Where’s The Bear? – Automating Wildlife Image Processing Using IoT and Edge Cloud Systems

Andy Rosales Elias Nevena Golubovic Chandra Krintz Rich Wolski
Computer Science Department
University of California, Santa Barbara, CA

Abstract—In this paper, we investigate the design and implementation of Where’s The Bear (WTB), an end-to-end, distributed, IoT system for wildlife monitoring. WTB implements a multi-tier (public/private cloud, edge, sensing) system that integrates recent advances in machine learning based image processing to automatically classify animals in images from remote, motion-detection camera traps. We use non-local, resource-rich, public/private cloud systems to train the machine learning models, and “in-the-field,” resource-constrained edge systems to perform classification near the IoT sensing devices (cameras). WTB relieves scientists and citizen scientists of the burden of manual image classification and saves time and bandwidth for image transfer off-site by automatically filtering the images on-site based on characteristics of interest.

We deploy this system at the UCSB Sedgwick Reserve, a 6000 acre site for environmental research and use it to aggregate, manage, and analyze over 1.12M images. WTB integrates Google TensorFlow and OpenCV applications to perform automatic classification and tagging for a subset of these images. To avoid transferring large numbers of training images for TensorFlow over a low-bandwidth network linking Sedgwick to the public/private clouds, we devise a technique that uses stock Google Images to construct a training set using only a small number of empty, background images from Sedgwick. Our system is able to accurately identify bears, deer, and coyotes and significantly reduces the time and bandwidth requirements for image transfer.

I. INTRODUCTION

Wildlife monitoring is essential to a wide range of scientific activities and societal interests. Understanding animal behavior and activity patterns [1] is useful for evaluating biodiversity and changes in habitats and land use, avoiding dangerous human-wildlife encounters [2] and destructive habitat overlap, monitoring species health and population dynamics, and providing people with high impact educational experiences. Digital photography provides an effective, non-intrusive way to monitor wildlife for many of these applications. It is safe, cost effective, and accessible to people with a wide range of expertise and backgrounds. To scale the process of wildlife monitoring in remote locations researchers are increasingly turning to automatically activated, battery or solar powered cameras equipped with motion detection sensors and network connectivity (e.g. radios or WIFI), (i.e. camera traps or trail cameras) [3], [4].

Despite the success of these technological approaches there are still several challenges that scientists and citizen scientists face in classifying images and identifying animals in images. First, automatically activated cameras can generate an enormous number of images (especially when motion-triggered), making it time consuming if not infeasible to perform classification and identification manually. Second, the remote locations of the cameras (in the wild) can make it costly (in terms of time and/or monetary cost) to upload images to the Internet where they are increasingly stored, processed, and shared. And finally, motion sensors commonly trigger events due to non-animal activity (e.g. the wind or rain), for animals of no interest to a particular study, or redundant pictures of the same animal in slightly different poses, introducing significant overhead (to copy, store, communicate, and analyze unimportant images) in the classification process.

In this paper, we address these challenges with the design and implementation of a new wildlife monitoring system that leverages recent advances in the Internet-of-Things (IoT) and in open source image processing and deep learning [5] for image recognition, to automate image classification and analysis. Our system, called Where’s The Bear (WTB), is an end-to-end, distributed data acquisition and analytics system that implements an IoT architecture consisting of sensors (cameras), “edge clouds,” and a back-end public or private cloud. We describe a specialization of this architecture for wildlife monitoring and a novel integration of image processing software for scalable image classification (animal identification). WTB is extensible in that different algorithms for animal classification and image processing can be easily integrated (i.e. “plugged” into the system) via application programming interfaces (APIs) and wrapper scripts. The key innovation is that WTB performs classification near where the images are produced to avoid unnecessary image transfer (unimportant, redundant, or empty images) over expensive, long-haul, and/or low bandwidth network links.

We implement WTB using open source software and “off-the-shelf” inexpensive equipment to ensure its accessibility to a broad audience of users. For the experiments we describe, we integrate Google TensorFlow [6] for image recognition and OpenCV [7] for image analysis within WTB. We also present a novel training technique for our TensorFlow animal image classifier that leverages the WTB architecture by using freely available, labeled images from Google Images [8] instead of a training set from the camera traps. By doing so, this technique avoids transferring a large training set to a private or public cloud where there is sufficient computational capacity to train a TensorFlow model. Instead our approach combines a small number of empty images from our camera traps at different times of the day with images of animals taken from Google Images that might be photographed by a camera trap. That
is, we construct training images by creating a montage of an empty background from the camera traps with Google Image examples of different animals. We generate hundreds of thousands of these “fake” images automatically overlaying the animal images the camera trap background (empty image) in many different orientations and illumination levels. This process produces a very large training dataset that we use to train TensorFlow with – without ever requiring an image containing an animal from the camera traps be part of the training set.

We implement our system at the UCSB Sedgwick Reserve, an ecology and wildlife educational and research reserve [9]. The reserve consists of just under 6,000 acres of land that comprises critical wildlife habitats, two watersheds at the foot of Figueroa Mountain, and a 300 acre farm easement. Sedgwick has 11 camera trap locations and high bandwidth, wireless networking throughout much of the property, and its meeting house is connected to the UCSB campus via a lower-bandwidth microwave radio link. WTB at Sedgwick currently integrates nine of cameras which have collected over 1 million images (~550GB of data).

