared data protected by
different locks at different points in time, and data protected indirectly by locks
on container objects.

For dynamic race detection tools used for stress-testing concurrent programs,
precision may not be desired or necessary. One might prefer an algorithm to sig-
nal a warning about not only about races in the execution being checked, but
also about “feasible” races in similar executions [12]. It is possible to incorpo-
rate this kind of capability into our algorithm by slightly modifying the lockset
update rules or the race condition check. However, the target applications for
our race detection algorithm are continuous monitoring for actual races during
early development and deployment, and for partial-order reduction during model
checking as is done in [8]. False alarms and reports of feasible rather than actual
races unnecessarily interrupt execution and take up developers’ time in the first
application and cause computational inefficiency in the latter. For these reasons,
for the targeted applications, the precision of our algorithm is a strength and
not a weakness.

We present an implementation of our algorithm that incorporates lazy com-
putation of locksets and “short circuit checks”: constant time sufficient checks
for race freedom. These implementation improvements contribute significantly
to the computational efficiency of our technique and they appear not to be ap-
plicable to vector clocks. We implemented our race-detection algorithm in C,
integrated with the Kaffe Java Virtual Machine [18]. An important contribution
of this paper is an experimental comparison of the Goldilocks algorithm with
the vector-clock algorithm and our implementation of the Eraser algorithm. We
demonstrate that our algorithm is much more efficient than vector clocks and
about as efficient as Eraser.

This paper is organized as follows. Section 2 describes the Goldilocks al-
gorithm and presents an example which contrasts our algorithm with existing
locksets algorithms. Section 3 explains the implementation of our algorithm in
the Kaffe JVM. Experimental evaluation of our algorithm is presented in Sec-
tion 4. Related work is discussed in Section 5.

2 The Goldilocks algorithm

In this section, we describe our algorithm for checking whether a given execution
σ has a data-race. We use the standard characterization of data-races based on
the happens-before relation, i.e., there is a data race between two accesses to
a shared variable if they are not ordered by the happens-before relation. The
happens-before relation for an execution is defined by the memory model. We
use a memory model similar to the Java memory model [10] in this paper. Our
algorithm is sound and precise, that is, it reports a data-race on an execution iff
there is a data-race in that execution.

2.1 Preliminaries

A state of a concurrent program consists of a set of local variables for each
thread and a set of global objects shared among all threads. Let Tid be the set
of thread identifiers and Addr be the set of object identifiers. Each object has a
finite collection of fields. Field represents the set of all fields. and is a union of
two disjoint sets, the set Data of data fields and the set Volatile of volatile fields.
A data variable is a pair (o, d) of an object o and a data field d. A synchronization

variable is a pair (o, v) of an object o and a volatile field v. A concurrent execution

σ is represented by a finite sequence s1
α1−→t1 s2

α2−→t2 . . .
αn−→tn

sn+1, where si is
a program state for all i ∈ [1 . . . n+1] and αi is one of the following actions for all
i ∈ [1 . . . n]: acq(o), rel(o), read (o, d), write(o, d), read(o, v), write(o, v), fork (u),
join(u), and alloc(o). We use a linearly-ordered sequence of actions and states
to represent an execution for ease of expressing the lockset-update rules and the
correctness of the algorithm. This sequence can be any linearization of the union
of the following partial orders defined in [10]: (i) the program order for each
thread and (ii) the synchronizes-with order for each synchronization variable.
The particular choice of the linearization is immaterial for our algorithm. In our
implementation (Section 3) each thread separately checks races on a (linearly-
ordered) execution that represents its view of the evolution of program state.

The actions acq(o) and rel(o) respectively acquire and release a lock on object
o. There is a special field l ∈ Volatile containing values from Tid∪{null} to model
the semantics of an object lock. The action acq(o) being performed by thread t

blocks until o.l = null and then atomically sets o.l to t. The action rel(o) being
performed by thread t fails if o.l 6= t, otherwise it atomically sets o.l to null .
Although we assume non-reentrant locks for ease of exposition in this paper,
our algorithm is easily extended to reentrant locks. The actions read (o, d) and
write(o, d) respectively read and write the data field d of an object o. A thread
accesses a variable (o, d) if it executes either read(o, d) or write(o, d). Similarly,
the actions read(o, v) and write(o, v) respectively read and write the volatile field
v of an object o. The action fork (u) creates a new thread with identifier u. The
action join(u) blocks until the thread with identifier u terminates. The action
alloc(o) allocates a new object o. Of course, other actions (such as arithmetic
computation, function calls, etc.) also occur in a real execution but these actions
are irrelevant for our exposition and have consequently been elided.

Following the Java Memory Model [10], we define the happens-before relation
for a given execution as follows.

Definition 1. Let σ = s1
α1−→t1 s2

α2−→t2 . . .
αn−→tn

sn+1 be an execution of the

program. The happens-before relation
hb
−→ for σ is the smallest transitively-closed

relation on the set {1, 2, . . . , n} such that for any k and l, we have k
hb
−→ l if

1 ≤ k ≤ l ≤ n and one of the following holds:

1. tk = tl.

2. αk = rel(o) and αl = acq(o).
3. αk = write(o, v) and αl = read(o, v).
4. αk = fork (tl).
5. αl = join(tk).

We use the happens-before relation to define data-race free executions as
follows. Consider a data variable (o, d) in the execution σ. The execution σ is
race-free on (o, d) if for all k, l ∈ [1, n] such that αk, αl ∈ {read(o, d),write(o, d)},

we have k
hb
−→ l or l

hb
−→ k. For now, our definition does not distinguish between

read and write accesses. We are currently refining our algorithm to make this
distinction in order to support concurrent-read/exclusive-write schemes.

2.2 The algorithm

Our algorithm for detecting data races in an execution σ uses an auxiliary partial
map LS from (Addr × Data) to Powerset((Addr × Volatile) ∪ Tid). This map
provides for each data variable (o, d) its lockset LS(o, d) which contains volatile
variables, some of which represent locks and thread identifiers. The algorithm
updates LS with the execution of each transition in σ. The set of rules for these
updates are shown in Figure 1. Initially, the partial map LS is empty. When an
action α happens, the map LS is updated according to the rules in the figure.

Goldilocks maintains for each lockset LS (o, d) the following invariants: 1) If
(o′, l) ∈ LS(o, d) then the last access to (o, d) happens-before a subsequent
acq(o′). 2) If (o′, v) ∈ LS(o, d) then the last access to (o, d) happens-before a
subsequent read(o′, v). 3) If t ∈ LS(o, d) then the last access to (o, d) happens-
before any subsequent action by thread t. The first two invariants indicate that
LS (o, d) contains the locks and volatile variables whose acquisitions and reads,
respectively, create a happens-before edge from the last access of (o, d) to any
subsequent access of (o, d), thereby preventing a race. As a result of the last
invariant, if t ∈ LS(o, d) at an access to a data variable (o, d) by thread t,
then the previous access to (o, d) is related to this access by the happens-before
relation. A race on (o, d) is reported in Rule 1, if LS (o, d) 6= ∅ and t 6∈ LS (o, d)
just before the update.

We now present the intuition behind our algorithm. Let (o, d) be a data
variable, α be the last access to it by a thread a, and β be the current access
to it by thread b. Then α happens-before β if there is a sequence of happens-
before edges connecting α to β. The rules in Figure 1 are designed to compute
the transitive closure of such edges. When α is executed, the lockset LS (o, d) is

1. α = read (o, d) or α = write(o, d):
if LS (o, d) 6= ∅ and t 6∈ LS (o, d), report data race on (o, d); LS (o, d) := {t}

2. α = read (o, v):
for each (o, d) ∈ dom(LS): if (o, v) ∈ LS (o, d) add t to LS (o, d)

3. α = write(o, v):
for each (o, d) ∈ dom(LS): if t ∈ LS (o, d) add (o, v) to LS (o, d)

4. α = acq(o):
for each (o, d) ∈ dom(LS): if (o, l) ∈ LS (o, d) add t to LS (o, d)

5. α = rel(o):
for each (o, d) ∈ dom(LS): if t ∈ LS (o, d) add (o, l) to LS (o, d)

6. α = fork(u):
for each (o, d) ∈ dom(LS): if t ∈ LS (o, d) add u to LS (o, d)

7. α = join(u):
for each (o, d) ∈ dom(LS): if u ∈ LS (o, d) add t to LS (o, d)

8. α = alloc(x):
for each d ∈ Data : LS (x, d) := ∅

Fig. 1. The lockset update rules for the Goldilocks algorithm

set to the singleton set {a}. This lockset grows as synchronizing actions happen
after the access. The algorithm maintains the invariant that a thread identifier
t is in LS(o, d) iff there is a sequence of happens-before edges between α and
the next action performed by thread t. The algorithm adds a thread identifier
to LS(o, d) as soon as such a sequence of happens-before edges is established.

Note that each of the rules 2–7 requires updating the lockset of each data
variable. A naive implementation of this algorithm would be too expensive for
programs that manipulate large heaps. In Section 3, we present a scheme to
implement our algorithm by applying these updates lazily.