We evaluate the performance of WTB and its accuracy in classifying bears, deer, and coyotes for one of the Sedgwick camera traps with over 600K images. Our results indicate that by training a model in a public or private cloud and then using it to classify images “at the edge” near where the images are gathered drastically reduces the time and expense associated with the classification process. Further, the automated image classification method enables high accuracy with few false positives and false negatives, making it possible to replace what had become a tedious, error prone, and ultimately infeasible manual process. Finally, we investigate the extensibility of WTB by using it to integrate image classification with optical character recognition (OCR) to tag, automatically, each image with additional metadata. For example, we find that we are able to extract temperature values recorded by each camera from the images with 100% accuracy. We plan to make all of our software and systems designs available on GitHub [10] upon publication.

In summary, with this paper, we contribute

- An integration of multiple disparate technologies (sensor data aggregation and management with automatic image processing using advanced machine learning techniques as “black boxes”) into an end-to-end system for wildlife monitoring.
- A distributed IoT architecture that is customized for this application domain, which leverages edge cloud systems to implement image and sensor data processing and storage near where the data is generated, and
- An empirical evaluation of the benefits that this architecture enables.

In the sections that follow, we overview the challenges of wildlife monitoring faced by Sedgwick scientists and present the design and implementation of WTB. We then evaluate WTB for a subset of the images collected by Sedgwick camera traps. We measure accuracy of the machine learning technologies that we integrate into WTB and our use of “fake” images for training. We also report the amount of time and bandwidth that WTB saves if we are able to filter the images at the source. We then present related work and conclude.

II. WTB: END-TO-END IOT-CLOUD SYSTEM FOR WILDLIFE TRACKING

The goal of our work is to simplify and expedite the process of animal identification using images from motion-triggered cameras deployed in the wild. Our experimental setting is the UCSB Sedgwick Reserve located 40 miles from the UCSB campus in Santa Ynez, CA. Sedgwick is a research and educational reserve for study of environmental stewardship and protection, restoration of natural biological systems, and technology-driven agriculture [11]. Scientists from fields including ecology, biology, computer science, geography, and others use parts of the over nine square miles of the Sedgwick property to perform measurement, experimentation, demonstration, and hands-on and multi-disciplinary pedagogy. As a research reserve, there are a small number of structures with electricity and Internet connectivity, but they are clustered together in one location on the property – the remainder of the reserve is wild.

Many Sedgwick scientists and management personnel are interested in monitoring the wildlife at Sedgwick for various purposes including to estimate population size and health for different locally occurring species, to identify changes in animal behavior patterns due to external forces (drought, human activity, invasive species), to identify/prosecute illegal hunting activities, and to track and recover stray grazing livestock. To facilitate these activities, Sedgwick manages 11 camera traps at watering holes and popular animal pathways throughout the property. Some cameras have support for wireless communications, while others require manual download of the images using storage cards. The Sedgwick staff plans to convert all to WIFI for download over time.

Figure 1 shows the map of the property with the camera traps and headquarters building identified (in green). The headquarters building is connected to the UCSB Campus network via a long-distance microwave radio link and wireless connectivity is available directionally between the headquarters and each camera trap. The average bandwidth between the cameras and headquarters is approximately 114 Megabits per second (Mbps). The connectivity between headquarters and the UCSB main campus (which must traverse several microwave links) rarely exceeds 5 Mbps for file transfer (and is approximately 2 Mbps for simple transfers). We use one camera trap in this study to evaluate our system. We mark this camera in red on the map. The distance between the camera and headquarters is 3.05km. We store camera trap images on a computer system in the headquarters building for on-site analysis; researchers copy the images to campus or via Internet to other organizations for sharing with others and for analysis and processing. The cameras collect images continuously and to date they have been in use intermittently over the past 3 years to collect over 1.12M images (~716.3 GB).

This technology configuration and workflow presents multiple challenges for scientists and researchers attempting to analyze these images. First, they must copy the images from Sedgwick to UCSB or another Internet site where the necessary software and sufficient computational resources are available.
Given Sedgwick’s remote location, connectivity between it and the main campus or the Internet is intermittently available and imposes high overhead on such copies.

For example, copying the 638,062 images from the main camera alone, between Sedgwick headquarters and campus, took researchers approximately 13 days when first attempted. Given that public cloud services, including Amazon Web Services (AWS) Simple Storage Service (S3) and Box.com (which we have tested as part of this project), limit the transfer speed and access frequency to and from their sites for stability and fair sharing purposes, transfer of the Main camera images to these services from Sedgwick headquarters took 14.92 days and 13.09 days, respectively. Such delays are costly in terms of time, result in many copies of the images (wasted storage), and preclude the use of real time processing and actuation (e.g. thwarting poachers, detecting escaped livestock) based on the images at Sedgwick.

Second, transmitting all images wastes bandwidth (and power), since many contain no animals (motion detectors are triggered by wind and weather events), or they contain repeated images of the same animal (time lapsed) in slightly different poses, or they contain animals of no interest to a particular study. Moreover, classifying images by hand is time consuming (expensive), tedious, and ultimately infeasible. For example, we found that 10 dedicated students can process (label) 2500 of our images in approximately 2 hours. Some techniques and online services are available for automatically classifying images but are only available in “the cloud” and as such, require upload over slow, long-haul networks. The final issue is that although many new automated techniques for image processing and classification have emerged and are freely available, they require extensive technical expertise and significant experience with machine learning to be used effectively.