The following theorem expresses the fact that our algorithm is both sound
and precise.

Theorem 1 (Correctness). Consider an execution σ = s1
α1−→t1 s2 · · · sn

αn−→tn

sn+1 and let LS i be the value of the lockset map LS as computed by the Goldilocks

algorithm when σ reaches state si. Let (o, d) be a data variable and i ∈ [1, n− 1]
be such that αi and αn access (o, d) but αj does not access (o, d) for all j ∈

[i + 1, n − 1]. Then tn ∈ LSn(o, d) iff i
hb
−→ n.

The proof appears in the appendix of the full version of our paper [6].
Our algorithm has the ability to track happens-before edges from a write to

a subsequent read of a volatile variable. Therefore, our algorithm can handle any
synchronization primitive, such as semaphores and barriers in the java.util.-

concurrent package of the Java standard library, whose underlying implemen-
tation can be described using a collection of volatile variables.

Goldilocks can also handle the happens-before edges induced by the wait-
notify mechanism of Java without needing to add new rules. The following re-
strictions of Java ensure that, for an execution the happens-before relation com-
puted by our lockset algorithm projected onto data variable accesses remains un-
changed even if the wait/notify synchronization adds new happens-before edges:
1) Each call to o.wait() and o.notify() be performed while holding the lock

on object o. 2) The lock of o released when o.wait() is entered and it is again
acquired before returning from o.wait().

2.3 Example

In this section, we present an example of a concurrent program execution in
which lockset algorithms from the literature declare a false race while our algo-
rithm does not. The lockset algorithms that we compare ours with are based on
the Eraser algorithm [15], which is sound but not precise.

The pseudocode for the example is given below. The code executed by each
thread Ti is listed next to Ti:.

Class IntBox { Int x; }

IntBox a = new IntBox(); // IntBox object o1 created

IntBox b = new IntBox(); // IntBox object o2 created

T1: acq(L1); a.x++; rel(L1);

T2: acq(L1); acq(L2); tmp = a; a = b; b = tmp; rel(L1); rel(L2);

T3: acq(L2); b.x++; rel(L2);

In this example, two IntBox objects o1 and o2 are created and locks L1 and
L2 are used for synchronization. The program follows the convention that L1

protects accesses to a and a.x, similarly, L2 protects accesses to b and b.x. At
all times, each IntBox object and its integer field x are protected by the same
lock. T2 swaps the objects referred to by the variables a and b.

Consider the interleaving in which all actions of T1 are completed, followed
by those of T2 and then T3. T2 swaps the objects referred to by variables a and
b so that during T3’s actions b refers to o1. o1.x is initially protected by L1 but
is protected by L2 after T2’s actions are completed.

The most straightforward lockset algorithm is based on the assumption that
each shared variable is protected by a fixed set of locks throughout the execution.
Let LH (t) represent the set of locks held by thread t at a given point in an
execution. This algorithm attempts to infer this set by updating LS(o, d) to be
the intersection LH (t) ∩ LS (o, d) at each access to (o, d) by a thread t. If this
intersection becomes empty, a race is reported. This approach is too conservative
since it reports a false race if the lock protecting a variable changes over time.
In the example above, when T3 accesses b.x, the standard lockset algorithm
declares a race since LS (o1.x) = {L1} (b points to o1) before this access and
T3 does not hold L1.

A less conservative alternative is to update LS(o, d) to LH (t) rather than
LH (t) ∩ LS (o, d) after a race-free access to (o, d) by a thread t. For any given
execution, this strategy, just like the previous strategy, will report a data-race
if there is one but is still imprecise and might report false races. In the example
above, this approach is unable to infer the correct new lockset for o1.x after T2’s
actions are completed. This is because T2 does not directly access o1.x and, as
a result, LS(o1.x) is not modified by T2’s actions.

Fig. 2. Evaluation of LS (o1.x) by Goldilocks.

Variants of lockset algorithms in the literature use additional mechanisms
such as a state machine per shared variable in order to handle special cases such
as thread locality, object initialization and escape. However these variants are
neither sound nor precise, and they all report false alarms in scenarios similar
to the one in the example above.

Our algorithm’s lockset update rules allow a variable’s locksets to grow and
change during the execution. The lockset of a variable may be modified even
without the variable being accessed. In this way, we are able to handle dynam-
ically changing locksets and ownership transfers and avoid false alarms. In the
example above, the lockset of o1.x evolves with our update rules during the
execution as illustrated in Figure 2.