To address these challenges, we pursue an IoT approach to camera trap image classification that, using edge clouds, “brings the cloud to the data” to avoid unnecessary data transfer from the IoT sensors (cameras) to the point of analysis, and that simplifies the classification process (no prior knowledge of cloud computing or machine learning is needed). To enable this, we build upon and extend existing approaches to IoT that attempt to lower latency via in-network processing of data (aggregation, filtering, caching) near where the IoT devices generate data and where IoT applications consume it – at the edge of the network as depicted in Figure 2. The use of an edge tier as shown in the figure is referred to variously as edge networking, fog computing, edge computing, or cloudlets in the literature [12]–[16]. In addition, we encapsulate image processing techniques into this system so that they can be easily employed as “black boxes”, i.e. via automatic configuration and deployment, enabling their use for customized image classification by non-experts.

Our approach, called WTB, is a distributed system that implements the multi-tier IoT architecture depicted in the figure. We employ our campus cloud computing infrastructure (UCSB Aristotle [17]) for the Private Cloud Tier. We use AWS and Box.com for the Public Cloud Tier. The sensing tier includes the Sedgwick camera traps and other sensors (weather stations) located on the property. Unique to our approach is the ability migrate cloud-based applications to an Edge Tier where they are hosted by one or more “edge clouds.”. Instead of
performing only caching and simple filtering near the Sensing Tier, we propose, develop, and deploy edge clouds that are capable of implementing advanced computing and analytics as an appliance – with little or no expert system administration or programming skills required for operation.

Our edge cloud appliance is a scaled-down, open source, highly available, version of the AWS public cloud infrastructure implemented using Eucalyptus [18]. That is, we configure a small cluster of computers (currently six 4-core computational “bricks” [19]) with this open source distributed system that mirrors Amazon’s public Elastic Compute Cloud (EC2) and Simple Storage Service (S3). The use of Eucalyptus enables our edge cloud to run any software or services that run on EC2 and/or use S3, without modification, so that we are able to leverage the vast repositories of open source data analysis, machine learning toolkits, and web services available today with no porting effort.

Moreover, the high availability configuration of Eucalyptus enables us to construct a self-managing, resource constrained system without an IT staff to manage it (an appliance). If/when components fail, the edge cloud automatically reconfigures itself to operate using only the remaining nodes and disks until insufficient resources cause total system failure. Users of edge cloud services access the software and data (camera trap images in this case) via their browsers as they would any other Internet service or website. The edge cloud is located in the Sedgwick headquarters building and IoT devices at Sedgwick connect directly to it using the Sedgwick private wireless network.

In this paper, we customize this multi-tier architecture for remote camera trap image processing applications (the WTB system). WTB implements a software stack that automates image processing via advanced machine learning technologies that classify images of animals. Thus WTB is able to extract images with animals (or other characteristics) of interest and transmit them to end users and cloud services for further processing or sharing, significantly reducing bandwidth use, transfer delay, and end user storage requirements. Doing so also reduces the latency associated with classification (since it is performed on-site), which enables WTB to use results from its image processing for realtime control and actuation of other IoT sensors and devices at Sedgwick (to control sensor measurement frequency, remote release of water to the watering holes, sending of alerts, etc.).

A. WTB Implementation

Our WTB for Sedwick Reserve is depicted in Figure 3. WTB cameras connect to the Sedgwick private network via radio links where available. The cameras consist of different makes and models. The one we target is this work is a Reconyx HC500 Hyperfire. We currently have 638,062 images (205.5GB) from this target camera trap and of these, we consider only day images (due to time constraints), which we consider to be between 9am and 4pm year round. The images were taken for 897 days between July 13, 2013 and Aug 10, 2016. Of the 638,062 images, there are 260,159 day images with an average of 290 day-images per day for this camera. We show an example image from this camera trap in Figure 4.

Our WTB edge cloud implements Eucalyptus v4.1 and is configured with high availability (HA). The edge cloud comprises 6 4-core i7 Intel “Next Unit of Computation” (NUCs [19]), an Uninterrupted Power Supply (UPS), a gigabit Ethernet switch, 1 TB of storage (with 2x redundancy configured), and a wireless access point (for communication with IoT devices on the property). The switch is connected to the main Sedgwick network linking the reserve to the main UCSB campus networking infrastructure via a series of microwave radio links that connects Sedgwick to UCSB via Santa Cruz Island.

B. WTB Image Processing

WTB processes and filters the images automatically so that only those of interest to the end user (scientist) require transfer and remote storage. To enable this, we define a workflow engine that runs over Eucalyptus (as a Linux virtual machine instance), that is “pluggable”. That is, we store the images in a disk volume that we make available for network attachment to virtual machine instances (that process the images). Within an instance, any machine learning or image processing toolkit that can process JPEG encoded images can be used to process and filter images.

To enable this, we provide a toolset written in the Python programming language and deployed in the edge cloud that automatically deploys virtual machine instances and disk volumes, and that invokes the image processing application. The disk volume stores the images using a POSIX-based hierarchical directory structure based on the date of the image.

4 During this period, the camera was down for 11 months (scattered across this time period) for repairs and use at different locations and for other purposes.
Classification requires significantly less processing power versus training and the representation of the resulting trained model is small. Thus, our approach is to train the model on the campus or public cloud and then transmit the model to the edge cloud where the images are being produced (at the edge) to perform image classification locally. Note that it is necessary to be able to run the same version of TensorFlow during the training phase and the classification phase if the process is to be automated. By ensuring that the edge cloud is capable of running the same software as the private or public AWS cloud, we ensure that the model produced by TensorFlow during the training phase will work correctly at the edge for classification, and that we can automate the process end-to-end.

To keep training time and cost to a minimum in the public/campus cloud, WTB uses transfer learning [31]. Transfer learning is a technique that short-cuts the training process by leveraging a fully-trained model for a set of categories such as those in ImageNet (Inception-v3), and re-trains using existing weights for new classes. The problem with such an optimized approach is that retraining of the model requires access to images similar to the those we wish to classify (Sedgwick camera images). A naive approach is to transmit a large subset of images to the public/campus cloud to perform the retraining, however doing so defeats the purpose of processing the images and only communicating those of interest over the long haul network between Sedgwick and UCSB and the public cloud.

To address this challenge, we have developed a new approach to training the model for Sedgwick cameras and animals, that precludes the need for transmitting a large number of Sedgwick images to the cloud. To enable this, we generate a large number of “fake” Sedgwick images. We depict our workflow in Figure 5. We manually identify and transmit a small number of “empty” images from the camera to the cloud. Empty images are those that are triggered by motion but that do not contain animals in the image. We need multiple empty images because of the feature changes (light, size of water hole) throughout the 24 hour time period and at different times of the year. We expedite the process of finding empty images by using weather station data for Sedgwick (another IoT sensor in WTB) and extracting windy days. We then use the date and time of high wind events to target images that are likely to be empty. We identified and transmitted 250 empty day images totaling 0.1GB for this research.

On the cloud end (campus or public), WTB implements a software system that accesses Google Images over the Internet...
to obtain labeled images of each of the animals of interest (or classes). In this study, we use bears, deer, and coyote, the three most popular animals under study at Sedgwick. We query for images of these animals with white or transparent backgrounds (e.g. “bear on white background” or “bear on transparent background”). These queries result in images of bears of different species and, in particular, different from those commonly occurring at Sedgwick. Thus it is possible that the trained model (if effective) could recognize the first occurrence of a species that had not been previously photographed at Sedgwick as well as to recognize those more familiar in the area. We then automatically subtract the background of the image from the animal by replacing all white pixels with transparent pixels. We perform this step by using OpenCV, an open source library of computer vision and image processing tools and algorithms.

We next overlay the animal objects on the empty background images from Sedgwick. We size, rotate, and place the objects on the empty images in many different ways randomly. We also use the time of day and brightness on the empty images to adjust the color contrast of the objects to match the background. In total, we have produced 5000 fake images for each animal. We use the 15000 fake images and 250 empty images to retrain the TensorFlow Inception-v3 model in the cloud. We then evaluate how well using this type of training performs in identifying animals at Sedgwick (cf Section III).

The second analytics technology we plug into the WTB edge cloud, is OpenCV Optical Character Recognition (OCR) and JPEG processing. We do so to investigate the generality of our application-integration approach. We use OCR to extract the air temperature that is embedded within the image itself. Our application is a Python program that processes each image in the directory structure (volume storage mounted as a Linux file system). The application crops each image (using fixed coordinates that we identified manually) and passes it to the OCR library.

We train the OCR library for each camera manually. To enable this training, we use temperature values (cropped images) between 0 and 9 (and the minus sign), which we extract from images after performing edge detection (a built in function in the OpenCV toolkit). We generate a training set of labeled digits by manually entering the value of each of the digits. We store the trained model on the edge cloud and use it with the OCR library which uses it to recognize any unlabeled character value in a previously unseen, cropped image, by selecting the object in the labeled set that is most similar to the digit being analyzed. The OCR tool combines the digits into a temperature value and reports the value back to the caller. We have implemented the OCR tool as a library call and as a cloud service in the WTB edge cloud so that we can compare the performance of the two implementation alternatives.

The Sedgwick camera that we employ for this study stores the temperature that it embeds in each image as part of the JPEG metadata of the image. Not all cameras do so and, indeed, none of the other Sedgwick cameras have this capability. Thus, for the camera under study, we are able to not only perform OCR on the images, but also to validate automatically our OCR technique to determine the accuracy of the analysis application. For this camera, the application, as part of image processing, also extracts the JPEG metadata from the image using the JPEG library. The program then compares each pair of temperature values (OCR and JPEG) and reports the overall accuracy that the OCR technique achieves.

III. Evaluation

We use the WTB deployment at the UCSB Sedgwick Reserve to evaluate empirically different components that comprise its design. In this section, we first overview the details of the deployment. We then evaluate the accuracy and performance of the machine learning technologies that WTB integrates (TensorFlow and OpenCV OCR). We use this evaluation to investigate the costs associated with image transfer using different cloud technologies and measure the savings of performing image classification and filtering in the edge tier.