The vector-clock algorithm does not declare a false race in this example
and similar scenarios. However, as discussed in Section 3, it accomplishes this
at significantly increased computational cost compared to our optimized imple-
mentation of the lockset update rules.

3 Implementation with lazy evaluation

We implemented the Goldilocks algorithm in Kaffe [18], a clean room implemen-
tation of the Java virtual machine in C. Our implementation currently runs in
the interpreting mode of Kaffe’s runtime engine. The pseudocode is given in Fig-
ure 3. There are two important features that contribute to the performance of
the algorithm in practice: short-circuit checks and lazy evaluation of lockset up-
date rules. Short-circuit checks are cheap, sufficient checks for a happens-before
edge between the last two accesses to a variable. We use short-circuit checks to

record Cell { record Info {
thread : Tid ; pos : ref (Cell);
action : Action ; owner : Tid ;
next : ref (Cell);} alock : Addr ; }

head , tail : ref (Cell); info: (Addr × Data) −→ Info;

Initially head := new Cell ; tail := head ; info := EmptyMap;

Handle-Action (t, α):
1 if (α ∈ {acq(o), rel(o), fork (u), join(u), read (o, v), write(o, v),

finalize(x), terminate(t)}) {
2 tail→thread := t;
3 tail→action := α;
4 tail→next := newCell ;
5 tail := tail→next ;
6 }
7 else if (α ∈ {read (o, d), write(o, d)}) {
8 if (info(o, d) is not defined) { //initialize info(o, d) for the first access to (o, d)
9 info(o, d) := newInfo;
10 info(o, d).alock := (choose randomly a lock held by t, if any exists);
11 } else {
12 if ((info(o, d).owner 6= t) ∧ (info(o, d).alock is not held by t)) {
13 Apply-Lockset-Rules (t, (o, d)); // run the lockset algorithm
14 // because short circuits failed, reassign the random lock for (o, d)
15 info(o, d).alock := (choose randomly a lock held by t, if any exists);
16 }
17 }
18 // reset info(o, d) after each access to (o, d)
19 info(o, d).owner := t;
20 info(o, d).pos := tail ;
21 Garbage-Collect-Cells (head , tail);
22 }

Fig. 3. Implementation of the Goldilocks algorithm

eliminate unnecessary application of the lockset update rules. Lazy evaluation
runs the lockset update rules in Figure 1 only when a data variable is accessed
and all the short-circuit checks fail to prove the existence of a happens-before
relationship.

There are two reasons we implemented our lockset algorithm lazily: 1) Man-
aging and updating a separate lockset for each data variable have high memory
and computational cost. Our lockset rules are expressed in terms of set lookups
and insertions, and making the lockset a singleton set with the current thread
id after an access. These simple update rules make possible a very easy and
efficient form of computing locksets lazily only at an access. 2) For thread-local
and well-synchronized variables, there may be no need to run (all of) the lockset
update rules, because a short-circuit check or a subset of synchronization actions
may be sufficient to show race freedom.

In our way of performing lazy evaluation, we do not explicitly associate a
separate lockset LS (o, d) for each data variable (o, d). Instead, LS(o, d) is created

temporarily, when (o, d) is accessed and the algorithm, after all short-circuit
checks fail, finds it necessary to compute happens-before for that access using
locksets. In addition, the lockset update rule for a synchronization action in
Figure 1 is not applied to LS (o, d) when the action is performed. We defer
the application of these rules until (o, d) is accessed and the lockset update
rules are applied for that access. We store the necessary information about a
synchronization action in a cell, consisting of the current thread and the action.
During the execution, cells are kept in a list that we call update list, which is
represented by its head and tail pointers in the pseudocode. When a thread
performs a synchronization action, it atomically appends its corresponding cell
to the update list .

Each variable (o, d) is associated with an instance of Info. info maps variables
to Info instances. info(o, d) keeps track of three pieces of information necessary to
check an access to (o, d): 1) pos is a pointer to a cell in the update list (ref (Cell)
is the reference type for Cell). 2) owner is the identifier of the thread that last
accessed (o, d). After each access to (o, d) by thread t, info(o, d) is updated so
that pos is assigned to the reference of the cell at the tail of the update list
and owner is assigned to t. 3) alock is used in a short-circuit check as explained
below. Notice that because locksets are created temporarily only when the full
checking for the lockset rules is to be done, there is no field of info(o, d) that
points to a lockset.