We present the details of the Sedgwick camera traps in Table I. The table shows for each camera name (column 1), the total number of images and their size in GB that each has produced between July 13, 2013 and Aug 10, 2016. Count is the total number of images for each camera during this period, column 3 is the total size of these images in gigabytes (GB), and column 4 is the average size of each image in kilobytes (KB). The final three columns show statistics for when we consider only images taken during daylight hours (between 9am and 4pm inclusively). Column 5 is the total number of days for which we have images, column 6 is the number of images, and column 7 is the size of these day images in GB. Each camera uses motion detection to trigger taking a photograph. Most triggers are caused by animals (birds, bears, deer, coyotes, squirrels, mountain lions, bobcats, etc.). However, the cameras are also triggered by movement of vegetation (caused by the wind). We refer to these images as empty.

We use the WTB on-reserve edge cloud to store and automatically analyze the images from the Main camera and consider bears, deer, and coyotes animals of interest for our analysis and machine learning study. The edge cloud also enables access to the images by researchers over the Internet and campus-to-reserve network. As of August 10, we have 1.12M total images totaling over 714GB. We have 630062 images totaling 204GB for the Main camera. The bandwidth between the Main camera and the edge cloud is 114Mbps on average. The bandwidth between the edge cloud and campus is

<table>
<thead>
<tr>
<th>Camera ID</th>
<th>Count</th>
<th>Tot. Size (GB)</th>
<th>Avg. Img Size (KB)</th>
<th>Days</th>
<th>Day Images Count</th>
<th>Size (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>72900</td>
<td>43.39</td>
<td>624</td>
<td>324</td>
<td>54486</td>
<td>15.59</td>
</tr>
<tr>
<td>BoneH</td>
<td>153215</td>
<td>334.88</td>
<td>2291</td>
<td>350</td>
<td>153215</td>
<td>136.01</td>
</tr>
<tr>
<td>BoneT</td>
<td>5886</td>
<td>5.49</td>
<td>977</td>
<td>32</td>
<td>2277</td>
<td>2.12</td>
</tr>
<tr>
<td>Fig</td>
<td>24449</td>
<td>10.05</td>
<td>431</td>
<td>239</td>
<td>9919</td>
<td>5.61</td>
</tr>
<tr>
<td>Lion1</td>
<td>88183</td>
<td>24.81</td>
<td>250</td>
<td>219</td>
<td>14033</td>
<td>4.93</td>
</tr>
<tr>
<td>Main</td>
<td>610462</td>
<td>204.26</td>
<td>335</td>
<td>897</td>
<td>238489</td>
<td>93.81</td>
</tr>
<tr>
<td>NE</td>
<td>86645</td>
<td>39.77</td>
<td>481</td>
<td>324</td>
<td>43897</td>
<td>22.85</td>
</tr>
<tr>
<td>URose</td>
<td>5311</td>
<td>8.31</td>
<td>1641</td>
<td>24</td>
<td>4765</td>
<td>7.50</td>
</tr>
<tr>
<td>Vallie</td>
<td>17028</td>
<td>14.76</td>
<td>908</td>
<td>123</td>
<td>12468</td>
<td>12.01</td>
</tr>
<tr>
<td>WM11</td>
<td>22332</td>
<td>27.87</td>
<td>1069</td>
<td>385</td>
<td>8396</td>
<td>9.82</td>
</tr>
<tr>
<td>WM11R</td>
<td>2310</td>
<td>0.93</td>
<td>421</td>
<td>32</td>
<td>1107</td>
<td>0.53</td>
</tr>
<tr>
<td>Total</td>
<td>1121321</td>
<td>741.12</td>
<td>9468</td>
<td>2949</td>
<td>543050</td>
<td>328.78</td>
</tr>
</tbody>
</table>

TABLE I. SEDGWICK CAMERA TRAP STATISTICS. WE USE CAMERA MAIN FOR THE EMPIRICAL EVALUATION OF WTB IN THIS PAPER.
We trained a TensorFlow model using four categories of synthetically generated images: Bear, Deer, Coyote, and Empty. The fifth category – Other – contained a sufficient diversity of wildlife to make training for it difficult. Thus our approach attempts to classify bear, deer, coyote, and empty images from the image set but does not attempt to completely identify all of the images.

To determine the effectiveness of our training and classification approach, we selected a random sample of 4890 images from the full corpus of Main day images, and classified them manually into the five categories: Bear, Deer, Coyote, Empty, and Other. Figure 7 shows the accuracy of the resulting model with respect to identifying bears, deer, and coyote, when applied to the random sample of 4890 images. For the classification step, we used a 90% confidence threshold from TensorFlow to categorize each image. The error percentages in the figure comprise both false positive errors and false negative errors with respect to the manually labeled images. False positive errors are those that TensorFlow says contains one type of animal, but the image does not contain that animal. False negative errors are those that are identified during manual labeling as containing a particular type of animal, but TensorFlow fails to categorize the image as containing that animal with a 90% or greater confidence threshold.

A. Classification Performance

Table II shows the number of each type of image that we manually identified in the random sample. There is likely some error differentiating the Empty category from the Other category. Occasionally, small birds or rodents (which are difficult to see unless one looks closely) trigger the camera traps. Each image was viewed only once by a student volunteer who subsequently classified it as part of a larger set. We suspect that some of the Empty images may actually contain birds (and thus should have been classified as Other) and images classified as Other may, in fact, be empty. We show two examples of such misclassifications in Figure 6. Both contain a small animal or bird but were classified by the students as Empty (when they should have been classified Other). However we believe this discrepancy is small. Further, with respect to identifying bears, deer, and coyotes, images classified as Empty and Other are equivalent as long as they do not contain bear, deer, or coyote images.

Overall, from the perspective of identifying bears, deer, and coyote, the results are promising. The overall “miss rate” is 13%, almost all of which is accounted for by misclassification of deer images. These error rates (which include false positives and false negatives) are quite low for bear and coyote images, and while the error rate for the Deer category (12%) may seem large, it is consistent with the 90% confidence threshold. Thus we believe that the methodology is working correctly. We show examples of false positives in Figure 8 and examples of false negatives in Figure 9. We plan to investigate how to improve the accuracy of our approach to reduce the number of false positives and negatives as part of our future research. For example, TensorFlow misclassifies animals in some cases that are looking at or away from the camera directly. For these, we believe that we can improve our training process to include similar animal positioning using images from Google Images.
TABLE III. CORRECT, FALSE POSITIVE, AND FALSE NEGATIVE IMAGE COUNTS, BEAR, DEER, AND COYOTE, RANDOM SAMPLE 4890 IMAGES

<table>
<thead>
<tr>
<th>Image Type</th>
<th>Correct</th>
<th>False Pos.</th>
<th>False Neg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bear</td>
<td>200</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>Deer</td>
<td>1187</td>
<td>22</td>
<td>608</td>
</tr>
<tr>
<td>Coyote</td>
<td>12</td>
<td>36</td>
<td>10</td>
</tr>
</tbody>
</table>

To determine the effect of these error rates on the bandwidth usage, we detail the correct count, false positive counts, and false negative counts for each category in Table III. These error rates indicate that the bandwidth savings resulting from the use of an edge cloud are substantial. If the system were attempting only to transfer images of bear, deer, and coyote, only the false positive counts for each would “waste” bandwidth. Put another way, WTB would have transferred a total of 1473 images (the sum of columns 2 and 3 in the table). Of these images, 1399 are correctly classified in terms of their animal type and 74 are misclassifications of each animal type. If the 74 images were strictly images of Empty or Other, they would be completely unnecessary transfers. However, many of them are misclassifications within the categories of Bear, Deer, and Coyote. Transferring these images is necessary but they would then need to be manually reclassified. The worst-case overhead is 74 images out of 1473 total transferred or approximately 5% and, if manual inspection of the false positives were implemented, the true overhead is substantially less.

From Table III, it is evident that the bulk of the Deer category errors are false negatives. That is, the system appears to be successful at identifying bear, coyote, and deer images, but it also fails to classify correctly approximately 12% of the images as deer. However, it does not incur a similar miss rate for bear or coyote images. Thus the system is successful at answering a query of the form “What type of animal is in this image?” but is less successful fulfilling a query of the form “How many deer images were taken at the Main camera?” Improving this latter capability is also the subject of our ongoing work.

Finally, while the purpose of the experiment is to identify images of commonly occurring species, the image corpus contains a number of images that either contain no animals (the Empty category) or small birds, rodents, or other fauna. Figure 10 details the accuracy of the model with respect to differentiating bears, deer, and coyote, from empty images and images containing other species. Note that the error rates for bear, deer, and coyote images are the same as in Figure 7. However, in Figure 10 it is clear that the model incurs more error when attempting to differentiate an empty image from one that may contain other features. We mentioned, many of these images appear similar so this type of error is expected. Indeed, our initial expectations were that it would be higher, given the possibility for human misclassification. This figure does indicate, however, that our technique is better at identifying animal species for which it has been explicitly trained. We believe better error rates for the Empty and Other categories would be generated if we had trained the model for different scenes that break down the Other category into different image types.

Fig. 8. Examples of False Positive Classifications. TensorFlow classified these images as coyote (top) and bear (bottom) when both contain deer.

B. Network Transfer Time Savings

From the data from Table I for the Main camera daytime images, it is possible to compute the time savings that WTB would have enabled for the random sample of images. Table IV summarizes this comparison.

In our experiments, we used an unoptimized file transfer protocol to move data from the Sedgwick edge cloud to the Aristotle campus private cloud located on the UCSB main campus. To provide a more realistic estimate of production usage, however, we compute the time savings assuming that a parallel file transfer capability (i.e., once that uses multiple network streams) is available. Using an optimistic estimate of 5 megabits per second (Mb/s) from Sedgwick to Aristotle (for parallel file transfer), moving all 4890 images would have required approximately 319 seconds. Alternatively, including false positives, transferring only the classified 1473 classified images would have required 96 seconds – approximately one third of the time.