We instrumented the JVM code by inserting calls to Handle-Action. The pro-
cedure Handle-Action is invoked each time a thread performs an action relevant
to our algorithm. We performed the instrumentation so that the synchronizes-
with order and the order of corresponding cells in the update list are kept consis-
tent throughout the execution. Similarly, the order of cells respects the program
order of the threads in the execution. We needed only for volatile reads/writes
to insert explicit locks to make atomic the volatile access and appending the cell
for that action to the update list.

Handle-Action takes as input a thread t and an action α performed by t.
If α is a synchronization action, Handle-Action appends a cell referring to α

to the end of the update list (lines 1-6). If α reads from or writes to a data
variable (o, d) and it is the first access to (o, d) it creates a new Info for (o, d)
and sets its alock to one of the locks held by t (lines 8-11). Otherwise, it first
runs two short-circuit checks (line 12). If both of the short-circuit checks fail, the
procedure Apply-Lockset-Rules is called. Before exiting Handle-Action, info(o,d)
is updated to reflect the last access to (o, d) (lines 19-20). Handle-Action also
garbage collects the cells in the update list that are no longer referenced, by
calling Garbage-Collect-Cells (line 21).

Apply-Lockset-Rules applies the lockset update rules in Figure 1 but uses
a local, temporarily-created lockset LS(o, d). LS(o, d) is initialized to contain
info(o,d).owner , the identifier of the thread that last accessed (o, d), to reflect
the effect of Rule 1 for variable accesses. Then the rules for the synchronization
actions performed after the last access to (o, d) are applied to LS (o, d) in turn.
The cells in the update list between the cell pointed by info(o,d).pos and the cell

pointed by tail are used in this computation. The access causes no warning if
the current thread t is added to LS (o, d) by some rule. This check is performed
after handling each cell and is also used to terminate the lockset computation
before reaching the tail of the update list. If t is not found in LS(o, d), a race
condition on (o, d) is reported.
Short-circuit checks: Our current implementation contains two constant time,
sufficient checks for the happens-before relation between the last two accesses to
a variable (see line 12 of Handle-Action). 1) We first check whether the currently
accessing thread is the same as the last thread accessed the variable by comparing
t and info(o,d).owner . This helps us to handle checking thread local variables
in constant time without needing the lockset rules. 2) The second check handles
variables that are protected by the same lock for a long time. We keep track
of a lock alock for each variable (o, d). info(o, d).alock represents an element of
LS (o, d) chosen randomly. At the first access to (o, d) info(o, d).alock is assigned
one of the locks held by the current thread randomly, or null if there is no such
lock (line 10). After the next access to (o, d) we check if the lock info(o, d).alock
is held by the current thread. If this check fails, info(o, d).alock is reassigned by
choosing a new lock (line 15).
Comparison with the vector-clock algorithm: The vector-clock algorithm
is as precise as our algorithm. However, the vector-clock algorithm accomplishes
this precision at a significantly higher computational cost compared to Goldilocks
because lazy evaluation and the short circuit checks make our approach very ef-
ficient. This fact is highlighted by the following example. Consider a program
with a large number of threads t1, ..., tn all accessing the same shared vari-
able (o, d), where all accesses to (o, d) are protected by a single lock l. At each
synchronization operation, acq(l) or rel(l), Goldilocks performs a constant-time
operation to add the synchronization operation to the update list. Moreover,
once info(o, d).alock = l, then at each access to (o, d) Goldilocks performs a
constant-time look-up to determine the absence of a race. The vector-clock al-
gorithm, on the other hand, maintains a vector of size n for each thread and for
each variable. At each synchronization operation, two such vectors are compared
element-wise and updated. At each access to (o, d), the vector-clock algorithm
performs constant-time work just like Goldilocks. While the vector-clock algo-
rithm does Θ(n) work for each synchronization operation and Θ(1) for each data
variable access, Goldilocks does Θ(1) work for every operation. As this example
highlights and our experimental results demonstrate, the Goldilocks algorithm
is more efficient than the vector-clock algorithm. The SharedSpot microbench-
mark in Section 4 is based on the example described above and the experiments
confirm the preceding analysis.

4 Evaluation

In order to evaluate the performance our algorithm, we ran the instrumented
version of the Kaffe JVM on a set of benchmarks. In order to concentrate on
the races in the applications, we disabled checks for fields of the standard li-
brary classes. Arrays were checked by treating each array element as a separate
variable. We first present our experiments and discuss their results in Section 4.1.

1 32 64 128 256
0

200

400

600

800

1000

1200

Number of threads

Pe
r a

cc
es

s
ch

ec
kin

g
tim

e
(m

icr
os

ec
on

ds
)

Multiset

1 32 64 128 256
0

500

1000

1500

2000

2500

3000

Number of threads

Pe
r a

cc
es

s
ch

ec
kin

g
tim

e
(m

icr
os

ec
on

ds
)

SharedSpot

1 32 64 128 256
0

50

100

150

200

250

300

Number of threads

Pe
r a

cc
es

s
ch

ec
kin

g
tim

e
(m

icr
os

ec
on

ds
)

LocalSpot

Basic−Eraser
Vector−clock
Our lockset

Fig. 4. Per access race checking time against the increasing number of threads

In order to compare our algorithm with traditional lockset and vector-clock
algorithms, we implemented a basic version of the Eraser algorithm that we
call Basic-Eraser and a vector-clock based algorithm similar to the one used by
Trade [5]. Where possible, we used the same data structure implementations
while implementing the three algorithms. For Basic-Eraser, we used the same
code for keeping and manipulating locksets that we developed for Goldilocks.

Microbenchmarks: The Multiset microbenchmark consists of a number of
threads accessing a multiset of integers concurrently by inserting, deleting and
querying elements to/from it. The SharedSpot benchmark illustrates the case in
which a number of integers, each of which is protected by a separate unique lock,
are accessed concurrently by a number of threads for applying arithmetic oper-
ations on them. The LocalSpot benchmark is similar to SharedSpot but each
variable is thread-local. We ran experiments parameterizing the microbench-
marks with the number of threads starting from 1 and doubling until 256. Fig-
ure 4 plots for three algorithms the average time spent for checking each variable
access against increasing number of threads.

Large benchmarks: We used six benchmark programs commonly used in the
literature to compare the performance of the three algorithms on large programs:
Raja3 is a ray tracer (≈ 6K lines). SciMark4 is a composite Java benchmark con-
sisting of five computational kernels (≈ 2300 lines). Four of our benchmarks are
from the Java Grande Forum Benchmark Suite5. They are moldyn, a molecular
dynamics simulation (≈ 650 lines), raytracer, a 3D ray tracer (≈ 1200 lines),
montecarlo, a Monte Carlo simulation (≈ 3K lines) and sor, a successive over-
relaxation program (≈ 220 lines).

Table 1 presents the performance statistics of the three algorithms on the
benchmark programs. The purpose of this batch of experiments is to contrast
the overhead that each of the three approaches incur while checking for races. In

3 Raja can be obtained at http://raja.sourceforge.net/.
4 Scimark can be obtained at http://math.nist.gov/scimark2/.
5 Java Grande Forum Benchmark Suite can be obtained at

http://www.epcc.ed.ac.uk/computing/research activities/java grande/threads.html.

Uninstrumented Vector-clock Basic-Eraser Goldilocks
Benchmark Runtime (sec.) Runtime (sec.) Runtime (sec.) Runtime (sec.)
threads # accesses Slowdown Slowdown Slowdown
Raja 8.6 145.1 105.9 70.2
3 5979629 15.7 11.1 7
SciMark 28.2 51.3 46.1 33.1
7 3647012 0.8 0.6 0.1
moldyn 11.2 195 138.9 92.8
7 8610585 16.3 11.3 7.2
raytracer 1.9 122.8 79.8 50
7 5299350 63.1 40.6 25.1
montecarlo 5.7 243.8 160 117.5
7 10491747 41.4 26.8 19.4
sor 27.2 145.9 157.5 107
7 7696597 4.3 4.7 2.9

Table 1. Runtime statistics of the benchmark programs

Algorithm Raja SciMark moldyn raytracer montecarlo sor

Runtime 70.2 33.1 92.8 50 117.6 107
Slowdown 7 0.1 7.2 25.1 19.4 2.9
checks 5979629 3647012 8610585 5299350 10491747 7696597

Runtime* 65.8 35.5 57.0 17.6 111.2 63.8
Slowdown* 6.5 0.2 4 8.2 18.3 1.3
checks* 5979629 4104754 5268021 1884836 10484544 3416928

* Results after disabling checks to the fields.