If the accuracy data shown in Figure 7 and Table III are representative for the entire set of 238,489 daytime images from the Main camera, WTB would cut down the transfer time from 19,212 seconds (5.3 hours) to 5,763 seconds (approximately 1.6 hours) as shown in the third row of Table IV. Note also that the trained model, which 490MB in size must be moved from UCSB to the Sedgwick edge cloud. Assuming that the bandwidth is symmetric in both directions, using 5 MB/s as the transfer rate, the time to move the model is a constant 98 seconds which is insignificant in the context of the full image corpus. Clearly, with respect to the edge cloud to private cloud network connectivity, it is more advantageous to move the code to the data than it is to move the data to the
Fig. 9. Examples of False Negative Classifications. TensorFlow classified these images as low confidence (top) and empty (bottom) when the top contains a bear (or part of one) and the bottom contains a deer running off in the distance.

Classification Accuracy, 4890 Images, >= 90% Confidence

- 14% Other Err
- 7% Empty Err
- 0.2% Coyote Err
- 12% Deer Err
- 1% Bear Err
- 66% Correct

The advantage could be overshadowed by the time necessary to move the images from the cameras themselves to the edge cloud. That is, if the throughput from the cameras to the edge is less than or equal to the throughput from the edge to the private cloud or the public cloud, the advantage is lost. In our examples, the cameras communicate with the edge cloud in the Sedgwick headquarters building using high-performance directional 802.11 wireless networking that delivers approximately 114 Mb/s. That is, the bandwidth to the edge cloud from the cameras is more than a factor of 20 larger than from the edge cloud to the Aristotle campus private cloud at UCSB.

Moreover, the 5 Mb/s rate from the edge cloud to the campus cloud is significantly higher than the rate from the edge cloud at Sedgwick to either the Box or AWS public clouds. Because these services provide free data ingress, the transfer rates they offer to our project (without a premium fee) are 1.36 Mb/s and 1.61 Mb/s respectively. The fourth and fifth rows of Table IV show the transfer times for the full corpus of daytime images from the Main camera. Thus the WTB edge cloud architecture offers even greater network transfer time savings (by almost a factor of 3) if the data is moved to the UCSB private cloud rather than the public cloud. Most strikingly, however, the savings resulting from the use of an edge cloud at Sedgwick and the Aristotle private cloud at UCSB versus directly sending the images to Box or AWS S3 is more than a factor of 10 (5,763 seconds versus 70,633 seconds and 59,665 seconds respectively).

C. OCR Analysis

To evaluate generality of WTB, we next plug in an OpenCV image analysis tool for optical character recognition (OCR) and a utility for processing JPEG images (pyexinfo and exiftool). We use OCR to extract the air temperature that each camera prints on each picture. The Main camera (unlike all others in our set) also records this information in the image metadata. We use the JPEG processing tool to extract the temperature from the metadata. This enables us to evaluate the accuracy of the OCR tool since we can compare its output with that of the JPEG processing tool.

We train the OCR tool as described previously. We identify images with temperature values that cover all digits (0-9). We expedite this search using the WTB weather sensor data which enables us to pinpoints dates and times with different temperature values. In this study, we consider all images (day and night) from the Main camera (638062 images).

On average, JPEG processing requires 0.01 seconds per image. OCR when implemented as a library (wrapped via the WTB wrapper) requires 0.33 seconds on average per image with a standard deviation of 0.05 seconds. We also investigated implementing OCR as a simple web service (instead of a library). The service processes each image in 0.41 seconds on average with a standard deviation of 0.02 seconds. The difference between the performance of the service and the library is that the service implements the call and return as a request/response pair via HTTP, and transmits arguments and return values via JSON, which adds communication overhead.

Without training the OCR algorithm, the tool is able to achieve 91% accuracy (55190 errors) across these images.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Full Image Set</th>
<th>Edge Classified Images Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCSB Aristotle (rand. sample)</td>
<td>319 sec.</td>
<td>96 sec.</td>
</tr>
<tr>
<td>UCSB Aristotle (all Main)</td>
<td>19,212 sec.</td>
<td>5,763 sec.</td>
</tr>
<tr>
<td>Box (all Main)</td>
<td>90,033 sec.</td>
<td>17,889 sec.</td>
</tr>
<tr>
<td>AWS S3 (all Main)</td>
<td>59,665 sec.</td>
<td>21,390 sec.</td>
</tr>
</tbody>
</table>

TABLE IV. DATA TRANSFER TIME COMPARISON FOR DIFFERENT CLOUD DESTINATIONS.
With training the OCR algorithm, WTB achieves 100% accuracy in temperature extraction. Thus it is possible to quickly extract the temperature encoded in our images (including those without temperature values in the JPEG metadata) and to transmit or export via HTTP, a subset of images within queried temperature ranges by scientists and citizen scientists using WTB.

IV. RELATED

WTB integrates technologies from a number of different research areas. These areas include animal monitoring, image classification and object detection, and IoT-based remote sensing via integration with edge tier systems.

In the area of animal monitoring and wildlife tracking, some early work includes usage of wearable tracking devices with GPS, memory, and computing capabilities and can be deployed in the wild and operate as a peer-to-peer network [32]. A more recent work by Huang et al [33] uses collars as well to track animal interactions. Authors demonstrate how the cost of the devices needed to deploy animal tracking systems decreased over time. An ongoing project, Crane-Tracker [1], uses a leg band tracker with multiple sensors, including GPS and multi-modal radio, to track migration of Cranes over 4000km from north-central Canada to southern Texas. Mainwaring et al [34] provide an in-depth overview of the system design requirements for tracking wild animals with the focus on sensor networks, efficient sampling, and communication. Their setup includes sensors deployment in the natural habitat, data sampling, and data display through an online web interface. OzTrack [35] is another, more recent, example of an end-to-end system that can store, analyze, and visualize data coming from wild life trackers.