Table 2. Runtime statistics when fields with races detected on them are disabled

this batch of experiments, race checking for a variable was not turned off after
detecting a race on it, as would be the case in normal usage of a race detection
tool. The purpose of this was to enable a fair comparison between algorithms.
On this set of benchmarks, Basic-Eraser conservatively declared false races on
many variables early in the execution. If race checking on these variables were
turned off after Basic-Eraser detects a race on them, Basic-Eraser would have
ended up doing a lot less work and checking a lot fewer accesses than the other
two approaches, especially since these variables are typically very likely to have
races on them later in the execution as well. This would have made the overhead
numbers difficult to compare. In Table 1, we give the number of threads created
in each program below the name of the benchmark. The column titled “Uninstru-
mented” reports the total runtime of the program in the uninstrumented JVM,
and the total number of variable accesses (fields+array indices) performed at
runtime. Each column for an algorithm presents, for each benchmark, the total
execution time and the slowdown ratio of the program with instrumentation.
The time values are given in seconds. The slowdown ratio is the ratio of the
difference between the instrumented runtime and the uninstrumented runtime
to the uninstrumented runtime. The number of variable accesses checked for
races is important for assessing the amount of work carried out by the algorithm
during execution and average checking time for each variable access.

Table 2 lists the results of our experiments with Goldilocks where checks for
fields on which a race is detected are disabled. This is a more realistic setting
to judge the overhead of our algorithm in absolute terms. The measurements
reported in the first three rows are the same as the ones in Table 1, taken
without disabling any checks. The second three rows give the runtime statistics
when we followed the approach described above.

4.1 Discussion

The plots in Figure 4 show per access checking times of the three algorithms.
The very low acceleration in the per access runtime overhead of our algorithm
and Eraser in the SharedSpot and LocalSpot examples is noteworthy. Short
circuit checks in our algorithm allow constant time overhead for thread-local
variables and variables protected by a unique lock. This makes our algorithm
asymptotically better than the vector-clock algorithm.

The runtime statistics in Table 1 indicate that Goldilocks performs better
than the vector-clock algorithm for large-scale programs. As the number of checks
done for variable accesses are the same, we can conclude that per variable access
checking time of our lockset algorithm on average is less than the vector-clock
algorithm.

SciMark, moldyn and sor are well-synchronized programs with few races and
a simple locking discipline. Thus the short circuit checks mostly succeed and the
overhead of the lockset algorithm is low. However, more elaborate synchroniza-
tion policies in Raja, raytracer and montecarlo caused long runs of the lockset
algorithm, thus the slowdown ratio increases. These programs have a relatively
high number of races.

The results indicate that our algorithm works as efficiently as Basic-Eraser
while Basic-Eraser can not handle all the synchronization policies used in the
benchmarks. The main reason for our algorithm performing slightly better in
our experiments is the fact that Basic-Eraser does lockset intersections while
checking the accesses. Intersection is fundamentally an expensive operation. Our
algorithm, on the other hand, requires insertions and lookups, which can be im-
plemented in constant amortized time. Clearly, a more optimized implementation
of Eraser would have performed better. The goal of the comparison with Basic-
Eraser was to demonstrate that our algorithm does not have significantly more
cost than other lockset algorithms.

Disabling checking accesses to fields on which races were detected dramat-
ically decreases the number of accesses to be checked against races, thus the
total runtime of the instrumented program. This can be seen from Table 1. For
the benchmarks moldyn, raytracer and sor, the differences in the number of
accesses point to this effect.

5 Related work

Dynamic race-detection methods do not suffer from false positives as much as
static methods do but are not exhaustive. Eraser [15] is a well-known tool for
detecting race conditions dynamically by enforcing the locking discipline that
every shared variable is protected by a unique lock. It handles object initial-
ization patterns using a state-based approach but can not handle dynamically
changing locksets since it only allows a lockset to get smaller. There is much
work that refines the Eraser algorithm by improving the state machine it uses
and the transitions to reduce the number of false positives. One such refine-
ment is extending the state-based handling of object initialization and making
use of object-oriented concepts [17]. Harrow used thread segments to identify

the portions of the execution in which objects are accessed concurrently among
threads [9]. Another approach is using a basic vector-clock algorithm to capture
thread-local accesses to objects and thus eliminates unnecessary and imprecise
applications of the Eraser algorithm [19]. Precise lockset algorithms exist for Cilk
programs but their use for real programs is still under question [2]. The general
algorithm in [2] is quite inefficient while the efficient version of this algorithm
requires programs to obey the umbrella locking discipline, which can be violated
by race-free programs.

The approaches that check a happens-before relation [5, 14, 16] are based on
vector clocks [11], which create a partial order on program statements. Trade [5]
uses a precise vector-clock algorithm. Trade is implemented at the Java byte code
level and in interpreter mode of JVM as is our algorithm. To reduce the overhead
of the vector clocks for programs with a large number of threads, they use reach-
ability information through the threads, which makes Trade more efficient than
other similar tools. Schonberg computes for each thread shared variable sets and
concurrency lists to capture the set of shared variables between synchronization
points of an execution [16]. His algorithm is imprecise for synchronization disci-
plines that use locks and needs to be extended for asynchronous coordination to
get precision for these disciplines.

Hybrid techniques [13, 19] combine lockset and happens-before analysis. For
example, RaceTrack’s happens-before computation is based on both vector clocks
and locksets. but is not sound as its lockset part of the algorithm is based on
Eraser algorithm. Our technique, for the first time, computes a precise happens-
before relation using an implementation that makes use of only locksets. Choi
et.al. present an unsound runtime algorithm [4] for race detection. They used a
static method [3] to eliminate unnecessary checks for well-protected variables.
This is a capability we intend to integrate into Goldilocks in the future.

6 Conclusions
In this paper, we present a new sound and precise race-detection algorithm.
Goldilocks is based solely on the concept of locksets and is able to capture all
mutual-exclusion synchronization idioms uniformly with one mechanism. The
algorithm can be used, both in the static or the dynamic context, to develop
analyses for concurrent programs, particularly those for detecting data-races,
atomicity violations, and failures of safety specifications. In our future work,
we plan to develop and integrate into Goldilocks a static analysis technique to
reduce the cost of runtime checking.

Acknowledgements
We thank Madan Musuvathi for many interesting discussions that contributed
to the implementation technique described in Section 3.

References

1. C. Boyapati, R. Lee, and M. Rinard. A type system for preventing data races
and deadlocks in Java programs. In OOPSLA 02: Object-Oriented Programming,
Systems, Languages and Applications, pages 211–230. ACM, 2002.

2. Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and
Andrew F. Stark. Detecting data races in cilk programs that use locks. In Pro-
ceedings of the ACM Symposium on Parallel Algorithms and Architectures (SPAA
’98), pages 298–309, Puerto Vallarta, Mexico, June 28–July 2 1998.

3. J.-D. Choi, A. Loginov, and V. Sarkar. Static datarace analysis for multithreaded
object-oriented programs. Technical Report RC22146, IBM Research, 2001.

4. Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar,
and Manu Sridharan. Efficient and precise datarace detection for multithreaded
object-oriented programs. In PLDI 02: Programming Language Design and Imple-
mentation, pages 258–269. ACM, 2002.

5. Mark Christiaens and Koen De Bosschere. Trade, a topological approach to on-the-
fly race detection in Java programs. In JVM 01: Java Virtual Machine Research
and Technology Symposium, pages 105–116. USENIX, 2001.

6. Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks: Efficiently Comput-
ing the Happens-Before Relation Using Locksets, 2006. Full version available at
http://www.research.microsoft.com/~qadeer/fatesrv06-fullversion.ps.

7. C. Flanagan and S. N. Freund. Type-based race detection for Java. In PLDI 00:
Programming Language Design and Implementation, pages 219–232. ACM, 2000.

8. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In POPL 05: Principles of Programming Languages, pages 110–121. ACM
Press, 2005.

9. J. J. Harrow. Runtime checking of multithreaded applications with visual threads.
In SPIN 00: Workshop on Model Checking and Software Verification, pages 331–
342. Springer-Verlag, 2000.

10. Jeremy Manson, William Pugh, and Sarita Adve. The Java memory model. In
POPL 05: Principles of Programming Languages, pages 378–391. ACM Press, 2005.

11. Friedemann Mattern. Virtual time and global states of distributed systems. In
International Workshop on Parallel and Distributed Algorithms, pages 215–226.
North-Holland, 1989.

12. Robert H. B. Netzer and Barton P. Miller. What are race conditions?: Some issues
and formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, 1992.

13. E. Pozniansky and A. Schuster. Efficient on-the-fly race detection in multithreaded
c++ programs. In PPoPP 03: Principles and Practice of Parallel Programming,
pages 179–190. ACM, 2003.

14. M. Ronsse and K. De Bosschere. Recplay: A fully integrated practical record/replay
system. ACM Transactions on Computer Systems, 17(2):133–152, 1999.

15. Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, 1997.

16. Edith Schonberg. On-the-fly detection of access anomalies. In PLDI 89: Program-
ming Language Design and Implementation, pages 313–327, 1989.

17. Christoph von Praun and Thomas R. Gross. Object race detection. In OOPSLA 01:
Object-Oriented Programming, Systems, Languages and Applications, pages 70–82.
ACM, 2001.

18. T. Wilkinson. Kaffe: A JIT and interpreting virtual machine to run Java code.
http://www.transvirtual.com/, 1998.

19. Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of data
race conditions via adaptive tracking. In SOSP 05: Symposium on Operating Sys-
tems Principles, pages 221–234. ACM, 2005.