In the area of image classification for animal detection and tracking, Burghardt et al [4] use human face detection to detect and track lion faces to achieve a temporally coherent detection and tracing. They further use information generated by tracker to boost the priors. Zeppelzauer [36] presents a method that can identify elephants in wildlife videos by first dynamically learning their color model. The authors of this work use this model to detect elephants while also considering spatially and temporally consistent detections that appear in sequences. With this approach most elephants can be detected with greater than 90 percent of accuracy. Tillett et al [37] describe a use of a point model distribution to detect and track pigs in videos. The authors fit a model through sequences of data that provide information on the animals’ position and posture. They use the same model to capture the interaction and activities of multiple pigs in the same frame and follow animals through the sequence of frames. Finally, Xiaoyuan et al [3] propose a framework that automatically identifies wildlife species from the pictures taken by remote camera traps. In the process of species identification they manually crop out the animal images from the background and then perform multiple algorithms for image classification including Sparse Coding Spatial Pyramid Matching (ScSPM) and Support Vector Machines. They report 82% accuracy on average from 7000 images and 18 species.

Our work differs from this prior work in that we use the convolutional neural networks to classify our images. In addition, we do not require learning using pictures of the animals we are attempting to classify. To avoid transfer of thousands of images for the learning phase from the sensing tier to the private/public cloud tiers where computationally and data intensive can be performed, we instead transmit a very small number of empty images for each camera trap at different times of the day. We then automatically generate “fake” images of for training the neural network (TensorFlow with Inception-v3 in our case) by randomly placing images of the animals of interest (bears, deer, coyotes in our case) from Google Images on the empty background.

Extant investigations into IoT have identified the need for latency reduction for sensor driven, cloud-backed applications, but promote and pursue only content/data caching [13], [38], aggregation, compression, and filtering in the edge tier [15], [16], or data processing using very resource restricted and mobile devices (e.g. smart phones) [39]. WTB is unique in that it places a self-managing distributed system in the edge tier at fixed, well known locations, and uses them to mirror the functionality available from public cloud vendors but at a smaller scale. As such, we are able to leverage edge clouds to perform complex analytics, machine learning, and provide robust decision support for IoT applications at or near the data source (with very low latency), unlike any system or service available today.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we design, implement, and empirically evaluate an end-to-end, IoT edge-cloud system for the image processing and analytics that enable automatic wildlife monitoring in remote locations. We customize and deploy our system at the UCSB Sedgwick Research Reserve and use it to categorize bears, deer, and coyotes. Our multi-tier IoT system, called WTB, connects motion-triggered cameras via WIFI to an on-reserve cloud system, and a private campus cloud (UCSB Aristotle) and the Internet. The cameras capture images of wildlife, the edge cloud filters and classifies them using a deep learning system and a model trained remotely (using the campus or public cloud).

We use WTB to develop a new approach to training the models used for image classification that precludes the transfer of example images containing the animals of interest at Sedgwick. Instead, we train by splicing together stock images of the animals from Google Images onto a small number of empty Sedgwick images with random position, brightness, and color contrast. We use this artificial training set to train machine learning models and move the resulting model (which is very small) to an edge cloud located at Sedgwick. That is, we move the code/model to the data instead of moving the data to the code to avoid the costly, high latency, and time consuming network transfer of images. Our deep learning system (deployed on the campus and public cloud (for training) as well as the edge cloud (for classification) is based on the open source TensorFlow system from Google. We also integrate OpenCV optical character recognition in the edge cloud to evaluate the generality of WTB analytics support.

We find that our TensorFlow training approach achieves 0.2% error for coyote, 1% error for bear, and 12% error for deer. Our OCR approach achieves 100% accuracy for temperature extraction. We show that this software architecture is
able to perform complex and advanced filtering and automatic classification of images of wildlife, and enables significant savings in transfer and turn-around time. In particular, we reduce network transfer over the slow, long-haul network by 70% and our use of the campus cloud (UCSB Aristotle) outperforms using Internet services (Box.com and AWS S3) by an order of magnitude.

As part of future work, we are investigating how to reduce our error rates further, and applying this approach to other animals of interest. To do so, we are investigating the incorporation of specific ecological details at particular sensor sites (fauna, habitat, time of year, water availability etc.) and employing additional animal positioning (e.g. facing toward and away from the camera) in our image construction and training process. We also plan to develop a notification system that uses real-time feedback from image analysis to alert authorities of poachers and to alert visitors (hikers, students, and researchers) to potential animal presence. Finally, we are interested in using this approach to provide data-driven decision support for sustainable agriculture processes and ranching at Sedgwick [11].

VI. ACKNOWLEDGEMENTS

This work is supported in part by NSF (CCF-1539586, CNS-0905237, and ACI-1541215), NIH (1R01EB014877-01), the Naval Engineering Education Consortium (NEEC-n01174-16-C-0020), the California Energy Commission (PON-14-304), and Sedgwick Reserve. We especially thank Graham Canova-Parker, Kate McCurdy, and Anthony Nelson of Sedgwick and UCSB for their help with this effort.

REFERENCES

